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Chapter 27 
 
ATRAZINE BIODEGRADATION AS RELATED TO THE 
PHYSIOCHEMICAL PROPERTIES OF A CISNE SOIL FROM A 
MAJOR ATRAZINE SPILL SITE:  ATRAZINE BIODEGRADATION 
IN A CISNE SOIL EXPOSED TO A MAJOR SPILL 

Elizabeth Shaffer1§, Malcolm Pirnie1, Gerald Sims2, Alison M. Cupples3, Charles Smyth4, Joanne 
Chee-Sanford2 
11300 E 8th Ave Suite F100, Tampa, FL 33067 2USDA-ARS, 1102 S. Goodwin Ave, Urbana, IL, 61801-0000, 3A129 Research 
Engineering Complex, Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 
48842,§ 4Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL, 61801-0000 

ABSTRACT 

Conventional soil tests, culture-based microbial methods, and the novel method of 15N-DNA 
stable isotope probing (SIP) were employed to illustrate atrazine biodegradation as related to the 
physiochemical properties of an atrazine-exposed Cisne soil.  This soil exhibited enhanced 
atrazine degradation. Mineralization underestimated the rate of atrazine dissipation demonstrated 
by the accumulation of several metabolites.  The soil showed high ambient concentrations of 
NO3

-; however, NO3
- did not suppress atrazine degradation.  Atrazine natural attenuation was 

limited by incomplete distribution through the unsaturated soil matrix.  Direct plating 
experiments from the Cisne soil isolated an atrazine-degrading microorganism, ES-1.  Analysis 
of the 16S rRNA gene sequences from the isolate confirmed that ES-1 is closely related (99%) to 
Arthrobacter sp.  In pure culture, the isolate rapidly converted atrazine to cyanuric acid.  
Accumulation of this product was consistent with metabolites in the Cisne soil, suggesting that 
isolate ES-1 influenced in-situ remediation of atrazine.  15N- SIP experiments were conducted 
using 15N-ethylamino-atrazine.  The results of these experiments failed to establish a causal 
relationship between in-situ atrazine-degradation and ES-1 enrichment; however, these results 
are likely due to isotopic dilution.  Further experiments using 13C-ethyl/isoproylamino-atrazine 
may yet verify a link between ES-1 and the enhanced natural attenuation exhibited in the Cisne 
soil.   
Keywords: Cisne, Atrazine, stable isotope probing, natural attenuation 

1. INTRODUCTION 

Atrazine and other s-triazine herbicides have been used for over 50 years for the control of a 
variety of weeds in agricultural crops, most notably maize (U.S. Department of Agriculture, 
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2004). These chemicals are moderately persistent, but also sufficiently water-soluble as to create 
contamination problems in surface and groundwater (Solomon et al., 1996, Tasli et al., 1996).    

Atrazine contamination of water resources is a concern because the compound is a suspected 
endocrine-disruptor (Hayes et al., 2002, Hayes, 2004).  Widespread use of these herbicides has 
influenced the microbial ecology of agricultural soils world-wide.   

The following experiments characterize a Cisne-Darmstadt intergrade (Cisne) soil exposed to 
high levels of atrazine through a single chemical spill.   Large atrazine releases are not 
uncommon during peak application periods and there is no way to know how many spills go 
unreported.  Therefore, it is important to examine the factors that influence the potential for 
natural attenuation in soils.   

2. MATERIALS AND METHODS 

2.1 Chemicals and Materials  

Unlabeled atrazine (98%) was purchased from ChemService (West Chester, PA).  Uniformly 
14C-ring-labeled-atrazine (9.3 mCi per mmol, radiochemical purity 95%) was purchased from 
Sigma-Aldrich (St. Louis, MO).  Atrazine-ethylamino-15N (99 atom % 15N) was purchased from 
Isotec (Miamisburg, OH).  Uniformly 15N-ring-labeled  atrazine was synthesized from 15N-urea 
according to the method described in (Bichat et al. 1999).  Atrazine metabolite standards: 
deethylatrazine (2-amino-4-chloro-6-isopropylamino-s-triazine) (98%), deisopropylatrazine (2-
amino-4-chloro-6-ehtylamino-s-triazine)(99%), hydroxyatrazine (2-hydroxy-4ethylamino-6-
isopropylamino-s-triazine)(99%), deethylhydroxyatrazine (2-hydroxy-4-amino-6-
isopropylamino-s-triazine)(98%), and deethyldeisopropylatrazine (2-chloro-4,6-diamino-s-
triazine)(99%), were a gift of W. Roy (United States Geological Survey, Champaign, IL).  
Cyanuric acid (99%) was purchased from Alfa Aesar (Ward Hill, MA). Organic solvents were 
Optima grade (Fisher Scientific, Pittsburg, PA).  

2.2 Enrichment, Isolation, Characterization, and Maintenance of Atrazine-
Degrading Microorganisms 

Previously researched atrazine-degrading isolates of Pseudomonas sp. Strain ADP and 
Pseudaminobacter sp. Strain C147 were generously donated by Drs. Larry Wackett and Edward 
Topp respectively.  Atrazine degrading cultures in this study were grown on atrazine mineral 
salts (AMS) media previously described (Topp et al., 2000a), modified with the addition of 1ml 
MR2A trace element solution (Atlas, 1997).  Post autoclaving, the medium was supplemented 
with 1ml of a filter-sterilized  (0.22 µm, polyethersulfone, Millex-GP,) vitamin solution (Yang 
and McCarty, 1998) modified with the addition of 0.005 g of thiamine hydrochloride and 0.005 g 
of nicotinamide L-1, and 1ml of filter sterilized iron stock solution (5g Fe SO4 · 7H2O L-1).   
Solid media preparations consisted of the mineral salts media modified with the substitution of 
0.5 g L-1 atrazine instead of 0.025 g L-1 of atrazine (delivered in 1ml of methanol) and 
supplemented with 15g of Noble agar (Difco, Sparks, MD).  Carbon and nitrogen supplied by the 
vitamin solution were negligible, thus atrazine represented the sole source of those elements.   
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Soil Name Abbreviation Soil Series Taxonomy Atrazine History

Cisne PET Cisne-Darmstadt 
intergrade

Fine, smectitic, mesic Mollic Albaqualfs / Fine-silty, mixed, 
superactive, mesic Aquic Natrudalfs extensive recent exposure

Drummer-field GCA Drummer Fine-silty, mixed, superactive, mesic Typic Endoaquolls unknown

Drummer-chemical loading GCC Drummer Fine-silty, mixed, superactive, mesic Typic Endoaquolls  exposure 10years prior

Flanagan MP Flanagan Fine, smectitic, mesic Aquic Argiudolls continous exposure for >10years

Thorp CHN18 Thorp Fine-silty, mixed, superactive, mesic Argiaquic Argialbolls ammended with manure and 
exposed to glyphosate and atrazine

Clarksdale BGWF1 Clarksdale Fine, smectitic, mesic Udollic Endoaqualfs ammended with manure and 
exposed to glyphosate and atrazine

The concentration of atrazine in the solid media preparations exceeded the solubility limit 
resulting in a chalky suspension (Mandelbaum et al., 1995).  Colonies that developed zones of 
clearing on the opaque surface of the plates, considered putative atrazine-degraders, were 
purified by streak plating, and maintained on this medium.  Isolates were stored at -80°C in a 
15% glycerol solution. 

