Publication Date


Journal or Book Title



To support the rapid growth of demand in passengers and freight, separating trucks and passenger-cars is a potential solution to improve traffic efficiency and safety. The primary purpose of this paper is to comprehensively assess the multilane separate freeway at Huludao Toll Station in Liaoning Province, China. Based on the configuration and segmentation of the freeway near a toll station, a six-step guidance strategy is designed to adapt to the separate organization mode. Five conventional traffic scenarios are designed in the Vissim platform for comparative analysis between different guidance strategies. To investigate the vehicle-to-infrastructure (V2I) environment, a microscopic testbed is established with cooperative car-following and lane-changing models using the MATLAB platform. The numerical simulation results show that the guidance strategy significantly improves efficiency and safety, and also reduces emissions and fuel consumption. Meanwhile, pre-guidance before toll channels outperforms the scenario only applied with guidance measures after toll plaza. Compared to conventional conditions, the assessment of pollutant emissions and fuel consumption also embodies the superiority of the other five scenarios, especially in the sections of toll plaza and channels with the lowest efficiency and safety level. Generally, all indexes indicate that the cooperative V2I technology is the best alternative for multilane separate freeways.







UMass Amherst Open Access Policy

Creative Commons License

Creative Commons Attribution-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-No Derivative Works 4.0 License.