










(Natural 18 with p-value = 0.0333) as the denominator for
all surveillance systems. As coverage increases so does the
likelihood of detection, though the rate of improvement is
non-linear and differs in the two coverage distributions.
The decision threshold influences the proportion of false-
positives more than the probability of detection, though
the effect on probability of detection is stronger in the re-
gion of decision thresholds likely to have tenable false
positive rates (p-value = 0.005 to 0.001). Across all the
surveillance systems, sensitivity improves slightly with

increased decision threshold size, however the proportion
of false positives increases much more rapidly. Overall,
the “Natural” surveillance geography outperforms the
“Uniform” surveillance systems.
For all detected outbreaks, the delay from insertion to

detection can also be measured. The performance of each
surveillance system with respect to the mean detection
delay and the probability of detection is shown in Figure 5.
Given the experimental design, these delays are the theor-
etical earliest point of detection by a public health official.

Figure 3 Simulated ILI surveillance data for downtown Boston as captured by the “Natural 6” surveillance system. Surveillance counts
per day centered in each zip code location are shown as histograms within each zip code. Detection of an inserted test outbreak (red triangle) is
indicated by red bordered zip codes and a false-positive outbreak by black bordered zip codes.
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The surveillance systems based on the “Natural” surveil-
lance geography consistently show earlier detection than
the “Uniform” surveillance geography, even when the
probability for detection is essentially the same between
the two. Interestingly, higher coverage does not lead to
significantly earlier detection: in the case of the “Uniform”
surveillance geography, the highest coverage level leads to
later detection.

Conclusions
Agent-based simulation models incorporating important
processes that lead to realistic simulated surveillance data
is sufficient for evaluating the performance of a surveil-
lance system for outbreak detection. We demonstrated
the use of synthetic methods by conducting an experiment
to assess how the level of coverage and geographic distri-
bution in a surveillance system affect performance. This
kind of experiment can be used to design, as well as to
evaluate, surveillance systems.
Description of the study design and the details of its im-

plementation illustrate the flexibility of the methodology.
For example, the analysis could be extended to include
additional types of inserted outbreaks, and the model
could be altered to supply gastrointestinal surveillance.
Keeping the scale and level of detail in the model similar
to that of the real-world surveillance system facilitates the
analysis of the results and makes the simulation results
more compatible with existing evaluation tools and meth-
ods. These characteristics support the use of agent-based
modeling approaches to a wider variety of public health
problems.
Our study shows that the geographic distribution of a

surveillance system can have a stronger influence on its
ability to detect outbreaks than the level of coverage. This
and similar studies can also give guidance to making ope-
rational decisions, such as selecting a decision threshold
for defining a signal that balances an acceptable number
of false-positives against a desired probability of outbreak
detection.
The 6-fold difference between the nominal false positive

rate of 36.5 signals per hundred years at p-value 0.001
(e.g. [365 days * 100 years] * 0.001) and the observed
count of 244 signals in the simulated “Natural 6” data with
no inserted outbreaks suggests that the spatio-temporal
clustering in the realized simulations is indeed quite differ-
ent from the null hypothesis of case counts proportional
to the population. This confirms that the agent-based
model has the desired effect on the pattern of cases. It also
shows how the process can help public health authorities
anticipate the false positive signaling of such systems.
Efforts to enhance existing surveillance systems can be

guided by testing different surveillance systems using
methods similar to those described here. For example, the
impact of adding a new clinic that would draw patients
from additional locations in the population could be simu-
lated to determine the value of the additional information.
To optimize a surveillance system’s ability to catch out-
breaks, a study design that tests the in silico surveillance
system against a variety of simulated outbreaks and out-
break detection algorithms could be conducted. An as-
sessment of the benefit of finer-grain information could
also be conducted: rather than base the outbreak detection
on the centroids of the home zip code locations, one
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Figure 4 Pseudo-ROC curves of outbreak detection. Proportion
detected for each surveillance system vs. proportion of all false-
positives identified.
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could add the zip code location of the school or work-
place, or replace zip code centroids with anonymized home
addresses.
The high level of detail is a great benefit of agent-based

