Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Access Type

Open Access

Document Type

thesis

Degree Program

Electrical & Computer Engineering

Degree Type

Master of Science in Electrical and Computer Engineering (M.S.E.C.E.)

Year Degree Awarded

2012

Month Degree Awarded

September

Keywords

Network Virtualization, Benchmark, Evaluation

Abstract

The network architecture of the current Internet cannot accommodate the deployment of novel network-layer protocols. To address this fundamental problem, network virtualization has been proposed, where a single physical infrastructure is shared among different virtual network slices. A key operational problem in network virtualization is the need to allocate physical node and link resources to virtual network requests. While several different virtual network mapping algorithms have been proposed in literature, it is difficult to compare their performance due to differences in the evaluation methods used. In this thesis work, we proposed VNMBench, a virtual network mapping benchmark that provides a set of standardized inputs and evaluation metrics. Using this benchmark, different algorithms can be evaluated and compared objectively. The benchmark model separate into two parts: static model and dynamic model, which operated in fixed and changed mapping process. We present such an evaluation using three existing virtual network mapping algorithms. We compare the evaluation results of our synthetic benchmark with those of actual Emulab requests to show that VNMBench is sufficiently realistic. We believe this work provides an important foundation to quantitatively evaluating the performance of a critical component in the operation of virtual networks.

DOI

https://doi.org/10.7275/3249623

First Advisor

Tilman Wolf

COinS