Public Lecture: "Government's Role in Broadband"

Sharon Gillet
Massachusetts Department of Telecommunications and Cable Commissioner

Follow this and additional works at: https://scholarworks.umass.edu/broadband
Part of the Political Science Commons, and the Science and Technology Studies Commons

This Public Service and Outreach is brought to you for free and open access by the Science, Technology and Society Initiative at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Rural Broadband Research Group by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
April 30, 2008

GOVERNMENT'S ROLE IN BROADBAND

SHARON E. GILLETT
COMMISSIONER
MASSACHUSETTS DEPARTMENT OF
TELECOMMUNICATIONS AND CABLE
About the DTC

• Regulate telecommunications and cable industries according to federal and Massachusetts law
 – Promote competition in telecommunications
 • Review tariff filings from carriers
 • Investigate and respond to carrier inquiries and complaints
 • Arbitrate interconnection disputes
 • Investigate service quality complaints
 – Oversee level of E911 surcharge
 – Set basic cable rates in towns without effective competition

• Investigate consumer inquiries and complaints related to utility services
 – Consumer hotline (1-800-392-6066 or 617-305-3531)
 – Consumer advisories on website (www.mass.gov/ dtc)
 – Consumer education and outreach regarding DTV transition
 – “Slamming” complaints (unauthorized switch of telecom service)

• Provide expert input to Administration, upon request
How I got involved

• Industry
 – Software engineer and development manager (1982-92)
 – BBN Communications (Bolt, Beranek & Newman); Thinking Machines, Inc.

• Academia
 – Student, researcher, advisor, program manager, lecturer, … (1992-2007)
 – Massachusetts Institute of Technology, Boston University
 – Technology and Policy; Business / Management
 – Research at MIT primarily focused on broadband technology and policy

• Government
 – Member of Boston Wireless Task Force (2006)
 – Massachusetts Commissioner of Telecommunications and Cable (since spring 2007)
Why should government care about broadband?

• MIT/CMU study of broadband’s economic impact
 – Funded by Department of Commerce and matching funds from industry sponsors of MIT’s Communications Futures Program
 – Conducted by William Lehr, Marvin Sirbu, Carlos Osorio and Sharon Gillett
 – National-scale statistical study, comparing 2002 economic indicators by zip code, distinguishing communities by their BB availability in 1999 (as reported by FCC)

• Data consistent with conclusion that broadband positively affects economic activity
 – Even after controlling for community-level factors known to influence BB availability and economic outcomes
 – Controls: urban, income, education, growth in previous period
 – Usual academic caveats: data early and limited; potential methodological refinements

<table>
<thead>
<tr>
<th>Economic Indicator</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment (Jobs)</td>
<td>BB added about 1% to growth rate 1998-2002</td>
</tr>
<tr>
<td>Property Values</td>
<td>Housing rents more than 6% higher in 2000 where BB available by 1999</td>
</tr>
<tr>
<td>Number of Firms</td>
<td>BB added nearly 0.5% to growth rate in number of business establishments, 1998-2002</td>
</tr>
<tr>
<td>Industry Mix</td>
<td>BB added over 0.5% to share of establishments in IT-intensive sectors, 1998-2002</td>
</tr>
</tbody>
</table>

Study summarized in December 2005 Broadband Properties Magazine (www.broadbandproperties.com)
Broadband Availability in Massachusetts Municipalities
June 2007

- **Unserved**: entire town has no access to broadband
- **Underserved**: broadband available in a limited area
- **Monopoly**: one broadband provider
- **Duopoly**: two broadband providers
- **Competitive**: three or more broadband providers
Governor Patrick’s Broadband Initiative

- Funding: Up to $25 million in long-term bond authorization
- Goal: Serve the Commonwealth’s unserved citizens, within 3 years
- Approach: seed public-private partnerships by investing public funds into long-lived elements of broadband infrastructure, motivating private co-investment in remaining components of broadband service
 - Examples of long-lived elements: conduits, fiber, wireless towers
 - Examples of “everything else:” electronics, wireless devices, billing, customer support
 - Commonwealth will not be a service provider to the public
 - Fund, partnerships to be administered by Massachusetts Technology Collaborative
- Rationale: address fundamental market failure in low-density regions
 - Learn from failures of loan programs in other states
 - Similar co-investment model in process in northern Vermont (North-link project)
 - Co-investment unfamiliar in telecoms, but not in other infrastructure projects familiar to economic development officials, e.g. sewer hookups
Taxonomy: Role of Gov’t vis a vis Broadband

