Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Access Type

Open Access

Document Type

thesis

Degree Program

Geosciences

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2013

Month Degree Awarded

September

Keywords

paleoclimate, global climate model, climate, Arctic, interglacials, glacial, MIS-31, ice sheets

Abstract

Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stage (MIS) 1 (9ka), 5e (127 ka), 11c (409 ka), and 31 (1072 ka) with new proxy climate data recovered from Lake El’gygytgyn, NE Russia. Climate reconstructions of the Mean Temperature of the Warmest Month (MTWM) indicate conditions 2.1, 0.5 and 3.1 ºC warmer than today during MIS 5e, 11c, and 31 respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer orbital forcing, the extraordinary warmth of MIS 11c relative to the other interglacials in the proxy records remain difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El’gygytgyn, we isolated the influence of vegetation, sea ice, and circum-Arctic land ice feedbacks on the climate of the Beringian interior. Vegetation-land surface feedback simulations during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on Northeast Asian temperature during the warmth of stage 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic ocean has some effect on Beringian climate, suggesting intrahemispheric coupling seen in comparisons between Lake El’gygytgyn and Antarctic sediment records might be related to linkages between Antarctic ice volume and ocean circulation. The exceptional warmth of MIS 11c remains enigmatic however, relative to the modest orbital and greenhouse gas forcing during that interglacial. Large Northern Hemisphere ice sheets during Plio-Pleistocene glaciation causes a substantial decrease in Mean Temperature of the Coldest Month (MTCM) and Mean Annual Precipitation (PANN) causing significant Arctic aridification. Aridification and frigid conditions can be linked to a combination of mechanical forcing from the Laurentide and Fennoscandian ice sheets on mid-tropospheric westerly flow and expanded sea-ice cover causing albedo-enhanced feedback.

DOI

https://doi.org/10.7275/4297573

First Advisor

Robert M. DeConto

Second Advisor

Julie Brigham-Grette

Melles_LakeE_Science_2012.pdf (1513 kB)
Publication during Master's research

Melles_supplemental_science_2012.pdf (4504 kB)
Supplemental to publication

COinS