Document Type

Open Access Thesis

Embargo Period

8-14-2014

Degree Program

Geosciences

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2014

Month Degree Awarded

September

Advisor Name

Michele

Advisor Middle Initial

L

Advisor Last Name

Cooke

Abstract

Strike-slip faults evolve to accommodate more fault slip, resulting in less off-fault deformation. In analog experiments, the measured fault slip to off-fault deformation ratios are similar to those measured in crustal strike-slip systems, such as the San Andreas fault system. Established planar faults have the largest fault slip to off-fault deformation ratio of ~0.98. In systems without a pre-existing fault surface, crustal thickness and basal detachment conditions affect shear zone width and roughness. However, once the applied plate displacement is 1-2 times the crustal thickness, partitioning of deformation between fault slip and off-fault distributed shear is >0.90, regardless of the basal boundary conditions. In addition, at any moment during the evolution of the analog fault system, the ratio of fault slip to off-fault deformation is larger than the cumulative ratio. We also find that the upward and lateral propagation of faults as an active shear zone developing early in the experiments has greater impact on the system’s strike-slip efficiency than later interaction between non-collinear fault segments. For bends with stepover distance of twice the crustal thickness, the fault slip to off-fault deformation ratio increases up to ~0.80-0.90, after applied plate displacement exceeds twice the crustal thickness. Propagation of new oblique-slip faults around sharp restraining bends reduces the overall off-fault deformation within the fault system. In contrast, fault segments within gentle restraining bends continue to slip and the propagation of new oblique-slip faults have less effect on the system’s efficiency than for sharp restraining bends.

Included in

Geology Commons

Share

COinS