- Buyer/User
- Neutral Rule-maker
- Financier
- Infrastructure Developer

Attract Private Sector Supply Publicly

Partnerships
Key Takeaways from Muni Wireless/BB Research: Then and Now

<table>
<thead>
<tr>
<th>2006</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Small but growing # of muni wireless / bb communities</td>
<td>• Shakeout, Earthlink exit</td>
</tr>
<tr>
<td>• Cities have adopted three basic models</td>
<td>• Predictions borne out re self-provisioning vs. serving public directly vs. PPPs</td>
</tr>
<tr>
<td>• Partnerships typically leverage existing city resources</td>
<td>• Many practical barriers to use of city assets</td>
</tr>
<tr>
<td>• Concern about cities locking out later providers through exclusive franchises with first partner</td>
<td>• Valid concern, but in practice few successful partnerships in the first place</td>
</tr>
</tbody>
</table>
U.S. Muni Electric Utilities Doing Communications

Of about 2,000 MEUs in U.S.
Source: American Public Power Association
U.S. Muni Wireless Deployments

Source: MuniWireless.com Anniversary Reports (Esme Vos)
Non-U.S. Muni Wireless Deployments

Source: MuniWireless.com Anniversary Reports (Esme Vos)
Model 1: Self-provision Wireless to Meet City’s Own Needs

• Part of broader “Customer-owned Network” trend (fiber and wireless)

• Enabled by unlicensed wireless spectrum

• Motivation: More bandwidth and/or more ubiquitous coverage => more efficient city services for less money

• Dominated by public safety today, but future possibilities limited only by imagination
 – Homeland security and emergency preparedness in addition to day-to-day policing
 – Other mobile city workforce (inspectors, meter readers, …)
 – Sensor (RFID)-based applications (parking meters, traffic lights, rubbish bins…)
 – Urban traffic and parking management (e.g. Denver, CO)
 – Road maintenance (potholes)
City’s Own Use: Customer-Owned Network in San Mateo, CA

• Public Safety Network
 – Wi-Fi mesh network, on city-owned light poles
 – All HQ broadband applications now mobile
 • Mug shots, fingerprints, Amber alerts, GIS data, HazMat data
 – New applications easily enabled
 • Real-time video surveillance, VoIP
 • Mobile, tactical broadband networks

• Low cost
 – $50k grant funding
 – Lower cost than the 19.2Kbps data radio system it replaced
 – “Edge” investments replace recurring costs
 – Same user equipment works in car and at HQ

Significant Productivity and Efficiency Improvement

Sources: Ron Sege, Tropos; Muniwireless.com
The view from 2008

- **Use of wireless for city’s own needs is a powerful motivator**
 - Example of success in Brookline where this was the main driver of the project

- **But, deploying new municipal IT systems, reliably, at scale, is not the same as experimenting in a university lab**
 - Tight budgets push emphasis to cost savings rather than quality improvements
 - Technical expertise less plentiful, with more reliance on vendors
 - Security, reliability concerns paramount
 - Anchor tenant strategies make sense but require standardization across city departments
 - Success more likely in mid-size cities?
Model 2: Serve the Public Directly

- Hotspots, businesses, or homes

- Motivation: digital divide, economic development

- Dominated by communities with publicly owned electric utilities
 - E.g. Chaska, MN and Scottsburg, IN
 - Already have all the customer-service staff and infrastructure in place
 - Can often build on a municipally owned fiber ring already in place

- These communities are “special” and not particularly good templates for larger, non-MEU communities like Boston
 - 2006 conclusion, remains true in 2008
Serving the Public Directly: Ellaville, Georgia Municipal Electric Utility

- Population <2,000
- 3 antennas on City’s main water tank
 - 2.4 GHz LOS (Alvarion) + 900 MHz N-LOS (WaveRider) – trees!
- $200,000 upfront cost
- Users pay for service (~1 Mbps @ $30-45/mo), modem ($200) + antenna ($100-150)
- 1.5 Mbps backhaul (ouch)

Small Cities Serve Their Own
June 25, 2002

www.epride.net
Model 3: Public Private Partnerships (PPP)

