Intuition Before Integers: Integrating Building Technology Into the Design Studio

James Leach
University of Detroit Mercy, leachje1@udmercy.edu

Kristin Nelson
University of Detroit Mercy, nelsonkr@udmercy.edu

Follow this and additional works at: https://scholarworks.umass.edu/btes

Part of the Architectural Technology Commons, Construction Engineering and Management Commons, and the Engineering Education Commons

Recommended Citation
DOI: https://doi.org/10.7275/69ek-5w93
Available at: https://scholarworks.umass.edu/btes/vol2019/iss1/43

This Abstract is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Building Technology Educator's Society by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Intuition Before Integers: Integrating Building Technology Into the Design Studio

James Leach
Kristin Nelson
University of Detroit Mercy

Abstract

The studio methodology, used almost universally to teach architectural design in the US, embraces speculative investigation and hands-on learning, offering unparalleled opportunities for integrated thinking and open-ended inquiry. Building technology courses, in contrast, tend to be taught in more constrained, and more passive modes - lecture classes, sometimes accompanied by a laboratory or including a project or two. As instructors of both design studios and building technology courses, we have found it difficult to generate the level of engagement and enthusiasm, or achieve the depth of inquiry, in the technology classroom that is common in the design studio. Moreover, we find that students fail to apply their developing technical knowledge to inform their studio design work. With a goal of greater comprehension and application as a guide, we developed an immersive making-based exercise in the design studio with an overt focus on building technology, elevating technical concerns to primary design drivers.

In this case, the development of a tectonic daylighting building skin was selected as an opportunity to incorporate building construction, structures, and performance, while exploring the potential of the envelope as moderator of the exterior environment and shaper of experience. The work was organized as a series of iterative feedback loops: make – learn – test – analyze – refine – make... This began with intuitive making – developing a series of material investigations in response to an initial prompt. Making was immediately followed by learning - the introduction of a specific building technology concepts and considerations. The previously-generated products then served as a subject for testing and analysis, applying the newly-learned technical concepts and tools. The feedback from testing and analysis directed refinement of the design. This pattern was repeated, with episodic technical workshops positioned throughout the project, presenting additional topics such as material selection, tectonics, and structures, for integration into the evolving design. This gradual exposure to new concepts and concerns incrementally built technical awareness and knowledge, spurring continued analysis and development. Additional design and performance criteria, aligned with the new technical topics, added complexity at a measured pace, allowing students to focus on a single concern at a time, without becoming overwhelmed.

By engaging with physical making and testing, and scaffolding technical concepts, students begin to perceive the opportunities to develop designs informed by a multitude of intentions – truly integrated design.