2.3 Properties and Preparation of Soils 

The atrazine-contaminated soil, a Cisne-Darmstadt intergrade (Cisne), consisted of surface 
material excavated five months prior to this investigation from a spill in Patoka, IL.  The initial 
atrazine burden for the Cisne soil is unknown, but exposure was assumed to be significant owing 
to near complete release of the contents of an applicator truck at the site.  The source 
contamination came from an herbicide tank mix consisting of metolachlor and atrazine.  The site 
had been excavated to a depth of two meters and the contaminated soil was stored under a tarp 
for approximately six months prior to land application.  To obtain soil with the greatest atrazine 
exposure, the darkest material, presumed to be from the surface horizon, was used for these 
studies.  Reference soils, taken from agricultural production sites throughout Illinois with a 
known history of atrazine use, were collected from a depth of 0-15cm.  These soils included: 
material from a former pesticide mixing-loading facility (Drummer-chemical loading) and the 
alfalfa field adjacent to the mixing-loading facility (Drummer-field), two manure-amended 
agricultural production areas (Thorp and Clarksdale), and the zero nitrogen treatment from the 
University of Illinois Morrow plots long-term fertility experiment (Flanagan) shown previously 
to exhibit rapid atrazine mineralization (Sims, 2006).  Each of the soils was thoroughly 
homogenized, sieved to through a 2mm screen, and stored at 4°C.  Atrazine histories and 
taxonomic information for the soils used in this study are described in Table 1.  A more detailed 
account of the Cisne soil properties is listed in Table 2.   

Table 1.  Physical characteristics, soil taxonomy, and atrazine exposure history for the soils used in this experiment 
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%Organic 
Carbon Soil pH Buffer pH

CEC
meq/100g NO3 ppm NH4 ppm % Sand % Silt % Clay

2.8 6.7 6.9 18.9 161 3 43 44 13

Cisne Soil Properties

Table 2.  Physical and chemical properties of the Cisne soil 
 

 
 
 
 
 

2.4 Determining Atrazine Mineralization Rates of Various Soils 

The atrazine mineralization rate for the contaminated Cisne soil was compared to reference 
soils using laboratory incubations.  Owing to the potential for inorganic N sources to suppress 
atrazine degradation, and a very high residual nitrate concentration in the Cisne soil, a leaching 
treatment was included to remove excess nitrogen (Mulvaney et al., 2001) from the study soils.  
Unleached controls were also included for Cisne, Drummer-field, and Drummer-chemical 
loading.   Mineralization of 14C-ring-labeled-atrazine was monitored over a period of 84 days for 
soils incubated in 473-mL Mason jar microcosms (Mervosh, 1995) at 19°C.  Each replicate 
(three per treatment)  received field moist  soil (3.5 g on a dry weight basis), which was adjusted 
to 40% water-filled pore space using an aqueous solution containing uniformly 14C-ring-labeled-
atrazine and unlabeled atrazine  to deliver a concentration of 30 µg atrazine and 300 Bq 14C / 
gram soil (dry weight basis).  Physical mixing of the treatment solution in the soil was avoided to 
prevent the collapse of the relatively weak Cisne soil structure and ensure proper aeration at the 
relatively high water content.  Instead, atrazine was allowed to disperse through the soil via 
advection.  Microcosms also contained a 1-mL 0.2M NaOH trap and a 90mm qualitative filter 
wetted with 0.5 ml buffer (0.575mM KH2PO4) to maintain the proper headspace humidity.  At 3-
7 day intervals the microcosms were aerated and the evolved [14C] CO2 in the NaOH trap was 
measured in a 2-mL aliquot using liquid scintillation spectrometry (LSS) in a Packard model 
1600TR-Tri-Carb instrument (Packard Instruments, France).  

2.5 Soil Incubations with Uniformly 15N/14C  Ring-Labeled-Atrazine  

Control and treatment samples of the Cisne soil (5 replicates/treatment) were amended twice 
(Day 0 and 26) with either 14C-ring-UL- atrazine (1110 Bq) and unlabeled atrazine (30µg g-1), 
or 14C-ring-UL- atrazine (1110 Bq) and uniformly ring labeled 15N atrazine (99 atom%, 30µg g-
1).  This was accomplished by delivering atrazine to empty scintillation vials in ethyl acetate, 
which was then allowed to evaporate.  Sufficient deionized water was added to dissolve the 
atrazine and bring the soil to 40% water-filled pore space.   Finally, 4 grams (dry weight basis) of 
the study soil were added to each vial, the vials were placed in sealed microcosms containing a 
10-ml 0.1M NaOH trap, and a 90mm qualitative filter wetted with 0.5 ml (0.575 mM) KH2PO4 
was added to maintain proper humidity.  The microcosms were stored at 19°C in the dark.  Soils 
(unlabeled and labeled with 15N-atrazine) were destructively sampled on days: 5, 10, 15, and 41.  
The procedure described above was used to respike the samples on day 26; however the samples 
were transferred to new scintillation vials.  Between days 15 and 41 the microcosms were opened 
at 3-4 day intervals and the NaOH trap was sampled for analysis and replaced. The evolved [14C] 
CO2 was measured using LSS.   
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2.6 Atrazine Extraction and HPLC Analysis 

On days 5, 10, 15, and 41 soil samples (1 gram dry weight equivalent for each replicate) were 
removed for DNA extraction using the Powersoil kit (Mobio Laboratories, Carlsbad, CA) 
according the manufacturer�’s instructions. The remaining 3 grams of soil were stored at -20°C 
for chemical analysis.  Soil samples (2.5 gram) were transferred to 50�–ml Teflon centrifuge tubes 
and extracting solutions were introduced sequentially to recover atrazine in pools assumed to 
represent decreasing degrees of microbial bioavailability.  Soils were initially extracted with 
0.01M CaCl2 (4ml), followed by two methanol extractions (4ml each).  Extractions in 0.01M 
CaCl2 were mixed for 1.5 hours and methanol extractions were mixed for 2 hours on a horizontal 
shaker and then centrifuged at 17,200g for 15min. Four milliliters of the supernatant were 
removed from the 0.01M CaCl2 extraction and 1ml was filtered (PTFE, Alltech Associates, 
Deerfield, IL)   prior to reverse phase high performance liquid chromatography (HPLC, Hewlett 
Packard Series 1050, San Fernando, CA) analyses to measure reversibly-sorbed, bioavailable 
atrazine.   A similar procedure was followed for the first methanol extraction with the exception 
that only 3.8mls of the supernatant was removed for analysis of the irreversibly-sorbed, 
potentially bioavailable atrazine.  Prior to bound residue analysis, the second methanol extraction 
was used to remove residual extracting solution (containing atrazine) that remained trapped in 
the interstitial pore space.  This extract was discarded.   HPLC conditions were: injector volume, 
100µl; mobile phase flow rate, 1.0mL min-1; UV detector wavelength 215 nm; reverse phase 
C18 column (150mm × 4.6mm, Alltima column, Alltech Associates, Deerfield, IL) and an 
isocratic mobile phase (methanol:water, 65:35). An apparent Kd value was determined for 
atrazine and each of the detected metabolites from the ratio of potentially bioavailable (sorbed) 
to bioavailable (solution) phase material.  After the extraction procedure the soil samples were 
air dried and combusted according to the method described in.Cupples et al. (2000).  Finally, to 
account for any residual radioactivity due to precipitated atrazine, the incubation containers were 
washed with 1ml of MeOH and the radioactivity in the liquid was measured using LSS.    

