Publication Date

2005

Journal or Book Title

ANNALS OF APPLIED PROBABILITY

Abstract

In this paper we give a complete analysis of the phase transitions in the mean-field Blume-Emery-Griffiths lattice-spin model with respect to the canonical ensemble, showing both a second-order, continuous phase transition and a first-order, discontinuous phase transition for appropriate values of the thermodynamic parameters that define the model. These phase transitions are analyzed both in terms of the empirical measure and the spin per site by studying bifurcation phenomena of the corresponding sets of canonical equilibrium macrostates, which are defined via large deviation principles. Analogous phase transitions with respect to the microcanonical ensemble are also studied via a combination of rigorous analysis and numerical calculations. Finally, probabilistic limit theorems for appropriately scaled values of the total spin are proved with respect to the canonical ensemble. These limit theorems include both central-limit-type theorems, when the thermodynamic parameters are not equal to critical values, and noncentral-limit-type theorems, when these parameters equal critical values.

Comments

This is the pre-published version harvested from ArXiv. The published version is located at

http://www.jstor.org/stable/30038388

Pages

2203-2254

Volume

15

Issue

3

Share

COinS