Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Access Type

Open Access

Document Type

thesis

Degree Program

Electrical & Computer Engineering

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2008

Month Degree Awarded

September

Keywords

Sense Amplifier, Process Variations, FinFET

Abstract

As we move under the aegis of the Moore's law, we have to deal with its darker side with problems like leakage and short channel effects. Once we go beyond 45nm regime process variations also have emerged as a significant design concern.Embedded memories uses sense amplifier for fast sensing and typically, sense amplifiers uses pair of matched transistors in a positive feedback environment. A small difference in voltage level of applied input signals to these matched transistors is amplified and the resulting logic signals are latched. Intra die variation causes mismatch between the sense transistors that should ideally be identical structures. Yield loss due to device and process variations has never been so critical to cause failure in circuits. Due to growth in size of embedded SRAMs as well as usage of sense amplifier based signaling techniques, process variations in sense amplifiers leads to significant loss of yield for that we need to come up with process variation tolerant circuit styles and new devices. In this work impact of transistor mismatch due to process variations on sense amplifier is evaluated and this problem is stated. For the solution of the problem a novel self compensation scheme on sense amplifiers is presented on different technology nodes up to 32nm on conventional bulk MOSFET technology. Our results show that the self compensation technique in the conventional bulk MOSFET latch type sense amplifier not just gives improvement in the yield but also leads to improvement in performance for latch type sense amplifiers. Lithography related CD variations, fluctuations in dopant density, oxide thickness and parametric variations of devices are identified as a major challenge to the classical bulk type MOSFET. With the emerging nanoscale devices, SIA roadmap identifies FinFETs as a candidate for post-planar end-of-roadmap CMOS device. With current technology scaling issues and with conventional bulk type MOSFET on 32nm node our technique can easily be applied to Double Gate devices. In this work, we also develop the model of Double Gate MOSFET through 3D Device Simulator Damocles and TCAD simulator. We propose a FinFET based process variation tolerant sense amplifier design that exploits the back gate of FinFET devices for dynamic compensation against process variations. Results from statistical simulation show that the proposed dynamic compensation is highly effective in restoring yield at a level comparable to that of sense amplifiers without process variations. We created the 32nm double gate models generated from Damocles 3-D device simulations [25] and Taurus Device Simulator available commercially from Synopsys [47] and use them in the nominal latch type sense amplifier design and on the Independent Gate Self Compensation Sense Amplifier Design (IGSSA) to compare the yield and performance benefits of sense amplifier design on FinFET technology over the conventional bulk type CMOS based sense amplifier on 32nm technology node effective in restoring yield at a level comparable to that of sense amplifiers without process variations. We created the 32nm double gate models generated from Damocles 3-D device simulations [25] and Taurus Device Simulator available commercially from Synopsys [47] and use them in the nominal latch type sense amplifier design and on the Independent Gate Self Compensation Sense Amplifier Design (IGSSA) to compare the yield and performance benefits of sense amplifier design on FinFET technology over the conventional bulk type CMOS based sense amplifier on 32nm technology node.

DOI

https://doi.org/10.7275/603414

First Advisor

Sandip Kundu

COinS