2.7 Isolation of Atrazine-Degrading Bacteria 

Atrazine-degrading bacteria were isolated by selective enrichment.  Soil suspensions were 
directly plated onto semi-selective solid media using the method described in (Weaver et al., 
1994).   Briefly, 1g soil samples were added to 9.5mls of PBS solution (pH = 8.0) and 0.5g 
(approximately 15) 3mm autoclaved glass beads in sterile polypropylene 50mL conical tubes 
(Corning Inc. Corning, NY).   Samples were shaken by hand for 1 minute to ensure dispersion of 
the soil, and then placed on a horizontal shaker for 10min at 160 oscillations per minute.  After 
allowing 30 seconds for the samples to settle, a 1-mL aliquot of the soil suspension from the 
middle of the tube was used as an innoculum for a dilution series.  Samples were diluted in ten-
fold serial transfers and 100 µL aliquots from the 10-3 to 10-7 dilutions were spread onto AMS 
plates.   The plates were incubated at 19°C for approximately four weeks.  Colonies that 
developed zones of clearing on the AMS medium were purified by successive streak plating and 
maintained on the same medium.   

2.8 Kinetics of Atrazine Degradation in Pure Culture 

The colony producing the largest clearing zone was denoted isolate ES-1 and isolated for 
further study.  A loopful of cells from a purified culture of this isolate was inoculated into culture 
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flasks containing 2mls LB (Fisher Chemicals) and 3mls AMS.   Cells were grown overnight on a 
rotary shaker at room temperature.  The contents of the flasks were pelleted at 3000g and washed 
once in PBS solution.    A single pellet was re-suspended in 40mL liquid AMS supplemented 
with uniformly 14C ring-labeled-atrazine (650 Bq).   The same medium was used for 
uninoculated controls to confirm the biological basis of atrazine degradation.    Atrazine and 
potential metabolites were determined by reverse phase HPLC using the conditions described 
earlier.  Control and treatment samples were measured after 0, 1, 3, 6, 12, and 24 hours of 
incubation.   

2.9 PCR Amplification of 16S rRNA gene of ES-1  

Whole cells from isolate ES-1 and DNA from the Cisne soil were used as template for the 
amplification of the following genes using the referenced primers: 16S rRNA gene (Liu et al., 
1997), atzA, atzB, atzC (Costa et al., 2000), atzD, atzE, atzF  (Piutti et al., 2003), trzD 
(Rousseaux et al., 2001), and trzN (Mulbry et al.,  2002).  PCR conditions for atrazine-degrading 
genes were as follows: 94°C (10 min); 94°C, 58°C for atzA, atzD, and trzN / 68°C for atzB / 
62°C for atzC, atzD, atzE, atzF, and trzD, 72°C (1 min) (30 cycles); 72°C (10min).  PCR 
conditions for amplifying the 16S rRNA genes were as follows: 94°C (10 min); 94°C (1.5 min), 
55°C (1.5 min), 72°C (1.75 min) (25 cycles); 72°C (10min).   25 l PCR reactions were 
performed according the manufacturer�’s protocol.   PCR products were cloned into Escherichia 
coli TOP10 using a TOPO TA cloning kit (Invitrogen Corporation, Calsburg, CA).  Plasmids 
were extracted from the cloned cells with a QIAprep miniprep system (Qiagen, Inc., Valencia, 
CA), and the insertions were sequenced at the W.M. Keck Center for Functional Genomics 
(Keck Center), UIUC, Urbana, IL.    

2.10 Terminal Restriction Fragment (TRF) Profiles 

Whole cells from isolate ES-1 were also analyzed to determine its TRF patterns of the 16S 
rRNA gene patterns obtained after digestion using three restriction endonucleases.   The TRF 
patterns were determined using the standard procedures as outlined in (Liu et al. 1997).  PCR 
primers (Operon Biotechnologies) used were 27F-FAM (5�’ AGAGTTTGATCMTGGCTCAG, 
5�’ end-labeled with carboxyfluorescein) and 1492R (5�’ GGTTACCTTGTTACGACTT).  PCR 
mixtures (100µl) included the TaKaRa Ex Taq mixture (Takara Bio), primers (45 pmol each), 
and 1µl whole cell suspension.  The PCR conditions were: 94°C (10 min); 94°C (1.5 min), 55°C 
(1.5 min), 72°C (1.75 min) (25 cycles); 72°C (10min).  PCR products were purified using the 
QIAquick® PCR purification kit (Qiagen Inc.), according to the manufacturer�’s instructions.   
The purified PCR products were separately digested using the restriction endonucleases: HaeIII, 
RsaI, and MspI according to the recommended protocol (New England Biolabs, Beverly, MA).  
DNA fragments were separated by capillary electrophoresis (model 3730xl Genetic Analyzer, 
Applied Biosystems, Foster City, CA) at the Keck Center.  The ROX 1000 (Applied Biosystems) 
internal standard was used to size terminal restriction fragment (TRF) lengths. Data were 
analyzed with GeneMapper V3.7 software (Applied Biosystems).  A separate profile was 
generated from each sample and restriction endonuclease combination.   
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2.11 15N-DNA-SIP of Pure Cultures of Atrazine-Degraders 

2.11.1  Bacterial Strains and Culture Conditions 

Experiments were performed to determine the feasibility of using 15N-SIP to identify atrazine-
degrading organisms in environmental samples. Two isotopically labeled forms of atrazine were 
used in pure culture experiments with bacterial isolates known to utilize all of the N atoms in the 
atrazine molecule. Using atrazine-ethylamino-15N as a treatment, two cultures of 
Pseudaminobacter strain sp. C147 were grown (rotating at 25°C) on AMS media (5mL) supplied 
with either 15N- or unlabeled atrazine (25mg/L) and then transferred (5% v/v) to media of the 
same type. To explore the use of uniformly 15N  ring-labeled-atrazine as a treatment, cultures of 
Pseudaminobacter strain sp. C147 and cultures of Pseudomonas strain sp. ADP were grown 
under the conditions described above on AMS media supplied with either 15N- or unlabeled 
atrazine.  Following growth, cells were harvested from the culture suspension in late exponential 
growth stage by centrifugation (3000g) and the cell pellets were frozen at -20°C for subsequent 
DNA extraction.   

2.11.2  DNA Extraction and CsCl Density Gradient Ultracentrifugation 

DNA from cell pellets was extracted using the DNeasy tissue system (Qiagen, Inc., Valencia, 
CA) following the manufacturer�’s instructions for Gram-negative bacteria.  DNA was added to a 
solution of CsCl and Tris-EDTA (TE, pH 8.0). The CsCl/TE starting BD was adjusted to 
approximately 1.71 g/mL. Ultracentrifugation of samples was performed in Quick-Seal 
polyallomer tubes (13 X 51 mm, 5.1 ml, Beckman Coulter) in an Optima LE-80K Preparative 
Ultracentrifuge (Beckman Instruments) outfitted with a VTi 65.2 vertical tube rotor for 48 h, 184 
000g (20°C).   Buoyant densities (BD) were measured with a model AR200 digital hand-held 
refractometer (Leica Microsystems Inc. Depew, NY).   Following ultracentrifugation, water was 
injected with a precision pump (model PHD 2000, Harvard Apparatus, Holliston, MA) into the 
headspace of the centrifuge tube and fractions (75µl) were collected at the bottom as previously 
described (Cupples et al., 2006, Cupples and Sims, 2007, Lueders et al., 2004). After 
fractionation, DNA was dialyzed using a 0.025-µm Millipore mixed cellulose ester dialysis filter 
(Bedford, MA) as previously described (Gallagher et al., 2005). Fractions and purified DNA 
were stored at -20°C.    

