Loading...
Citations
Altmetric:
Abstract
We study the harmonic map equations for maps of a Riemann surface into a Riemannian symmetric space of compact type from the point of view of soliton theory. There is a well-known dressing action of a loop group on the space of harmonic maps and we discuss the orbits of this action through particularly simple harmonic maps called {\em vacuum solutions}. We show that all harmonic maps of semisimple finite type (and so most harmonic $2$-tori) lie in such an orbit. Moreover, on each such orbit, we define an infinite-dimensional hierarchy of commuting flows and characterise the harmonic maps of finite type as precisely those for which the orbit under these flows is finite-dimensional.
Type
article
article
article
Date
1995