Date of Award

9-2010

Document type

dissertation

Access Type

Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Polymer Science and Engineering

First Advisor

H. Henning Winter

Second Advisor

Alfred J. Crosby

Third Advisor

Jonathan P. Rothstein

Subject Categories

Polymer Science

Abstract

The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/ leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We >1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEWTM based code (LabVIEWTM 7.1) in real time. The SALS apparatus was custom built for ExxonMobil Research in Clinton NJ.

DOI

https://doi.org/10.7275/1667383

COinS