2.11.3 Detection of Changes in DNA Buoyant Density 

Purified DNA from the atrazine-ethylamino-15N experiment was used as template for PCR 
amplification of the 16S rRNA gene using the conditions described above. PCR products from 
labeled and unlabeled incubations were paired according to buoyant density of the template, and 
separated by electrophoresis on a 1% agarose gel.  The effect of the treatment on template 
buoyant density was determined by comparing the buoyant densities of the heaviest fractions that 
produced a PCR product.    DNA collected in the experiments using uniformly 15N ring-labeled 
atrazine as a treatment was fluorometrically quantified using the PicoGreen nucleic acid 
quantification dye (Molecular Probes, Invitrogen, Carlsbad, CA) according to the manufacturer�’s 
instructions.  Fluorometry was performed on an Opticon 2 Real Time Thermal Cycler (MJ 
Research, Bio-Rad Laboratories, Hercules, CA) as previously described (Cupples et al., 2006, 

Shaffer et al.: Atrazine Biodegradation in a Cisne Soils Exposed to a Major Spill

Produced by The Berkeley Electronic Press, 2008



Atrazine Biodegradation in a Cisne Soils Exposed to a Major Spill 387
 

 

Tian and Edenberg, 2004). The effect of the treatment on template buoyant density was 
determined by comparing the buoyant densities of the first significant fluorometric peak.  

2.12  Environmental 15N-SIP 

2.12.1 Incubations with Uniformly ring labeled 15N Atrazine  

Incubation and DNA extraction procedures are described earlier.  DNA samples taken from 
the replicates on day 41 were individually separated by ultracentrifugation and purified as 
described above. 

2.12.2 Atrazine-ethylamino-15N incubations 

Samples (3 replicates/treatment) were amended once (Day 0) with the following forms of 
atrazine introduced at 30µg atrazine g-1 soil: unlabeled atrazine (control), atrazine-ethylamino-
15N (treatment), or uniformly ring-labeled 14C-atrazine (53 Bq g-1 soil), the latter treatment was 
included to facilitate radiochemical analysis of atrazine fate.  Atrazine solutions were prepared in 
methanol (3.2-3.5 µg atrazine/µl methanol) and added to the volume of water necessary to bring 
the water-filled pore space of the soil to 40%. The atrazine/water solutions were deposited onto 
the bottom of aluminum weigh boats (57mm, Life Science Products, Fredrick, CO) and six 
grams of the study soil were placed on top of the solution allowing the solution to diffuse 
through the soil pore space. The weigh boats were placed in sealed microcosms containing a 
90mm qualitative filter paper wetted with 0.575mM KH2PO4 and a 10ml 0.1M NaOH trap in the 
radioactive monitoring samples. The microcosms were stored at 19°C in the dark.  One gram of 
soil was removed from each replicate on days 5, 10, 15, 21, 26 and sacrificed for DNA extraction 
using the Powersoil kit (Mobio Laboratories, Carlsbad, CA) according the manufacturer�’s 
instructions. NaOH samples were also collected, as previously described, from the 14C-atrazine 
treatments on these dates to estimate the percent of compound mineralized in the control and 
treatment samples. DNA samples from each replicate taken on day 15 were individually 
separated by ultracentrifugation and purified as described above.  

2.12.3 TRF Analysis of Environmental Samples 

After fractionation and recovery of DNA, TRF profiles were generated from the 12 heaviest 
fractions of each sample tube using the primers and PCR conditions described above for the 
amplification of the 16S rRNA gene.  PCR products were purified using the AMPure PCR 
purification system (Agencourt Bioscience Corp., Beverly, MA) according to the manufacturer�’s 
instructions.   Purified PCR products were quantified using a UV spectrophotometer (NanoDrop 
Technologies, Wilmington, DE).  Approximately 150ng of the purified PCR products were 
separately digested using the restriction endonucleases: HaeIII, RsaI, and MspI (New England 
Biolabs, Ipswich, MA) and the subsequent TRF profiles were generated as described above.  
Each TRF had a unique fragment length, and a reported peak area of fluorescently labeled 
product, in arbitrary fluorescence units (FU).  Percent abundance of each TRF was determined 
by dividing the FU under each TRF by the total FU under all the TRFs in the profile as described 
previously (Abdo et al., 2006, Yu and Chu, 2005).  Values given for the percent abundance of 
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each FU are reported as relative fluorescence units (RFUs).  Data sets were constructed of TRFs 
that were between 50bp and 1000bp in length and greater than 50 FU in height.  Each TRF was 
identified with a sample name, isotopic treatment, buoyant density (determined during 
fractionation), and RFU value. 

2.13 Statistical Analyses 

Statistical analyses were developed with the assistance of Charles Smyth, department of Crop 
Sciences.  Analyses were performed using the statistical functions in Excel (Microsoft Corp, 
Seattle, WA) and SAS (SAS Institute Inc, Cary, NC).  The continuous and quantifiable nature of 
the CsCl density gradient necessitated the use of a covariance model for detecting upward shifts 
in TRF buoyant density due to isotopic treatment.  If the buoyant densities of individual fractions 
were the same across test tubes then an Analysis of Variance would be appropriate. However, 
since they are not, it was necessary to include TRF buoyant density as a continuous parameter in 
the model.  An Analysis of Covariance using SAS Proc Mixed was performed on the TRF data 
generated from the day 15 atrazine-ethylamino-15N incubations and the day 41 uniformly ring 
labeled 15N atrazine incubations.  Analysis was performed using the model: 

Yijkl = Isotope i + Test tube (Isotope) j(i) + Densityl + Error k(ijl) 

Error = Sample (test tube, isotope, density)   

Sample information was entered in the following categories: tube (enzyme), fraction, isotope, 
density, peak, and RFU. Results were considered significant if the analysis of the effect of 
isotope produced F values correlating to an  error rate less than 0.25.   This error rate is fairly 
liberal and allows for the detection of TRF buoyant density shifts that may not be due to isotopic 
treatment; however this liberal error rate allows for the screening and detection of possibly 
enriched TRFs.   TRFs that have been identified as possibly enriched require further analysis 
using the remaining two enzymes.  TRFs with the same relative abundance in TRFLP profiles 
generated with the remaining enzymes must be examined using the same method.   TRFs that 
comprise similar relative abundances and show similar shifts in buoyant density would be 
considered enriched.  This process could be accelerated through the use of Multivariate Analysis 
of Covariance to detect concurrent buoyant shifts using all three enzymes simultaneously.    

3. RESULTS AND DISCUSSION 

3.1 Atrazine Mineralization Kinetics 

 Atrazine mineralization kinetics for the six soils are given in Figure 1. When compared to 
five reference soils in our laboratory as well as previous reports in the literature, the Cisne soil 
appeared to exhibit enhanced atrazine degradation. Leaching did not significantly increase 
mineralization rates for the Cisne soil, indicating inorganic N concentration was not likely rate 
limiting.   The unleached Cisne soil exhibited the most rapid initial degradation rate (1.822x10-5 
mmoles atrazine mineralized day-1) and cumulatively mineralized >82% of the atrazine applied, 
apparently meeting criteria for enhanced degradation (Zablotowicz et al., 2006).  Mineralization 
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kinetics for the Cisne soil appeared sigmoidal, indicating decreased microbial growth rates with 
time as local atrazine solution concentration decreased and population numbers increased 
(Alexander and Scow, 1989).  The kinetics of atrazine degradation indicated that degradation 
was not due to abiotic processes; thus the soil was a good candidate for examination of natural 
attenuation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1.  Representative atrazine mineralization in six Illinois soils previously exposed to atrazine. 
Samples included leached treatments and unleached controls. 