methods; however, it is also produces what is perhaps their
biggest complication. With so many parameters, proper
calibration can be time consuming and the opportunity for
errors and biases can increase. Similarly, it is sometimes
difficult to find suitable data for parameterizing high fide-
lity models of the real world. For such reasons, these
methods are not always intended to provide definitive
quantitative predictions; rather, they are intended as a tool
for comparisons across several designs or outbreak detec-
tion methods. Additionally, the methods are computation-
ally intensive and very few health departments have the
resources or personnel to perform them. Fortunately
advances in scalable high-performance computing and
web services have already begun to provide these resources
at relatively low cost and with increasing user-friendliness.
Work on developing flexible cyber-infrastructures should
make it possible to provide a relatively simple web-based
interface for users to conduct studies such as this one in
the near future.
Further study using these methods is warranted and will

include broader investigation into evaluating different out-
break detection algorithms and surveillance systems.
These methods will be useful for developing the next gen-
eration of outbreak detection tools. With a very large
library of simulated background disease, one can use clas-
sification techniques and machine learning to develop
“proactive” surveillance systems. These would use state
assessments to guide public health officials about where to
look for further evidence of an outbreak. For instance, an
outbreak that might not create a signal for another week
could be preceded by weak non-signaling outbreaks in
other regions; when taken individually these might be
missed, but when considered as a whole this pattern could
improve confidence that a significant outbreak is about to
occur. This could reduce the burden on PH departments
from following up “unlikely” events and improve PH res-
ponse times to outbreaks by several days. The techniques
needed to accomplish this would be very difficult to apply
to limited historical data, thus requiring an approach like
this one to generate large volumes of plausible high-
fidelity data.
Highly detailed simulation models of infectious disease

transmission can be configured for many purposes serving
public health. We have demonstrated a flexible framework
for using such a model for the evaluation and design of
surveillance systems and outbreak detection. While there
are limitations to the accuracy with which these models
can represent the real world, they can provide sufficiently
realistic data at a level of detail that enables previously im-
possible public health research.

Additional files

Additional file 1: Detailed Disease Model: A state machine
representation of the possible disease states in the simulation.
Starting in the white block on the left an individual can move between
different states of susceptibility (representing seasonal effects) over time,
once infected they progress through an incubated infected stage into a
symptomatic/asymptomatic infectious stage and then into recovered
stages. Each state's susceptibility, relative infectiousness, and duration is
specified.

Additional file 2: Animation of the Natural surveillance system with
6% coverage detecting, missing, and signaling false positives over
the course of a year. The counts per day per location are visualized as
epicurves centered on each location. Locations that are identified as part
of a cluster are filled in with a color ranging from red to pale yellow
denoting the statistical significance of the identified cluster (red = p-
value of 0.001 and pale yellow = p-value of 0.03333). Inserted artificial
outbreaks are shown as red triangles in the epicurves and the locations
are also outlined in red. False-positive outbreaks are outlined with bold
borders in black.

Additional file 3: Animation of the Natural surveillance system with
18% coverage detecting, missing, and signaling false positives over
the course of a year. The counts per day per location are visualized as
epicurves centered on each location. Locations that are identified as part
of a cluster are filled in with a color ranging from red to pale yellow
denoting the statistical significance of the identified cluster (red = p-
value of 0.001 and pale yellow = p-value of 0.03333). Inserted artificial
outbreaks are shown as red triangles in the epicurves and the locations
are also outlined in red. False-positive outbreaks are outlined with bold
borders in black.

Additional file 4: Animation of the “Uniform” surveillance system
with 6% coverage detecting, missing, and signaling false positives
over the course of a year. The counts per day per location are
visualized as epicurves centered on each location. Locations that are
identified as part of a cluster are filled in with a color ranging from red to
pale yellow denoting the statistical significance of the identified cluster
(red = p-value of 0.001 and pale yellow = p-value of 0.03333). Inserted
artificial outbreaks are shown as red triangles in the epicurves and the
locations are also outlined in red. False-positive outbreaks are outlined
with bold borders in black.
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