Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Access Type

Open Access

Document Type

thesis

Degree Program

Electrical & Computer Engineering

Degree Type

Master of Science in Electrical and Computer Engineering (M.S.E.C.E.)

Year Degree Awarded

2011

Month Degree Awarded

February

Keywords

Emergency Resource Allocation, E-triage, Matlab Web Interface, Patient Dispatch System, Emergency Resource Planning

Abstract

Disasters are characterized by large numbers of victims and required resources, overwhelming the available resources. Disaster response involves various entities like Incident Commanders, dispatch centers, emergency operations centers, area command and hospitals. An effective emergency response system should facilitate coordination between these various entities. Victim triage, emergency resource allocation and victim dispatch to hospitals form an important part of an emergency response system. In this present research effort, an emergency response system with the aforementioned components is developed.

Triage is the process of prioritizing mass casualty victims based on severity of injuries. The system presented in this thesis is a low-cost victim triage system with RFID tags that aggregate all victim information within a database. It will allow first responders' movements to be tracked using GPS. A web-based real time resource allocation tool that can assist the Incident Commanders in resource allocation and transportation for multiple simultaneous incidents has been developed. This tool ensures that high priority resources at emergency sites are received in least possible time. This web-based tool also computes the patient dispatch schedule from each disaster site to each hospital. Patients are allocated to nearest hospitals with available medical facilities. This tool can also assist resource managers in emergency resource planning by computing the time taken to receive required resources from the nearest depots using Google Maps. These web-based tools complements emergency response systems by providing decision-making capabilities.

DOI

https://doi.org/10.7275/1583826

First Advisor

Aura Ganz

COinS