• Hybrid approaches typically addressing needs of both city and community

• Motivation: “Economies of scope”
 – Leverage city resources to reduce cost, improve quality of city services and facilitate entry by non-muni actors (private sector and non-profits)

• Dominant model among planned initiatives in major cities
Public-Private Partnership: Cerritos, CA Dual-Use WiFi Mesh Network

- **Fast and simple**
 - Commodity 802.11b clients
 - Less than 1 month to install

- **True metro-scale**
 - 9 sq. miles
 - 17,000 homes passed
 - 50,000 residents

- **Low cost to own and to operate:**
 - <$600k total CAPEX
 - One wired backhaul link for the network
 - POP to Internet
 - No special CPE; no truck rolls
 - $15 opex/sub @15% penetration

- **Bands used:** 2.4 GHz

Source: Ron Sege, Tropos
Diverse PPP approaches

- **Philadelphia, PA**
 - City leases to Earthlink access to city fixtures for wireless antenna placement
 - City requires “open access” i.e. wholesale access for other ISPs on resulting Earthlink network
 - Earthlink agrees to invest $10-15m and charge “low” wholesale rates
 - Wholesale profits feed into digital divide funds (taxation by another name)
 - Analogous to cable franchise, but many details still not clear / public

- **Anaheim, CA**
 - Exclusive deal with Earthlink, but “open access”

- **Tempe and Chandler, AZ**
 - Non-exclusive deal with NeoReach

- **San Francisco, CA**
 - Six proposals
 - Google and SF Metro Connect both proposing free-to-end-user access + advertising support + options for paid service tiers
City’s Role in Narrowing Digital Divide: Public-Private Hotzones in Austin, Texas

Public Wi-Fi venues - AWCP only

Public Wi-Fi venues - City gov’t

AWCP=Austin Wireless City Project

Leveraging City Resources

• Infrastructure-based resources
 – Traffic and street light poles
 – Underground conduits
 – Rooftops of municipal buildings (antenna placement / real-estate model)
 – Towers (water, fire, etc.)
 – Fiber rings/backhaul connections
 – Essentially, any right-of-way or city property that facilitates wireless networking

• City’s buying power is also an important resource
 – Demand aggregation / anchor tenant strategies

• Inventory of these resources is a critical first step

• Can Boston non-profit institutions be leveraged in analogous ways?
 – Health, education, arts, housing, historical, community, etc.
 – Existing wireless networks (Boston Foundation report)
 – May be especially relevant to digital divide issues (San Francisco model)
The view from 2008: Use of City Assets in Boston

• Light poles
 – Powering issues (e.g. bank-switching)
 – Not all of poles owned by city
 – No systematic inventory / GIS

• Rooftops
 – Access to electric power
 – Controlled by city departments
 – If public building not available, private landlords may hold out

• Fiber / backhaul
 – In many cities this is provided as part of cable I-Net, not available for dual use purposes
 – Another reason why MEU communities are more successful at muni wireless

• Partnerships with non-profits
 – Many good intentions, but lots of meetings – hard to move quickly

• In short: devil (and lots of time) lies in the details!
Best Practice Partnerships Avoid Exclusivity

• In the process of facilitating the first wireless entrant, don’t accidentally hinder the next one
 – There can and will be many wireless networks, services, business models, etc.
 – Not all will look like traditional service providers (e.g. organic mesh networks)

• How to manage multi-party access to city facilities?
 – Consider treating like rights-of-way

• “Open Access” Model Proving Popular
 – Generally, means multiple competitors use a common shared network infrastructure, and customers can elect services from alternative suppliers
 – But requires clarification along many dimensions
The view from 2008

• Avoiding exclusivity is important to think about for the future, but practically speaking is not yet the real problem
 – Getting ANY partner is more of the issue, given uncertain returns

• Municipal wireless as testing ground for innovative technology and business models
 – In this context, many “failures” are to be expected
 – Example casualties: Earthlink’s municipal division; proprietary mesh networking
 – The new new thing: participatory networking, e.g. Meraki

• TANSTAAFL!
 – Can’t get something for nothing
 – If the problem is lack of infrastructure, can’t be solved without investment by someone
 – Problems of affordability and access (absorptive capacity) are different and admit a different set of solutions
 – In both cases, government has started where the need is greatest
Selected Publications on Municipal Broadband

