Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Access Type

Open Access

Document Type

thesis

Degree Program

Animal Science

Degree Type

Master of Science (M.S.)

Year Degree Awarded

January 2008

Month Degree Awarded

September

Keywords

Pyrethroids, VGCC, VGClC, Synaptosomes, Rat Brain

Abstract

Select pyrethroid binary mixtures (deltamethrin plus S-bioallethrin, β-cyfluthrin, cypermethrin, and fenpropathrin) elicit a more-than-additive response on L-glutamate release from rat brain synaptosomes that is independent of calcium influx. Using a variety of chloride channel antagonists, anthracene-9-carboxylic acid (9-AC), rChlorotoxin (ClTx), 4,4’-dintitrostilbene-2,2’-disulfonic acid (DNDS), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), and picrotoxinin (PTX), we have identified two mechanisms by which pyrethroids may enhance L-glutamate release. The results from this study indicate that only ClTx and NPPB, at their EC50s (0.1 μM and 70 μM, respectively), significantly increase L-glutamate release when in the presence of our most potent pyrethroid, deltamethrin, at its EC50 (2 x 10-12 M). When these two antagonists were used in the presence of deltamethrin plus cypermethrin and deltamethrin plus fenpropathrin, a more-than-additive response was elicited at lower concentrations of the binary mixtures. Likewise, NPPB in the presence of the additive binary mixture, deltamethrin plus tefluthrin, first elicited a more-than-additive response at the 1:10 mixture. Since both ClTx and NPPB are inhibitors of voltage-gated chloride channels (ClC-2) and calcium-activated chloride channels, our findings suggest that these channels are potential target sites for certain pyrethroids and likely are important in pyrethroid neurotoxicity.

DOI

https://doi.org/10.7275/606203

First Advisor

John M. Clark

COinS