To provide a broader context for the Cisne soil findings, mineralization rates were compared 
to those reported by Zablotowicz et.al (2006) for 7 agricultural soils varying in atrazine exposure 
history (Figure 2).  The Cisne soil exhibited mineralization rates comparable to soils described in 
the paper as enhanced, likely due to the unusually large exposure to atrazine from the spill.    
These findings are consistent with atrazine mineralization potential observed for other soils with 
prior exposure to atrazine (Pussemier et al., 1997,  Barriuso and Houot, 1996, Martin-Laurent et 
al., 2004, Yassir et al.,  1999, Vanderheyden et al., 1997).  A significant portion of the atrazine 
applied to the Cisne soil (18%) was not mineralized, and may have been present in the soil as 
atrazine, metabolites, or bound residues.  Incomplete degradation of herbicides has been 
attributed largely to bioavailability limitations resulting from sorption (Sims and Cupples, 1999) 
or diffusion limitation through tortuous paths in unsaturated soils (Johnson et al., 1998). Owing 
to the relatively high carbon content (2.8 %) in the Cisne soil, both of these mechanisms are 
likely.  Mineralization studies were thus followed with more detailed degradation studies in 
which a mass balance was performed on the C and N added as atrazine to provide a better 
understanding of material flow in the Cisne soil. 

3.2 Soil Incubations with Uniformly 15N/14C  Ring-Labeled-Atrazine  

A mass balance of applied atrazine C and N was obtained by incubating the Cisne soil with 
uniformly ring-labeled 15N/14C atrazine as described in earlier.   14C-mineralization kinetics were 
calculated as described above, and the distribution of radioactivity among mineralized, 
bioavailable (CaCl2 extractable), potentially bioavailable (MeOH extractable), and non-
extractable fractions was determined at the end of the incubations.   After 26 days, the rate of 
atrazine mineralization in this second incubation was approximately 61% of that observed in the 
first incubation, likely due to limited bioavailability of solid phase atrazine (Figure 3).  Data in 
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Figure 3 shows no significant label effect on atrazine mineralization.  Mineralization had reached 
a plateau by day 25, thus, though much of the atrazine had not been degraded.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Kinetics of atrazine mineralization in the Cisne soil collected in this study compared to 
several enhanced (prior exposure) and unenhanced (no prior exposure) soils examined by  

Zablotowicz et al. 

Additional atrazine and water (as described above) were introduced on day 26 (re-spike) to 
promote degradation.  A sharp increase in 14CO2 evolution detected on day 26 indicates a 
response to the re-spike, and suggests that much of the atrazine present at day 25 was no longer 
bioavailable.  The concentration of atrazine used exceeded the solubility limit in this study.  Soil 
moisture content prior to the re-spike was maintained at or below 40% water-filled pore space to 
ensure proper aeration, and was increased to 50% water-filled pore space during the re-spike 
process.  Thus it is likely that atrazine availability was increased as a consequence of a higher 
water content and more complete redistribution of the compound through the soil matrix to the 
active atrazine-degraders.  This hypothesis is supported by several observations.  Both the 
bioavailable (aqueous extractable) and potentially bioavailable (methanol extractable) atrazine 
pools were preferentially depleted to a relatively constant value in the first ten days of incubation 
with a corresponding release of radiocarbon as CO2 (Figure 4).  A resurgence of mineralization 
was observed at 41 days (after the 26-day re-spike), even though a considerable amount of 
atrazine remained present in the system.  This increase in mineralization coincided with a 
decrease in precipitated atrazine, presumably as a result of improved dissipation and 
redistribution of the chemical due to the additional water added with the re-spike.  These findings 
are consistent with previous work showing increased utilization of an aromatic substrate present 
in soil solution as water content reached a threshold expected to result in greater continuity of 
pore space (Johnson et al., 1998).  Based on that work, also performed with a Cisne soil, a 
significant portion of the atrazine present in a bioavailable form would be expected to reside in 
discontinuous pore space at the lower water content initially used. 

When combined, the two extractable fractions accounted for 6.5-18.2% of the initial 14C-
atrazine, whereas the non-extractable bound residues only accounted for 2-3% of the initially 
applied atrazine.  The relatively little bound residue detected in the extracted soil is consistent 
with the unavailability of atrazine ring carbon for incorporation into biomass (Bichat et al., 
1999), which would be expected to appear as bound residue in the analysis scheme used here.  In 
a similar study by Houot et al.(2000), soils showing accelerated degradation tended to equally 
partition residual radioactivity between the extractable and non-extractable fractions, which 
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Figure 3. Atrazine mineralization in the Cisne soil incubated with uniformly ring labeled 14C/15N 
atrazine and data from its initial screening .  15N Series includes treatment replicates. Unlabeled series 
includes control replicates.  Solid arrows indicate destructive sampling points for DNA extraction and 

HPLC analyses.  The broken arrow indicates the respike of 30 g atrazine g-1 soil on day 26. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Mass balance of atrazine in the experimental system.   Represented as the mean percentage 
of the total amount of 14C atrazine applied (10 replicates).  No distinction is made between control and 

treatments samples, as the trends were consistent for both groups. 

combined to equal 5-10% of the initial atrazine application.  The same study showed that in soils 
showing minimal atrazine degradation, approximately 50% of the initial radioactivity remained 
extractable and 30% remained as non-extractable bound residues.   The fractioning of 
radioactivity in the Cisne soil more closely resembled the pattern displayed in soils with 
accelerated degradation than the non-degrading soils described in the Houot study. 

Mineralization kinetics in the Cisne soil underestimated the rate of atrazine dissipation 
demonstrated by the accumulation of several metabolites.  In addition to atrazine, three 
metabolite peaks were detected in the fractions extracted from the Cisne soil.   These metabolite 
peaks corresponded to the retention times for hydroxyatrazine (3.8-4.0min), deethylatrazine and 
deethylhydroxy atrazine (3.3 min), and the unresolvable peaks of  deethyldeisopropylatrazine, 
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deethyldeisopropylatrazine, and cyanuric acid (2.3-2.5 min), however, these identities have not 
been confirmed.  The metabolites represent approximately 50% of the extracted radioactivity in 
the bioavailable fraction, but only 20-40% of the extracted radioactivity in the potentially 
bioavailable fraction (Figure 5), likely owing to the more polar nature of the metabolites.   

 

 

 

 

 

 

Figure 5. Change in atrazine concentration over time.   Mineralization kinetics alone in the Cisne soil 
underestimate the rate of atrazine degradation .Mean values are presented without standard error bars. 
Treatment and control replicates exhibited similar results and were grouped together (10 replicates). 

3.3 Isolation and Characterization of an Atrazine-Degrading Isolate 

The results of metabolite analysis supported the presence of an active population of atrazine-
degraders in the Cisne soil comparable to other sites from which such organisms have been 
successfully isolated (Mandelbaum et al., 1995, Topp et al., 2000a, Topp et al., 2000b Aislabie et 
al., 2005).  Direct soil plating experiments were performed to elucidate some of the microbial 
interactions taking place in the Cisne soil.  Initially, several bacterial colonies showed faint signs 
of clearing on agar plates that were supersaturated with atrazine.  One colony demonstrated 
distinct removal of particulate atrazine from the medium.   This isolate, ES-1, was selected for 
further study.  The atrazine-degrading bacterium formed rounded, shiny white colonies on solid 
media.  Examination of cultures in the exponential growth phase indicated cells were long, 
slender, Gram-positive rods; however, examination of late-stage cultures indicated cells were 
Gram-negative cocci.    

