A note on reflexive ECM subjects

Winfried Lechner
National and Kapodistrian University of Athens

1 Introduction

In an influential contribution, Johnson (1991) championed the view that what was in those days called VP is sister to a silent function head $\mu$ in the specifier of which objects are assigned Case subsequent to overt raising. This idea was further developed by Kratzer (1996) into the by now widely adopted little-vP/VoiceP hypothesis. In this squib, I would like to propose an analysis for an interpretive contrast unearthed in Moulton 2005, 2008 which crucially relies on Johnson’s original insight that certain arguments raise to positions above VP in course of the syntactic derivation.

In Lechner 2012 I argued that the core properties of Condition A fall out from two natural assumptions. First, the reflexivizer $\text{self}$ is assigned a lexical meaning and modeled as a function over two-place relations (Bach & Partee 1980, Keenan 1987/1989, Szabolcsi 1987 amongst others). In the concrete implementation (1), $\text{self}$ combines with one of its two individual arguments first before applying to this binary relation. Moreover, the meaning contribution of $\text{self}$ is located in the presupposition, which introduces an identity requirement on its two individual arguments (Sauerland 2013, McKillen 2016, Spathas 2017, amongst others).

$$ (1) \quad \llbracket \text{self} \rrbracket = \lambda x.\lambda R_{\langle e, (e, t) \rangle}. \lambda y. R(e)(x)(y) : x = y $$

(To be revised)

While (1) can be directly combined with lexical predicates that denote binary relations ($\text{Alice saw herself}$), the analysis does not extend to cases in which the reflexive is bound by an object:

1 Billy Wilder famously had a sign on his wall that asked What would Lubitsch have done? My incarnation of this sign reads How would Kyle have done it? There are very few things that I did not learn from you, Kyle, as a teacher, linguist, writer of impeccable scientific prose and friend. (How to become a decent dresser might be among them, alas!)

2 The definition (1) diverges from Sauerland’s in that $\text{self}$ applies to one of its individual arguments first. This makes it possible to avoid vacuous pronoun movement, as in Sauerland 2013. In Lechner 2012, $\text{self}$ was treated as an arity reducer ($\llbracket \text{self} \rrbracket = \lambda R_{\langle e, (e, t) \rangle}. \lambda x. R(e)(x)(x)$). Although nothing bears on the particular choice for present purposes, the presuppositional account affords additional analytical options that are useful in the analysis of strict reflexives (Sauerland 2013, McKillen 2016; see also below).
(2) a. John showed Alice (to) herself (in the mirror).
   b. LF: John Alice \([\text{showed}_{(e,(e,t))}](\text{to}) \text{herself})\) (\(\not\times\) Type mismatch)

Compositional integration of the reflexive in (2) is guaranteed by the second assumption, though. At LF, the antecedent \(\alpha\) raises (3a), followed by movement of self in between \(\alpha\) and \(\lambda_1\), the \(\lambda\)-binder of \(\alpha\) (3b), resulting in a configuration of Parasitic Scope (Barker 2007, Sauerland 1998, Nissenbaum 1998, Bhatt & Takahashi 2011, Kennedy 2009, Lechner 2012, 2016, amongst others).

(3) a. \([\alpha\ldots\text{pron-self}_{(e,(e,t))}]\)
   b. \([\alpha\ldots\text{pron-self}_{(e,(e,t))}] \lambda_1 \lambda_2\)
   c. \([\alpha\ldots\text{pron-self}_{(e,(e,t))}] \lambda_2\)

(4) demonstrates that this setup derives the correct meaning for object oriented anaphors (for concreteness, suppose that \(Alice\) and \(herself\) are attracted by a higher functional head; subject movement and the preposition are not represented):

