Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Access Type

Open Access

Document Type

thesis

Degree Program

Organismic & Evolutionary Biology

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2010

Month Degree Awarded

May

Keywords

Selection mosaic, resource allocation tradeoff, herbivory, pollination, competition, horsenettle

Abstract

The geographic mosaic theory of coevolution predicts that spatial differences in species interactions result in a patchwork of evolutionary hot and cold spots across a landscape. We used horsenettle (Solanum carolinense L.), a perennial weed with a diverse insect community found in old fields and meadows, to examine local adaptation and resource-mediated selection. The goals of this study were to (1) determine the potential for a selection mosaic by identifying local adaptation through trait-interaction matching with herbivores, pollinations and plant competitors, and (2) determine the potential for indirect selection through resource allocation tradeoffs. The potential for local adaptation was determined by measuring interactions in four populations and relating those findings to plant traits measured on offspring grown from those populations in a ‘common garden.’ Allocation tradeoffs between growth, herbivore resistance, and floral traits were also assessed in the common garden. We found high herbivore damage in the field associated with decreased root:shoot ratios in greenhouse-grown plants, which may indicate an herbivore-mediated effect on life-history through selection for a more annual strategy. By examining allocation tradeoffs we found evidence of two distinct reproductive strategies in this perennial plant. Negative correlations between reproductive traits and both growth and defense suggest that individuals either favor current growth and reproduction over defense, or invest in current survival and defense while delaying reproduction. Overall, this study sheds light on how selection changes over space and time, which are of many of the fascinating traits we find in plants and animals today.

DOI

https://doi.org/10.7275/1192488

First Advisor

Lynn S Adler

COinS