Analysis of the 16S rRNA gene confirmed the organism to belong the Gram-positive genus 
Arthrobacter. Isolate ES-1 was identified by comparison of the partial 16S rRNA sequences with 
bacterial accessions in GenBank using a megablast search  (Zhang et al., 2000) and confirming 
the results using the bl2seq function (Tatusova and Madden, 1999) (open gap penalty=5, 
extension gap penalty=2).   The isolate showed 99% identity with Arthrobacter sp. AD12 (Gen 
Bank accession AY628690.1) and 97% identity with Arthrobacter aurescens (Gen Bank 
accession AJ871298) (Table 3).   
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Source Strain Target 
Gene

Closest identity in BLAST 
accession number

Similarity 
(%)

# Bases 
used for 
search

% similarity to corresponding 
genes encoded by P. ADP 

catabolic plasmid
(U66917.2)

Cisne Soil ES-1 16S
AY628690.1

16S r RNA  from Arthrobacter sp. 
AD12

99 1490 n/a

Cisne Soil ES-1 trzN
AY456696.1 

trzN  from Arthrobacter aurescens 
strain TC1 

99 432 n/a

Cisne Soil ES-1 atz B
AY456696.1 

atzB from Arthrobacter aurescens 
strain TC1 

100 523 100

Cisne Soil ES-1 atzC
AY456696.1 

atzC  from Arthrobacter aurescens 
strain TC1 

99 626 99

Table 3.  BLAST comparison of sequence identities for 16S rRNA gene and atrazine-degradation genes amplified using isolate 
ES-1 whole cells as template 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.4 Kinetics of Atrazine Degradation in Pure Culture 

Pure culture experiments in uniformly 14C ring-labeled-atrazine AMS media were conducted 
to determine the atrazine-degrading capabilities of ES-1.  Mass balance of the culture media 
indicated no loss of radioactivity, though growth response of the organism was linked to the 
presence of atrazine in the medium.  Analysis of the CO2 traps suspended in the culture flasks 
revealed no mineralization, suggesting that the organism degraded atrazine incompletely.   

Further time-course kinetic experiments using isolate ES-1 demonstrated rapid dechlorination 
and dealkylation of atrazine.   Results from this kinetic study show that 100% of the atrazine 
initially added to the culture medium was converted into metabolites.  The bulk (>90%) of the 
atrazine was converted to a polar metabolite with a retention time of approximately 2.3 minutes 
that co-eluted with authentic cyanuric acid.  Approximately 10% of the atrazine in solution was 
converted to a metabolite that co-eluted with a hydroxyatrazine standard at approximately 4 
minutes.  The latter compound was detected earlier in the growth medium, suggesting it was a 
precursor of the terminal product.  A number of Gram-positive, atrazine-degrading organisms 
have been isolated in pure culture including members of the genera: Arthrobacter, Clavibacter, 
Nocardiodies, and Rhodococcus (Piutti et al.2003, Rousseaux et al., 2001, Topp et al., 2000b, 
Aislabie et al., 2004, Behki and Khan, 1994, DeSouza et al. 1998, Strong et al., 2002).   To date, 
members of the Arthrobacter genus have demonstrated the most complete degradation of atrazine 
of all gram positive organisms�—metabolizing atrazine to cyanuric acid (Rousseaux et al., 2001, 
Aislabie et al., 2005, Cai et al., 2003, Strong et al., 2002).  These organisms have also shown 
degradative capacities for a variety of other xenobiotic compounds including pesticides such as: 
pyridines (O'Loughlin et al., 1999), PCP, phenoxyacetate herbicides, organochlorines, triazones, 
N-methylcarbonates, N-phenylcarbamates, organophosphates, and glyphosate (De Schrijver and 
De Mot, 1999).   
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Source Strain Target 
Gene

Closest identity in BLAST 
accession number

Similarity 
(%)

# Bases 
used for 
search

% similarity to corresponding 
genes encoded by P. ADP 

catabolic plasmid
(U66917.2)

Cisne Soil predominant 
soil clone atzA

DQ089655.2
atzA  from Herbaspirillum sp. B601 

(smzA) gene
99 531 99

Cisne Soil predominant 
soil clone atz B

AY456696.1 
atzB  from Arthrobacter aurescens 

strain TC1 
100 523 100

Cisne Soil predominant 
soil clone atzC

AY456696.1 
atzC  from Arthrobacter aurescens 

strain TC1 
99 628 99

Cisne Soil predominant 
soil clone trzD

AF086815
from trzD Acidovorax avenae 

subsp. citrulli
100 854 n/a

Cisne Soil predominant 
soil clone trzN

AY456696.1 
trzN  from Arthrobacter aurescens 

strain TC1 
99 237 n/a

3.5 Amplification of 16S rRNA Gene Sequence and Atrazine Degrading Genes 
atzA, atzB, atzC, trzD, and trzN  

Isolate ES-1 was identified by comparison of the partial 16S rRNA sequences with bacterial 
accessions in GenBank using a megablast search (Zhang et al., 2000) and confirming the results 
using the bl2seq function [105] (open gap penalty=5, extension gap penalty=2).   The isolate 
showed 99% identity with Arthrobacter sp. AD12 (Gen Bank accession AY628690.1) and 97% 
identity with Arthrobacter aurescens (Gen Bank accession AJ871298) (Table 3).  

Genes encoding enzymes involved in atrazine degradation have been characterized including 
atzABCDEF from Pseudomonas sp. strain ADP (de Souza, M.L., et al. 1998, Piutti et al., 2003,  
Sadowsky et al., 1998), trzN in Nocardioides strain C190 (Mulbry et al.,  2002), and trzD from 
various gram negative bacteria (Rousseaux et al., 2001).   PCR amplification of these atrazine 
degrading genes in isolate ES-1 using aforementioned primers resulted in an approximately 
400bp amplicon for trzN, a 500bp amplicon for atzB, and a 600bp amplicon for atzC.  No PCR 
products were formed using primers specific to atzA or trzD (Table 3).  PCR amplification of 
environmental DNA extracted from the Cisne soil produced amplicons of the expected size for 
reactions specific to atzABC and trzDN (Table 4); suggesting the presence of other atrazine-
degrading organisms besides ES-1. No detectable PCR products resulted from using atzDEF 
primers when either isolate ES-1 cells or environmental DNA was used as template.   Nucleotide 
sequencing analysis of the cloned genes confirmed that the PCR products were sufficiently 
homologous to the targeted sequences.   

 
Table 4. BLAST comparison of sequence identities for atrazine-degradation genes amplified using Cisne DNA as template 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Since the isolate was cultivated from the Cisne soil it is reasonable to expect that atrazine-
degrading genes present in ES-1 would comprise a subset of the atrazine-degrading genes 
residing in the soil metagenome.  The presence of putative genes not found in the isolate 
indicates that other atrazine-degrading organisms are present in the soil.  Environmental 
sequences homologous to atzA support the idea that two competing chlorohydrolases (and 
populations of atrazine degrading organisms) are present in the same niche environment.  The 
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presence of homologous sequences to the trzD genes indicates organisms other than isolate ES-1 
were responsible for the relatively high rate of atrazine mineralization in the Cisne soil.  
However, microbial degradation of cyanuric acid is relatively common in soil (Cook, 1987, 
Karns, 1999, Cook et al., 1985) and there may be other cyanuric acid-metabolizing organisms 
that were not detected with the primers used in this study.   The presence of competing 
chlorohydrolase and aminohydrolase enzymes plus the genetic diversity in the atzBC sequences 
indicate that multiple and unique atrazine degrading consortia may have been functional in the 
Cisne soil.  Isolate ES-1 was isolated and cultured without enrichment techniques indicating that 
it may have been one of the more dominant atrazine-degrading microorganisms in the soil, 
however the genetic diversity exhibited in the soil precludes the possibility that it is the only 
organism responsible for atrazine degradation.   

The detection and isolation of isolate ES-1 helps to explain how atrazine was rapidly 
degraded in the contaminated soil.  The broad substrate range of Arthrobacter species makes 
them well-suited as agents of bioremediation, especially at sites with multiple contaminants as is 
often the case with agrochemical contamination.  Arthrobacter aurescens strain TC1, also 
isolated from a highly contaminated soil, has an extremely diverse substrate range and is capable 
of degrading more s-triazine compounds than any bacterium previously characterized (Strong et 
al., 2002).        