 Derivation of John showed Alice to herself
\[
[XP]^{g,w} = show(g(3))(alice)(john) : alice = g(3)
\]
\[
[XP_{(e,t)}]^{g,w} = \lambda y.\text{show}(g(3))(y)(john) : y = g(3)
\]
\[
[XP_{(e,(e,t))}]^{g,w} = \lambda x.\lambda y.\text{show}(x)(y)(john)
\]

Since on this view, reflexivization implicates two dislocation operations, one is led to expect that the movements need to satisfy the principles of natural language syntax, in particular the general requirement that attraction by a single head proceeds in such a way that higher elements are moved first (Richards 2001 and
A note on reflexive ECM subjects

This ordering condition offers a straightforward explanation for why the antecedent needs to c-command the anaphor. While the sequencing in (5) produces an interpretable parasitic scope constellation, the derivation violates syntactic locality, since the lower element (pronominal reflexive) moves first. By contrast, the alternative parse (6) is syntactically well-formed but is filtered out as a type mismatch: pron-self fails to find in its local neighborhood the two-place relation it wants to combine with.

(5) *Heself/himself saw John. (✗ Syntax/ ✓ Semantics)
   a. [[John] [pron-self ⟨(e,e,t), ⟨e,e,t⟩⟩] l⟨e,e,t⟩ l⟨e,e,t⟩ l... [v p self [VP saw t1]]]]
   b. [[John] l⟨e,e,t⟩ l⟨e,e,t⟩ l... [v p t2 [VP saw t1]]]]

(6) *Heself/himself saw John. ( ✓ Syntax/ ✗ Semantics)
   a. [[pron-self ⟨(e,e,t), ⟨e,e,t⟩⟩] l⟨e,e,t⟩ l⟨e,e,t⟩ l... [v p t2 [VP saw John]]]]
   b. [[John] l⟨e,e,t⟩ l⟨e,e,t⟩ l... [v p t2 [VP saw t1]]]]

Thus, Condition A can be reduced to the interaction of two components: a transparent semantics for reflexives and a derivation generating parasitic scope configurations that is subject to the general syntactic laws regulating the order and landing site of multiple movements.4

2 Reflexive ECM subjects

The present section extends the relational analysis of self to contexts in which the reflexive serves as the subject of an ECM-complement. The more specific objective consists in delineating a plausible account for a finding chronicled in Moulton 2005.

It has been known at least since Bresnan 1972: 149ff that ECM predicates fall into two discrete classes. A number of diagnostics, some of which are illustrated in (7), indicate that accusative subjects of B-class verbs, exemplified by believe, consider, prove, deny and suppose, behave as if being part of the superordinate clause, whereas ECM-subjects of W-class predicates, among them want, prefer, desire, need and expect,5 are located within their own minimal clause.6

3 The operations are counter-cyclic. For a re-analysis that abides by the Strict Cycle see Lechner 2012.
4 Further evidence from phrasal comparatives can be found in Lechner 2016.
5 The verb expect has been claimed to be ambiguous (Bresnan 1972: 162pp, Pesetsky 1992: 29). I will ignore this additional complication here.
6 Another sign for raising is the ability of ECM subjects to license anaphors in the higher clause. Whether this property is in fact absent in W-class verbs, as predicted, has to my knowledge, not been tested yet.

(i) The DA [[believed the defendants1 to be guilty] during each other1’s trials].
(7)  **B-class: subject to object raising**

a. We believe John to win (*during the next race).  
   (Simultaneity requirement)

b. John was believed to have won.  
   (Passive)

c. *John believes to have won.  
   (No obligatory control)

(8)  **W-class: no subject to object raising**

a. Mary wants John to win (during the next race)  
   (No simultaneity requirement)

b. *John was wanted to (have) won.  
   (No passive)

c. John wanted PRO to win.  
   (Obligatory control)

Following a longstanding tradition, it will be assumed that these structural differences correspond to differences in the evolution of the representations underlying these two classes of constructions. Specifically, suppose that ECM subjects of B-class predicates overtly raise into a Case position of the higher clause (SpecvP; Lasnik 1999), possibly by Overt Covert Movement (Nissenbaum 2000) and that such an operation is absent from derivations that involve W-class verbs.

