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ABSTRACT 

MOLECULAR DESIGNS TOWARD IMPROVING ORGANIC PHOTOVOLTAICS 

FEBRUARY 2009 

ARPORNRAT NANTALAKSAKUL, B.S., CHULALONGKORN UNIVERSITY  

M.S., CHULALONGKORN UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Sankaran Thayumanavan 

 Organic photovoltaics (OPVs) that have been studied to date have poor power 

conversion efficiencies.  This dissertation focuses on various molecular designs that 

could lead to both a fundamental understanding of photoinduced charge separation at a 

molecular level and also provide a solution to improve bulk properties of organic 

materials to overcome the poor efficiencies of OPV devices. 

 The effect of molecular architectures on the efficiency of electron transfer, a 

primary step in OPVs functioning, is evaluated in this work.  We have shown that even 

though dendrimer provides an interesting architecture for efficient electron transfer due to 

the presence of multiple peripheries around a single core, this architecture leads to 

trapping of charge at the dendritic core.  This results in a decrease in the electron transfer 

efficiency in solution and also limits the possibility of charge transport to the electron in a 

photovoltaic device.   

 Non-conjugated polymers containing conductive EDOT units at side chains were 

also designed and synthesized.  The frontier energy levels of these polymers can be easily 

tuned by changing the conjugation lengths of side chain EDOT oligomers.  Moreover, by 
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incorporating crosslinkable units as co-side chains, the absorption bandwidth of these 

polymers can be manipulated as well. 
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CHAPTER 1 

INTRODUCTION 

1.1 Dendrimers 

In natural photosynthetic systems, a large array of chlorophyll molecules surrounds a 

single reaction center. The intricate chlorophyll assembly acts as an efficient light 

harvesting antenna that captures photons from the sun and transfers its energy to the 

reaction center, where conversion of solar energy into chemical potential energy via the 

formation of a charge-separated state takes place. Interestingly, the energy of any photon 

absorbed anywhere in this relatively large assembly of chromophores is passed rapidly to 

the reaction center with energy transfer quantum yield that approaches unity over 

nanometer distances.1-5 

In the past decade, much attention has been devoted to the design and synthesis of 

supramolecular systems that can function as artificial light harvesting systems for the 

photochemical conversion of solar energy.6-10 Five features of these complexes play key 

roles in the efficient collection of incident light for conversion into chemical energy: (1) 

large absorption cross-section of the complex due to a large number of chromophores 

with high extinction coefficients; (2) relative spatial orientation of these chromophores; 

(3) energy hopping of the exciton along the chromophores at the rim of the complex; (4) 

efficient and uni-directional energy transfer (ET) of the exciton from a chromophore at 

the rim to the chromophore in the center of the complex; (5) the generation of efficient 

photoinduced charge separation from excited state of peripheral chromophores and 

neutral state of the core.   
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Figure 1.1. A dendritic architecture. 

Dendrimers are perfectly branched synthetic macromolecules having numerous 

chain ends all emanating from core (Figure 1.1).  The number of peripheral 

functionalities in dendrimers can be controlled systematically with generations.  

Dendrimers are interesting scaffolds for light harvesting applications. Light harvesting is 

the trapping of energy where the peripheral chromophores absorb light and funnel it to a 

central point, where it can be utilized as photon energy or converted into chemical 

energy. Dendrimers possess the architecture to facilitate such a conversion. These 

properties include its tree-like structure that could potentially act as an energy gradient 

for the funneling process. The periphery of dendrimers can be functionalized with 

multiple light absorbing chromophore units that gives a high probability to capture light. 

The relatively short through-space distance from the periphery to the core, due to back 

folding, allows for high efficiency energy transfer.  
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1.1.1  Dendrimers for energy transfer 

1.1.1.1  Dendron as a scaffold 

Non-conjugated dendrons such as the widely used poly(aryl ether) dendron function 

as just a scaffold linking together light-harvesting chromophores at the rim and the 

energy acceptor chromophore at the core. Owing to the lack of the electronic 

communication between donor and acceptor chromophores through dendritic backbone, 

these dendrimers provide the ability to independently tune the energy level of each 

chromophore.  Moreover, the flexibility of the backbone also helps increase the solubility 

and processability of dendrimers.   