3.6 TRF Analysis of Isolate ES-1 

TRFLP analysis of isolate ES-1 pure cultures showed the following TRFs: HaeIII 229bp; 
MspI 229bp; RsaI 465bp.  Each TRFLP profile showed one major peak.   These peaks were 
present in the whole soil TRFLPs, and as noted below, were also detected in soil DNA during the 
SIP experiments.   

3.7 Pure culture 15N-DNA-SIP 

DNA based SIP is a relatively new microbial tool used to examine microbial interactions in 
the environment.  Previous research in our lab demonstrated that 15N enriched compounds can be 
used as substrates for SIP (Cupples et al., 2006,  Cupples and Sims, 2007).  Experiments were 
conducted to examine if two different forms of 15N-labeled atrazine, atrazine-ethylamino-15N and 
uniformly 15N ring-labeled atrazine, could also serve as suitable substrates for SIP-based 
investigations. Fine fractions were collected and sensitive DNA detection methods were 
employed to detect small changes in buoyant density.  Results from the atrazine-ethylamino-15N 
experiment indicated that the buoyant density of Pseudaminobacter strain C147 DNA increased 
from approximately 1.733220 g/ml to 1.736735 g/ml, an increase of 0.003515 g/ml (Figure 6).   
Results from the uniformly 15N ring-labeled atrazine experiment indicated that the buoyant 
density increase of Pseudomonas strain ADP DNA was 0.007040 g/ml and the average buoyant 
density increase of Pseudaminobacter strain C147 DNA was 0.006143 g/ml +/- 0.001663 g/ml.  
Figure 7 shows how the results of these experiments compare with the buoyant density increases 
demonstrated in Cupples et al. (2006) and Meselson and Stahl (1958).  The buoyant density 
shifts found in these previous investigations were reported for substrates that were enriched to 
100 atom% 15N.   The buoyant density increase published in Meselson and Stahl (0.014 g/ml) 
was used to calculate the theoretical buoyant density increases expected at other enrichment 
levels.   The two N-labeled forms of atrazine used herein were selectively labeled at 100 atom % 
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15N at the label positions.  Incorporation of all five N atoms from atrazine would thus result in 
enrichment of DNA equivalent to 20 atom % 15N for the ethylamino-labeled atrazine and 60 
atom % 15N for the ring labeled material.  Based on that assumption, the data from our 
experiments closely follows the trend projected by the Meselson and Stahl data.   Our results 
demonstrate that addition of substrates with known enrichment levels of 15N will result in 
reliable increases in DNA buoyant density. 

 

 

 

 

 

Figure 6. Detection of Psuedaminobacter sp. C147 in fractions from a buoyant density gradient using 16S 
rRNA gene PCR products.  Even lanes contain PCR products using template from cells grown on 

unlabeled atrazine and odd lanes contain PCR products using template from cells grown on 15N-labeled 
atrazine.  Lanes are paired according to closest buoyant density fractions.   Lane 1- 1kb ladder.  Lane 15- 

first PCR product detected using 15N  enriched Pseudaminobacter sp C147 DNA as a template (BD= 
1.736735 g/mL), Lane 18- first PCR product detected using , unenriched Pseudaminobacter sp C147 

DNA as a template (BD = 1.733220). 

The consistent relationship between substrate enrichment and increases in DNA buoyant 
density makes it possible to anticipate the amount of substrate incorporation necessary to result 
in a detectable increase in buoyant density.   In our experiments, the decrease in buoyant density 
from one fraction to the next is approximately 0.00136 +/- 2.074 E-4 g/ml.  Using this data, it is 
possible to extrapolate that at least 13.6% of the nitrogen atoms in the target organism�’s nucleic 
acids must be labeled with the 15N isotope in order for the separation of light and heavy DNA to 
be observed.   Nucleic acid enrichment levels below this threshold will not be detectable in our 
study system. 

3.8 15N-SIP of Environmental Microbial Communities 

Most practitioners of stable isotope probing rely on the visible separation of �“heavy�” and 
�“light�” nucleic acids.  As our lab demonstrated earlier, enrichment with 15N does not result in a 
sufficient buoyant density increase to visually resolve enriched and un-enriched nucleic acids 
from one another (Cupples et al., 2006).   In such instances, fine fractionation of the buoyant 
density gradient must be collected and compared to control samples using quantitative PCR or 
TRF profiles.  Comparison of control and treatment TRFs can be tedious if the effect of the 
treatment is not pronounced.  In such instances, a sensitive detection method is needed.  To our 
knowledge, we have developed the first statistical model capable of distinguishing enriched and 
un-enriched TRF profiles from one another.   
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HaeIII 229 0.7575 5.51E-04 3.49E-04 7.19E-04 3.49E-04 no

RsaI 465 0.356 4.60E-05 8.20E-05 1.70E-04 8.10E-05 no
MspI 229 0.5288 4.72E-04 7.00E-05 4.01E-04 7.00E-05 no
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Figure 7.  Effect of enrichment with 15N on DNA buoyant density.  Closed data symbols show effect of 
enrichment observed by Cupples et al. [61], and Meselson and Stahl [113].  Open symbols report buoyant 
density increases demonstrated in the current study.  The buoyant density increase published in Meselson 
and Stahl (0.014 g/ml) for 100% 15N enrichment was used to calculate a theoretical relationship between 

buoyant density and enrichment indicated by the dashed line. 

TRF profiles from soil SIP studies were examined for the three fragments characteristic of 
isolate ES-1 to determine if the addition of 15N-labeled atrazine resulted in an increase in the 
organism�’s DNA buoyant density.  As tables 5 and 6 indicate, DNA from isolate ES-1 was not 
enriched in either the uniformly ring-labeled 15N atrazine incubations or the atrazine-ethylamino-
15N incubations    

It is expected that treatments of uniformly ring-labeled 15N atrazine would not produce 
enrichment of DNA in the target organism, since the results of the PCR screening for atrazine 
degrading genes and kinetic study indicate that isolate ES-1 lacks the genes necessary for ring 
cleavage.  Any incorporation atrazine ring  15N into ES-1 biomass would have been the result of 
cross-feeding on NH4

+ (or other products) produced by an organism capable of ring fission. 
However, this isolate is capable of utilizing the nitrogen present in the alkylamine side chains; 
therefore, treatments with atrazine-ethylamino- 15N could have produced an effect.     

 
Table 5. Statistical analyses of the TRFLP profiles associated with Isolate ES-1 in the atrazine-ethylamino-15N SIP experiments.   

Results indicate probability of BD increase due to treatment. Analyses were conducted using 72 observations. 
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HaeIII 229 0.3317 6.32E-03 2.68E-03 1.02E-02 2.68E-03 no
RsaI 465 0.1107 2.38E-03 6.79E-04 6.57E-04 6.79E-04 no
MspI 229 0.9543 3.66E-03 2.14E-03 3.49E-03 2.14E-03 no
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treatment mean 
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Table 6.  Statistical analyses of the TRFLP profiles associated with Isolate ES-1 in the uniformly ring-labeled 15N atrazine SIP 
experiments.   Results indicate probability of BD increase due to treatment.  Analyses were conducted using 120 observations. 