Moulton (2005) adds a further observation to this catalogue: Only reflexive ECM-subjects of W-class predicates admit *de re* interpretations.

(9)  **W-class: de re reflexives**

a. John wanted *himself* to win.  
   \(\text{de sel} \text{de re}\)

b. John wanted *himself* to win.  
   (Chierchia 1989: (26c))  
   \(\text{de sel} \text{de re}\)

(10) **B-class: no de re reflexives**

a. John believed *himself* to win.  
   (Chierchia 1989: (26b))  
   \(\text{de sel}^* \text{de re}\)

b. John considered *himself* to be the winner.  
   \(\text{de sel}^* \text{de re}\)

In (9a), for example, John either self-ascribes the property of winning (*de se*) or he expresses the desire for some individual John to succeed, who, unbeknownst to him, is in actuality John himself (*de re*). (10a) lacks such a *de re* interpretation, which typically arises in situations of ‘mistaken identity’, where the attitude holder is unaware of her/his being identical to the *res* nominal. A more precise formal rendering of the two readings has to await Section 3. For the moment, suffice it to say that *de re* reflexives impose a weaker condition on the reflexive relation between the attitude holder John on the one side and his counterparts in John’s bouletic, doxastic or expectation alternatives on the other side. This has the desirable consequence that *de re* readings are empirically detectable, for instance by designing suitable models of ‘mistaken identity’ which satisfy the *de re* truth conditions only.
A note on reflexive ECM subjects

In what follows, I will provide a further criterion that might aid in distinguishing between these two readings, proceeding from there to some thoughts as to how the contrast can be correlated to independent properties of the two verb classes (Section 3).

The judgements pertaining the contrast (9) vs. (10) are not as strong as one might wish (Keir Moulton, p.c.). A potentially useful tool for strengthening one’s intuitions comes from a variation on Russell sentences. (11) is ambiguous between a contradictory reading, on which the speaker ascribes to Ann the belief that Ben’s height exceeds Ben’s height, and a consistent interpretation on which Ben is in fact shorter than Ann believes him to be. This ambiguity is usually attributed to two different binding options for the underlined world/situation variable relative to which the degree predicate tall is evaluated (von Stechow 1984). Co-binding of the world/situation variables results in the contradictory proposition (11b), whereas interpreting the second occurrence of tall with respect to the evaluation world renders the meaning compatible with consistent models ((11); Dox$_x$ is the set of doxastic alternatives for $x$ in $w$):

\[
\begin{align*}
(11) \text{ Ann believes that Ben is taller than he$^3$ is.} & \quad (g(3) = \text{Ben}) \\
& \quad (\text{✓ Ellipsis parallelism}) \\
& \quad (\text{✗ Ellipsis parallelism}) \\
\end{align*}
\]

Furthermore, substituting the ECM subject by a reflexive remnant in phrasal comparatives bleeds the consistent reading (12c) (Hellan 1981, Napoli 1983, Heim 1985, among others):

\[
\begin{align*}
\text{(12)} & \quad \text{Ann believes that Ben is taller than himself.} \\
& \quad (\text{✓ Ellipsis parallelism}) \\
& \quad (\text{✗ Ellipsis parallelism}) \\
\end{align*}
\]

Heim (1985) suggests that the absence of the transparent interpretation (12c) follows from standard mechanisms of ellipsis parallelism, which require the two underlined world variables to be co-bound. Since consistency is contingent upon the

---

This holds regardless of whether the ellipsis in phrasal comparatives is syntactic or semantic, as (Heim 1985) demonstrates.
two asymmetrically ordered degree descriptions to embed two different propositions, co-binding invariably leads to inconsistency.

