Aug 29th, 12:00 PM - 1:15 PM

Soil Moisture Management and Variability in Cranberry Beds

Peter Jeranyama
University of Massachusetts Amherst, Cranberry Station, peterj@umass.edu

Casey Kennedy
U.S. Department of Agriculture, Agricultural Research Service, Pasture Systems and Watershed Management Unit, East Wareham, MA, Casey.Kennedy@ARS.USDA.GOV

Carolyn DeMoranville
University of Massachusetts Amherst Cranberry Station, carolynd@umass.edu

Rebecca Brennan
University of Massachusetts Amherst, rjbbrennan@umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/nacrew

Part of the [Agriculture Commons](https://scholarworks.umass.edu/nacrew)

Recommended Citation

https://scholarworks.umass.edu/nacrew/2017/posters/1

This Event is brought to you for free and open access by the Cranberry Station at ScholarWorks@UMass Amherst. It has been accepted for inclusion in North American Cranberry Researcher and Extension Workers Conference by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Measurements were collected from the State Bog. Soil tension information improves understanding of ideal water conditions for cranberry production. A better understanding of soil volumetric water content (VWC) variation will assist in making crucial management decisions. In this study two methods of measurement were used to gain a cohesive picture of soil water content. From this information a time wise change is moisture levels was observed and periodic maps of soil water variation were created.

Objective
To examine two soil water measurement strategies to gain insight into water management for cranberries and to quantify variations in soil moisture over temporal and geographical scales.

Materials & Methods
- Measurements were collected from the State Bog in E. Wareham and surrounding growers.
- Soil VWC was measured using a wireless Irrolis Sense tensiometer (Hortau, Inc., Quebec) and a FieldScout TDR 300 Soil Moisture Meter with 8.5cm rods (Spectrum Technologies, Inc., UK).
- Wireless tensiometers were embedded in several bog locations, transmitting data at 15 minute intervals. The TDR 300, with GPS attachment, provided immediate Soil VWC levels paired with geographical information for mapping. Over summer 2017 regular maps were recorded and created.

Results & Discussion
- Soil tension information improves understanding of ideal water conditions for peak production. Season long recordings indicate that water needs vary widely over time and between locations, and that fruit yield is sensitive to soil water content. These findings support the idea that the 25-mm rule is not always best, and that remote sensing technology and as-needed watering have the potential to improve yields and minimize fruit rot losses from overwatering.
- Tension is demonstrated to be an accurate method of determining soil water content, and one which can be controlled and monitored remotely.
- Mapping using the TDR 300 has shown the variability of soil WVC within a bog. A visual indication of generally wet, dry, and intermediate locations allows for ideal placement of tensiometer technology to allow for accurate soil water monitoring and management.

Acknowledgements
We are grateful to the USDA-NRCS CIG #69-1320-14-02, the CCCGA, and Ocean Spray Cranberries, Inc. for financial support of this project.