 

 

 

 

 

 

It is likely that the failure to produce a significant treatment effect in the atrazine-ethylamino- 
15N incubations is a result of insufficient enrichment of the target nucleic acids.  To avoid 
enrichment-bias atrazine was added to the microcosms at 30 g g-1soil.  This is an 
environmentally relevant concentration of atrazine comparable to the concentrations seen in 
some agricultural surface soils.  As demonstrated in the pure culture SIP experiments, target 
organisms must utilize the substrate in sufficient quantities to ensure that at least 13.6% of the 
nitrogen atoms in nucleic acids are  15N -labeled.  In pure culture experiments, this parameter is 
easily controlled; however, in the soil environment there are many competing sources of 
nitrogen.   

The Cisne soil contained excess nitrate either from excess fertilization or mineralization of 
atrazine N; however, the presence of NO3- did not suppress atrazine degradation.  The study soil 
contained more than 161 mg/kg NO3-N; unfertilized Cisne soils typically contain one-tenth this 
amount of nitrate (Mulvaney et al., 2006).  The high nitrate load in the Cisne soil could have 
competed with atrazine resulting in a dilution of the treatment and a decreased likelihood of 
detection in SIP.  It is possible that the high concentrations of nitrate are the result of the 
degradation of the initial atrazine and metolochlor spill.  The final degradation of atrazine 
compounds results in the release of NH4 which in soil is then converted to NO3

-.  Since the soil 
was stored under a tarp for a number of months before it was remediated the NO3

- generated 
from atrazine degradation would not have been leached away.  If the high nitrate concentration is 
due to atrazine degradation, then it is likely that the organisms have a preference for atrazine-N 
over NO3

-N, otherwise an accumulation of NO3
- would not occur.  The high nitrate conditions of 

our study soil create bias for the detection of organisms that prefer atrazine-N over NO3
-N in the 

15N -DNA-SIP experiments.  

Despite the high concentrations of NO3
-N in the study soil it is reasonable to expect some 

organisms could incorporate significant amounts of 15N into biomass.  In the atrazine-
ethylamino-15N incubations 180 g of atrazine were added to each sample equaling 
approximately 12.5 g 15N sample-1.   Organisms that only incorporated N from the side chain 
moieties of atrazine would have accumulated equal amounts of 14N and 15N from the herbicide.  
The chemical analysis of the Cisne soil (Table 2) indicates that the soil contained 18 g of NH4

- N 
and 966 g of NO3

-N per 6 gram sample.  No information is available on the amount of nitrogen 
contributed by organic matter.   If we assume that all identified forms of nitrogen are equally 
incorporated into biomass then the ratio of 15N:14N is 1:80.  However, since the incorporation of 
NO3 into biomass requires the input of energy to convert it to NH4 many microorganisms may 
prefer less energetically costly forms of nitrogen under aerobic conditions.  It is unlikely that 
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there were substantial anaerobic microenvironments in the atrazine-ethylamino-15N incubations 
since aggregates greater than 2mm in diameter were removed and research has shown anaerobic 
microenvironments are unlikely to form in aggregates smaller than 1cm in diameter (Sexstone et 
al., 1985). Care was taken to avoid disrupting the soil structure and only 40% of the pore space 
was filled with water.  Furthermore, removing excess NO3 from the Cisne soil through leaching 
did not show an increase in atrazine mineralization.  This may suggest that atrazine-N was 
preferred over NO3

-N. Therefore, we will make the assumption that the microorganisms 
preferentially utilized the atrazine and NH4

- N before utilizing NO3
-N for biomass.  Under that 

assumption, the ratio of 15N:14N in the sample is 1:2.4.  To achieve a 13.6% 15N enrichment in 
DNA approximately 1 in 8 N atoms in DNA must be labeled with 15N. The ratio of 1  15N atom 
to 2.4 14N atoms in the readily assimilable nitrogen pool is within the requirements for  15N SIP. 

There are several possible reasons why we did not see an increase in the buoyant density of 
the ES-1 TRFs.  Only about 55% of the atrazine added in the ethylamino- 15N incubations was 
mineralized and metabolite analysis of the uniformly-ring-labeled incubation indicates that 
approximately 7% of the atrazine applied was incompletely degraded; therefore a conservative 
estimate would indicate that approximately 62% of the atrazine applied could have been 
degraded and used for biosynthesis.  Using this estimate, the effective ratio of  15N:14N in the 
sample is reduced to 1:4 assuming only native soil NH4 competed as an N source for 
biosynethesis.  This ratio is still within the requirement for effective isotopic encorporation, 
however these estimates assume that all the available  15N was utilized by a single group of 
atrazine degrading organisms.  It is more likely that the  15N label was distributed among several 
taxa preventing the ES-1 from assimilating enough  15N to significantly increase its BD.   
Although the ratio of enriched to unenriched readily assimilable nitrogen was favorable, the 
presence of many atrazine-degrading bacteria would have diluted the treatment effect. This 
explanation is supported by the presence of atrazine-degrading genes not found in the isolate.   If 
the atzA and trz D genes detected in the Cisne soil code for functional enzymes, then there are 
several populations of atrazine-degrading bacteria thereby minimizing the incorporation of  15N 
into the DNA of one organism.   

As a member of the Arthrobacter genus, isolate ES-1 probably has a G+C content ranging 
from 50-70% (Stackebrandt et al., 1983) giving it a relatively high unenriched BD.  Our analysis 
of BD fractions was limited to the 12 heaviest fractions, which included the BD range of ES-1, 
and favored the detection of organisms with high G+C contents.    That isolate ES-1 did not 
show any enrichment, even though the sampling technique and study design favored its 
detection, further supports the theory that the effect of the treatment isotope was diluted by 
multiple atrazine-degrading species and/or incorporation of nitrogen from other sources.    

In future experiments these problems can be ameliorated with use of dual-labeled treatments.   
Experiments by Cupples and coworkers demonstrated that the use of 13C and  15N -dual labeled 
substrates produced a buoyant density increase of 0.045g/ml when supplied as the sole sources of 
carbon and nitrogen (2006).   A buoyant density increase of that magnitude would simplify 
detection visually or by comparison of TRFLP profiles.  The use of dual-labeled substrates in 
environmental samples would greatly improve the probability of detection when the treatment is 
applied at low concentrations.           
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4. CONCLUSION 

Mineralization kinetics appeared to be a conservative estimate of atrazine degradation rates 
for determining the suitability of this soil for natural attenuation.  Natural attenuation of atrazine 
appeared to be primarily limited by incomplete distribution of the compound through the 
unsaturated soil matrix, as has been reported for other aromatic compounds under similar 
conditions.  Mineralization kinetics underestimated the rate of atrazine dissipation owing to the 
accumulation of several metabolites.  Additional study soils did not mineralize a significant mass 
of atrazine, indicating that while natural attenuation was rapid in the Cisne soil, not all soils are 
suitable for natural attenuation.  The Arthrobacter isolate, ES-1, obtained from the Cisne soil 
without enrichment degraded at an unusually rapid rate, and the termination of the degradative 
pathway at cyanuric acid was precedented by the atrazine degradative genes detected in the 
organism.  The accumulation of this product was consistent with observations of metabolite 
accumulation in the soil.   

TRFLP analysis revealed fragments consistent with the Arthrobacter sp. in the Cisne soil, 
though no enrichment of these fragments was observed when the soil was supplied with atrazine 
labeled with ethylamino- 15N. Results from pure-culture studies with atrazine-degrading 
organisms indicate that under the right conditions stable-isotope probing SIP may be a useful 
tool in identifying populations responsible for natural attenuation.  The use of fine fractions and 
statistical analysis coupled with traditional SIP techniques will hopefully allow for the detection 
of microorganisms responsible for the degradation of nitrogen-containing compounds such as 
herbicides and explosives. The results of these experiments suggest that this site is a good 
candidate for remediation by natural attenuation, however stable isotope probing is not a suitable 
method to elucidate the microbial interactions governing natural attenuation.    
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