But there is another strategy for generating consistent readings. Suppose that the locus of variation between the two propositions is not the index of tall, but in the interpretation of the subject. Such configurations are supplied by the paradigm (13), which is identical to (12) except that the ECM-subject is occupied by a second reflexive:

(13)  \textit{W-class: consistent reading possible}

\begin{itemize}
\item a. Ben wants \textit{himself} to be taller than himself. \textit{de sel} / \textit{de re}
\item b. Ben would prefer \textit{himself} to be taller than himself. \textit{de sel} / \textit{de re}
\item c. Ben had expected \textit{himself} to score better than himself. \textit{de sel} / \textit{de re}
\end{itemize}

Recall at this point that reflexive ECM-subjects of W-class verbs are ambiguous between a \textit{de re} and a \textit{de se} interpretation. Provided that reflexive remnants of phrasal comparatives have to be read \textit{de se}, a conclusion which is inescapable given (12), the embedded proposition is expected to express a consistent belief only if the ECM-subject can be assigned a \textit{de re} interpretation. Even though judgments are subtle, such a reading of (13) exists for many of my consultants. Conversely, if the matrix predicate disallows reflexive \textit{de re} subjects, as is the case with B-class predicates, the target interpretation should disappear. (14) documents that this appears to be correct:\footnote{The control version of want is predicted to lack a consistent reading, too, because PRO is always interpreted \textit{de se}. Again, judgments are subtle but seem to point in the right direction:}

(14)  \textit{B-class: inconsistent reading only}

\begin{itemize}
\item a. Ben believes \textit{himself} to be taller than himself. \textit{de sel} / \textit{de re}
\item b. Ben considers \textit{himself} to be smarter than himself. \textit{de sel} / \textit{de re}
\end{itemize}

The relevant details underlying the contrast are made explicit in (15):

(15)  \begin{itemize}
\item a. Ben wants \textit{himself} \textit{de re} to be taller than \textit{himself} \textit{de se}
\item b. Ben believes \textit{himself} \textit{de se} to be taller than \textit{himself} \textit{de se}
\end{itemize}

\textit{W-class: consistent}  

\textit{B-class: inconsistent}

To recapitulate, consistency in certain Russell sentences can either be achieved by contra-indexing the world/situation variables of the predicates or variation in the interpretation of the subjects. Crucially for present concerns, if the judgments
A note on reflexive ECM subjects

reported here turn out to be representative, they furnish support for Moulton’s conjecture that W-class verbs can only combine with de re subject reflexives.

A remark is in order regarding representation (15). It has been noted on the basis of examples like (16) that de se reflexives cannot be long distance bound across c-commanding de re subjects (‘de re’ blocking effect; Heim 1994, Percus & Sauerland 2003, Anand 2006, Sharvit 2011, among others). But then, the de re–de se constellation (15a) should be blocked for the same reasons that (16a) is:

(16) Palin promised McCain PRO to vote for herself (Sharvit 2011)
    a. PRO_{de re} \ldots\text{herself}_{de se}
    b. PRO_{de se} \ldots\text{herself}_{de re}

Notice, however, that there is an important difference between comparatives and the simple embedding in (16). All extant analyses of phrasal comparatives require a re-ordering of the constituents (usually at LF) which places the degree complement above the base position of the subject. Given that the de re blocking effect is structure sensitive (Anand 2006), the problem disappears because the LF representation of (15b) is now as shown in (17), where himself_{de re} no longer c-commands himself_{de se}:

(17) Ben wanted [[MORE than himself_{de se}] [\lambda_3 [\text{himself}_{de re} to be \text{d}_3\text{-tall}]]]

(Ben wanted himself to be taller than himself)

In sum, comparatives provide a useful tool for assessing interpretive properties of ECM-reflexives as they introduce an additional testable variable (consistency) into the judgment task.

