Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

https://orcid.org/0000-0002-7125-6332

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Mechanical Engineering

Degree Type

Master of Science in Mechanical Engineering (M.S.M.E.)

Year Degree Awarded

2020

Month Degree Awarded

September

Abstract

The significant increase in energy requirements across the world, provides several opportunities for innovative methods to be developed to facilitate the storage and utilization of energy. The major energy demand is in the form of electrical energy for domestic as well as industrial sectors, a large part of which are the heating and cooling requirements. Appropriate utilization of thermal energy storage can effectively aid in reducing the electrical demand by storage and release of this thermal energy during peak hours.

Thermal Energy Storage using Phase Change Materials (PCMs) is an attractive method of energy storage, with a wide variety of potential applications. Several configurations have been tested by researchers to develop energy storage devices with PCMs. The cycling of melting and solidification of PCMs results in storage and release of heat at a relatively small temperature difference. Design and deployment of these storage systems have certain challenges and considerations associated to them for instance, when used in buildings, PCMs should be non-toxic, non-corrosive, and others.

In this thesis, we aim to provide models for designing Latent Thermal Energy Storage (LTES) devices with PCMs, based on their operating conditions, thermophysical properties of materials, and geometric parameters. The models are developed considering fluid dynamics and heat transfer involved in melting and solidification of PCMs. Parameters like inlet temperature and velocity, and volume of storage container are varied to determine the time taken for melting or solidification. For sizing and predicting performance of the storage devices we aim at presenting an analytical correlation, with time taken for melting as the variable defining the ‘charging/discharging time’ of storage device. Along with this, a transient model is developed to predict amount of PCM melted/solidified, along with rate of latent energy storage in defined time period intervals.

DOI

https://doi.org/10.7275/18400452

First Advisor

Dragoljub Kosanovic

Share

COinS