Use of Artificial Neural Networks for Modeling Indicator Organisms in a Drinking Water Supply Watershed

Diane M.L. Mas
David P. Ahlfeld
Department of Civil and Environmental Engineering
University of Massachusetts Amherst
December 5, 2003
Pathogens and Indicator Organisms

• Pathogens are a leading source of impairment in US and MA surface waters

• Multiple and Complex
 – Human
 – Animal
 – Natural Organic Substrates

• Indicator Organisms - surrogate parameter
Modeling Indicator Organisms

Motivation

• Predictive tool
 – water supply protection
• Understanding process
 – insight into biological, physical, chemical processes
 – watershed management
Artificial Neural Networks

• Based on Structure of Biological Neural Networks
• Pattern recognition or function approximation
• Similar to statistical methods, but more flexibility in functional form
ANNs in Water Quality Modeling

- Use in water resources in 1990s
- Attractive for complex, nonlinear problems
- Rainfall-runoff and flow modeling
- Limited biological/pathogen modeling
Biological Neuron

- **Dendrites** - Receive information from other neuron and transmit to cell body
- **Cell Body** - Collects and sums incoming info, >threshold --> action potential
- **Axion to Synaptic Terminal** --> action occurs

Reed and Marks (1998)
Schematic ANN Architecture

Adapted from Haykin (1994)
Feedforward - Backpropagation

Haykin (1994)
Training Process
Backpropagation

- Training data presented - input and target
- Error between target output and simulated output calculated
- Error propagated back through network
- Connection weights updated to minimize error
Why Investigate ANN models?

- Increasing in use
- Widely available
- Relatively new; “black box” character
- Need to understand potential and limitations
Research Objectives

• Desire to evaluate ANNs as modeling tool for practitioners
• Provide practical guidance
• Three problematic areas
 – Input data preparation and model setup options
 – Applicability under different temporal or physical conditions
 – Strategies for utilization in unmonitored or under-monitored watersheds
Research Phases

• Phase I
 – Effect of input data preparation and model architecture

• Phase II
 – Transferability (temporal and spatial)

• Phase III
 – Link with simple process-based models
Research Design and Methods

• Research Site
 – Wachusett Reservoir Watershed (303 km2)
 • MetroBoston water supply
 • Gates Brook Subwatershed (8.2 km2)
Wachusett Reservoir Subwatersheds

- Stillwater River
- East Wachusett Brook
- Northern Stillwater
- Southern Stillwater
- Quinapoxet River
- Asnebhumskit Brook
- Chaffins Brook
- Quinapoxet River
- Trout Brook
- Worcester Water Supply

Stations with Streamflow Gaging Sampling Stations

- French Brook
- Malagasco Brook
- Muddy Brook
- Gates Brook
- West Boylston
- Malden Brook

Sampling Stations

Kilometers
Available Data
Gates Brook 1995 - 2000

- Fecal coliform
- Water Temperature
- Conductivity
- Instantaneous Streamflow
- Temperature and Precipitation Data (daily)
Preliminary Model Development

• Exploratory Data Analysis
 • Log normally distributed
 – Fecal Coliform
 – Streamflow
 – Conductivity
 – Precipitation
 • Significant (P<0.05) but weak to moderate (|r|< 0.5) correlation between fecal coliform and
 – Streamflow
 – Conductivity
 – Precipitation
Distribution of Fecal Coliform Data 1995-2000

No. colonies/100 mL

80% 20%

training testing
Effect of Input Data Selection and Preparation

• Random vs. Ordered Input Data
 – Capturing widest range of training values

• Data Normality
 – Better performance with normally distributed data when mean square error is used for error function?

• Sensitivity to Input
 – Better performance using only parameters that correlate to fecal coliform?
Development of ANN

- Commercial software = MATLAB Neural Network Toolbox
- Multilayer Feedforward ANN
- 3-Layer Structure = Input, Hidden Layer, Output (7:3:1)
- Optimization Method = Backpropagation
- Activation Function = Logistic Function
- Error Function = Mean Square Error
Model Performance Measures

- Root Mean Square Error (RMSE)
- Average Absolute Percent Error (AAPE)
- Visual Comparison
Model Performance Evaluation

Ordered Transformed (Ordered) Transformed (Random)

RMSE AAPE
Visual Comparison

Fecal Coliform (#colonies/100 ml)

Target - Trans(Random) - Trans(Ordered)
Distribution of Fecal Coliform Data 1995-2000

Percent of Data Set

No. Colonies/100 mL

- <10: 21%
- 10-1000: 74%
- >1000: 5%
Model Performance Evaluation

Fecal Coliform No. Colonies/100 mL

AAPE

Trans(Ordered) Trans(Random)

<10 10-1000 >1000
Model Performance Evaluation

RMSE

Fecal Coliform No. Colonies/100 mL

<10 10-1000 >1000

Trans(Ordered) Trans(Random)

18454
Model Performance Evaluation

Transformed Data

RMSE: 16153

<table>
<thead>
<tr>
<th>Input</th>
<th>RMSE</th>
<th>AAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>All input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, S, P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, S, P, Tavg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity

Fecal Coliform (#colonies/100 ml)

Target

All

C, S, P
Linear Regression

• Using only parameters with significant statistical (p<0.05) correlation with fecal coliform
 LN(Fecal Coliform) = 12.00
 - 1.17*LN(Conductivity)
 + 0.437*LN(Streamflow)
 + 0.309*LN(Precipitation)

• R-squared = 0.383 for training and validation set combined
Comparison with Regression - C, S, P only

Regression
RMSE = 704
AAPE = 185

ANN
RMSE = 749
AAPE = 162

Fecal Coliform (#colonies/100 ml)
ANN as Linear Regression

Conductance → Linear Activation Function → Fecal Coliform

Streamflow

Precipitation
Comparison with Regression - C, S, P only

Regression
RMSE = 699
AAPE = 1612

ANN
RMSE = 1314
AAPE = 421

Fecal Coliform (#colonies/100 ml)
Phase I Conclusions

• Normally Distributed input improves ANN performance

• Range of Training Data is important for overall performance - reduction in RMSE and better visual comparison

• ANN has difficulty with extreme values - different processes?
Phase I Conclusions

• Using only parameters with statistical correlation to target doesn’t show performance improvement
• Regression produces similar performance statistics, but better visual comparison
• Structuring ANN architecture to mimic linear regression captures variability better
Phase I Ongoing Research

• Input
 – Effect of lagged (and lumped for precipitation) input data
 – Investigation of ANN performance above a threshold fecal coliform value - different processes?

• Architecture
 – Different layer and node structures
 – Different activation functions
 – Continue comparison with statistical models
Use of Artificial Neural Networks for Modeling Indicator Organisms in a Drinking Water Supply Watershed

Diane M.L. Mas

www-unix.ecs.umass.edu/~dmas