3 Toward and analysis

This final section sketches the first steps toward a possible analysis of the paradigms in (9) and (10), relevant parts of which are repeated below as (18):

(18) a. John expected himself to win. \quad \text{de sel} \text{de re (W-class)}
    b. John believed himself to win. \quad \text{de sel}^* \text{de re (B-class)}

The specific goal consists in defining an algorithm that blocks de re readings for reflexive B-class ECM subjects.

I follow Moulton (2005) in assuming that reflexivity comes in two flavors, a strong and a weak variant. A relation is strongly reflexive if it is necessarily reflex-
ivity, i.e. if it holds across worlds, and it is weak otherwise. Two corresponding lexical entries for the presuppositional version of self are given in (19):

(19) Presuppositional reflexives

a. \[ \text{self}_{\text{strong}} = \lambda x e. \lambda R_{\langle e, \langle e, s, t \rangle \rangle}. \lambda y e. \lambda w s, R(x)(y)(w) : \forall w R(x)(y)(w) \rightarrow x = y \text{ in } w \]

b. \[ \text{self}_{\text{weak}} = \lambda x e. \lambda R_{\langle e, \langle e, t \rangle \rangle}. \lambda y e. \lambda w s, R(x)(y) : x = y \text{ in } w \]

(19a) presupposes that the relation self\text{strong} applies to is reflexive independently of the choice of model and assignment, while for (19b), it is sufficient for the relation to be reflexive in the evaluation world. Also in line with Moulton, the strong variant of self will be assumed to produce de se readings, while the weak version yields de re interpretations.

Once they have combined with their outer arguments, both variants of self select for binary relations and accordingly need to move, as suggested in Section 1, establishing a configuration of parasitic scope. What is of particular significance for the present proposal is that the two exponents impose different type requirements on their sister nodes. Pron-self\text{strong} needs an \( \langle e, \langle e, s, t \rangle \rangle \)-type expression as input, while pron-self\text{weak} combines with a binary relation between individuals \( \langle e, \langle e, t \rangle \rangle \) once it has applied to its world/situation variable. This structurally disambiguates the admissible contexts for weakly and strongly reflexive pron-self as shown below:

(20) a. pron-self\text{strong} can be used only if its sister node is of type \( \langle e, \langle e, s, t \rangle \rangle \)

b. w-pron-self\text{weak} can be used only if its sister node is of type \( \langle e, \langle e, t \rangle \rangle \)

In what follows, I will adopt the fairly innocuous and widely shared assumptions that situation/world variables are represented in the object language (Cresswell 1990, Percus 2000, among others) and that vPs denote properties of situations (type \( \langle s, t \rangle \)). Moreover, I assume that the lower bound for insertion of these variables in the spine of the tree is the outermost vP. As a result, the first t-type node is situated above vP (see Lechner to appear for arguments in support of this claim.)

The analysis of de se reflexives proceeds as outlined in (21). Just as in simple constructions with anaphors, the antecedent and the reflexive move to create a context of parasitic scope. First, the antecedent raises and adjoins to vP, followed by movement of the reflexive. As was already seen in Section 1, in the semantic computation, self combines with its pronominal sister node before applying to the derived binary relation. (Exp collects expectation alternatives of the subject; see below.)

9 I am indebted to Clemens Mayr for help in the definition of the weak version. All errors remain mine.

10 The weak version is also compatible with de se readings, it just does not enforce them.
A note on reflexive ECM subjects

(21) Derivation of de se reading of John expects himself to win

\[
\begin{aligned}
\llbracket v_P((x,t)) \rrbracket & = \lambda w. \forall w'[w' \in Exp_{j,w} \rightarrow g(3) \text{ wins in } w'] : \\
& \quad \forall w \forall w'[w' \in Exp_{j,w} \land g(3) \text{ wins in } w' \rightarrow g(3) = john \text{ in } w']
\end{aligned}
\]

\[
\begin{aligned}
\llbracket v_P((e,\langle x,t \rangle)) \rrbracket & = \lambda y. \lambda w. \forall w'[w' \in Exp_{j,w} \rightarrow g(3) \text{ wins in } w'] : \\
& \quad \forall w \forall w'[w' \in Exp_{j,w} \land g(3) \text{ wins in } w' \rightarrow g(3) = y \text{ in } w']
\end{aligned}
\]

\[
\begin{aligned}
\llbracket v_P((e,\langle e,\langle x,t \rangle \rangle)) \rrbracket & = \lambda x. \lambda y. \lambda w. \forall w'[w' \in Exp_{j,w} \rightarrow x \text{ wins in } w']
\end{aligned}
\]

\[t_1,\text{John expects } t_2,\text{self} \text{ to win} \]

\[(self_{\text{strong}} \text{ moves to a position within } v_P)\]

Note on the side that there is also an alternative, arguably simpler parse for (18a). Provided that \(v^0\), which introduces the external argument (Kratzer 1996), is a function from VP-denotations to properties (22), \textit{self} can move to a position in between \(v^0\) and the base position of the subject. This analysis, relevant parts of which are made explicit in (23), equally supplies a suitable context for \textit{self}_{\text{strong}} without the need for a second movement operation, i.e. without parasitic scope.\(^{11}\)

(22) Alternative LF for the de se reading

\[
\llbracket v^0 \rrbracket = \lambda P_\langle x,t \rangle. \lambda x, w, P(w) \land \text{External\_Argument}(x)(w)
\]

(23) Irrespective of whether (21) or (23) is adopted, the LFs translate into (24), which gives a close characterization of the de se interpretation. (24) presupposes that if John expects \(g(3)\) to win, \(g(3)\) is necessarily mapped to John, and asserts that John expects \(g(3)\) to win. \((Exp_{x,w})\) is the set of expectation alternatives for \(x\) in \(w\) and (26) a naive semantics for \textit{expect}.)\(^{12}\)

11 The derivations of (13) and (14), which include two reflexives, would accordingly involve two parasitic scope constellations, in addition to QR of the degree complement, modulo option (23).

12 ECM complements also lend themselves to an analysis in terms of concept generators. Then, the complement is of type \(\langle e,\langle s,e \rangle,\langle s,t \rangle \rangle\) (Percus & Sauerland 2003 among others). It is harder to see
(24) \[ \lambda w. \forall w'[w' \in \text{Exp}_{j,w} \rightarrow \text{g}(e) \text{ wins in } w'] : \]
\[ \forall w \forall w'[w' \in \text{Exp}_{j,w} \land \text{g}(e) \text{ wins in } w' \rightarrow \text{g}(3) = \text{john in } w'] \]

(25) For any \( x \in D_e \) and world/situation \( w \):
\[ \text{Exp}_{x,w} \overset{\text{Def}}{=} \{ w' \mid w' \text{ is compatible with } x \text{'s expectations in } w \} \]

(26) \[ \text{[expect]} = \lambda P_{(s,t)}. \lambda w_s. \forall w'[w' \in \text{Exp}_{x,w} \rightarrow P(w')] \]

Above, the pronominal part of the anaphor was interpreted as a free variable which is assigned a value by the assignment function. Semantically identical results can be obtained by interpreting \textit{him} as a bound variable co-indexed with the antecedent (see Sauerland 2013).

Next, the derivation of the \textit{de re} reading, outlined in (27), employs the same movements that were observed in (21), with the notable exception that they target \( vP \)-external positions instead of nodes inside the \( vP \). This has the effect that, as detailed by (27), the \( vP \)-denotation applies to the underlined situation/world variable \( w_4 \) before the binary relation is created. As a result, the reflexive combines with a node of type \( \langle e, \langle e, t \rangle \rangle \), which in turn is possible only if the derivation selects \textit{self} \textit{weak} instead of \textit{self} \textit{strong}. Incidentally, (27) also makes visible a second, innocuous, difference between weak and strong \textit{self} encoded in (19). Only \textit{self} \textit{weak} comes with its own world/situation variable \( (w_4) \), which is later bound at the sentence level.

\[ \text{how a centered world approach would fare, though, which requires the sentential argument to denote a property.} \]
A note on reflexive ECM subjects

(27) *Derivation of de re reading of* John expects himself to win

\[
\begin{align*}
\lambda w. \forall w'[w' \in \text{Exp} \_j, w \rightarrow g(3) \text{ wins in } w'] : \\
\lambda_4 \langle \text{XP} \rangle = \forall w'[w' \in \text{Exp} \_j, w \rightarrow g(3) \text{ wins in } w'] : \\
\lambda w. \forall w'[w' \in \text{Exp} \_j, w \rightarrow g(3) \text{ wins in } w'] : \\
\lambda y. \forall w'[w' \in \text{Exp} \_j, w \rightarrow g(3) \text{ wins in } w'] :
\end{align*}
\]

(28) provides a rough translation of (27). (28) triggers the weaker presupposition that \( g(3) \) is John, and asserts that \( g(3) \) won in all expectation alternatives of John’s. Hence, the ‘real-world’ counterpart of the winner is presupposed to be John. Again, this seems by and large correct.

(28) \( \lambda w. \forall w'[w' \in \text{Exp} \_j, w \rightarrow g(3) \text{ wins in } w'] : g(3) = \text{John in } w' \)

Turning finally to the differences between the two verb classes, recall that ECM subjects of B-class verbs undergo overt A-movement to SpecvP, a strategy which bears an uncanny resemblance to object raising in Johnson 1991. Suppose now the derivation selects self\_weak as the lower subject of a B-class predicate. In order to avoid a type mismatch inside vP (29a), self\_weak would then have to move on from SpecvP to a vP-external position, as shown in (29b).

(29) John believed himself to win.

\*de re

229
a. **Step 1: Case driven overt movement of reflexive**  (✗ Type mismatch)  
\[ (\text{John } [\text{vP himsel}f_{\text{weak}}, (\langle e, \langle e, t \rangle \rangle), \langle e, \langle e, t \rangle \rangle) \lambda_2 \lambda_1 [t_1, \text{John believed } t_2, \text{self to win}])]  

b. **Step 2: covert raising**  (✗ Syntax)  
\[ (\text{John } [\text{himself}_{\text{weak}}, (\langle e, \langle e, t \rangle \rangle), \langle e, \langle e, t \rangle \rangle)] [\text{vP } \lambda_3 \lambda_4 [\text{vP w } [\text{vP } t_4, \text{John } [t_3, \text{self } [\text{vP } t_1, \text{John believed } t_2, \text{self to win}]]]]])  

But there is a number of reasons why such derivations are implausible and should accordingly not be made available by the grammar. First, the two-step movement procedure (29) is more costly than the derivation based on self\textit{strong}, which produces de se readings and involves only a single movement. On this conception, the grammar would compare subparts of derivations with identical lexical exponence (yet differences in meaning), selecting the most succinct one. Evidently, this raises questions, among others, about the proper definition of comparison sets, which I will not pursue further at this occasion, though. Second, one might entertain the idea that Case driven movement of the ECM-subject to Spec\textit{vP} induces Freezing effects known from Case driven movement in overt syntax (Chomsky 2000). Third, it has been observed that cross-linguistically, overt dislocation operations that feed interpretation, among them scrambling in German, bleed further covert movement operations that would produce additional readings. (29) can be seen as another manifestation of this principle.

None of the complications above show up with W-class verbs, because these predicates do not require overt raising of the ECM-subject to a non-canonical object position (read: µP of Johnson 1991). Rather, reflexive movement is postponed to the covert component, where it implicates a single movement step. The reflexive is accordingly free to choose an appropriate landing site, either within vP or above vP, depending on the lexical choice (self\textit{weak} vs. self\textit{strong}) the derivation was based on.

**References**

A note on reflexive ECM subjects