Fréchet and coworkers synthesized non-conjugated poly (aryl ether) dendrimers 

containing amino-functionalized Coumarin-2 as the donor and acid-functionalized 

Coumarin-343 as the acceptor (Figure 1.2(a)).11  The excitation of Coumarin-2 at 343 nm 

resulted in the fluorescence mainly at ~480 nm, which represented the characteristics of 

Coumarin-343 acceptor emission.  This result implied an efficient energy transfer within 

these molecules. Steady-state and time-resolved studies revealed that the energy transfer 

efficiency in these dendrimers approached unity even at higher generations.  Also, an 

interesting study on the relative rate between the energy transfer and nonradiative 

relaxation was carried out in this work.  The model compounds of these dendrimers 

containing chromophores at the periphery, but not at the core, were also designed and 

used for this study (Figure 1.2(b)).  The fluorescence spectra of G1 and G2 model 

dendrons showed the quenching of the Coumarin-2 emission in methanol upon the 

excitation of donors resulting from the nonradiative relaxation due to the hydrogen 

bonding of the solvent with the tertiary amine lone pair.  In contrast, corresponding 
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Figure 1.2. G2 dendrimers containing Coumarin-2 as an energy donor and Coumarin-343 
as an energy acceptor (left) and dendrimers without Coumarin-343 chromophore (right) 
for relative rate study.  

dendrimers with the acceptor at the core showed strong emission exclusively from 

Coumarin-343 core.  This study revealed that the fast energy transfer can overcome the 

rate of the nonradiative pathways.   

1.1.1.2 Dendrimer backbone as the chromophore 

Dendrimer backbone themselves can also be concurrently used as the energy donor. 

Conjugated dendrimers such as phenylacetylene chains were mainly used for this 

purpose.  By controlling over the conjugation length of dendritic branches in these 

dendrimers, rapid and directional energy transport could be obtained resulting in efficient 

energy transfer. 

Efficient, unidirectional energy transfer from a dendritic framework to a single core 

chromophore was reported by Xu and Moore (Figure 1.3).12
 Conjugated phenylacetylene 

dendrimers functionalized with a low band gap perylene chromophore at the core were 

synthesized.  Here, the phenylacetylene monomer units act as the energy donors, and 

perylene acts as the central energy acceptor.  Excitation of the dendrimer backbone at 312 
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Figure 1.3. Chemical structure of perylene-functionalized phenylacetylene dendrimer. 

 

Figure 1.4. Molecular structure of polyphenylene dendrimer. 

nm resulted in emission emanating solely from the perylene dye (450–600 nm), with 

nearly complete quenching of the dendrimer emission.   

Another conjugated dendrimer containing polyphenylene backbone and a perylene 

diimide core was synthesized by Mullen and co-workers. (Figure 1.4)13 In this system, 

polyphenylene dendrimer scaffold exhibits strong fluorescence, with quantum yields 

ranging from 0.2 to 0.5 depending on the dendrimer generation. The authors noted that, 

high extinction coefficients of polyphenylene dendritic arms at shorter wavelength and 

their strong fluorescence intensity, together with the efficient intramolecular energy 

transfer, result in a strong emission from the core by indirectly exciting the 

polyphenylene dendritic arms.  
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1.1.1.3 Energy migration  

In dendrimers fully decorated with peripheral chromophores, after one of the 

peripheral chromophores were excited by incident light, it was shown by several groups 

that the migration of the excitation energy could be initiated before energy transfer to the 

core and that this energy migration can enhance the efficiency of energy transfer.  Jiang 

and Aida demonstrated porphyrin dendrimers ((L5)nP, n = 1-4) having different number 

(n) of five-layered aryl ether dendron subunits (L5) (Figure 1.5).14  The excitation of 

dendron subunits in (L5)4P at 280 nm in CH2Cl2 resulted in strong emission at 656 and 

718 nm which is characteristic of the porphyrin core.  In contrast to this result, the 

excitation of partially substituted dendrimers resulted in a strong emission in the dendron 

region with only a weak emission from the porphyrin core.  The energy transfer quantum 

yield dropped dramatically with the decreasing number of substituents on the porphyrin 

core. (n = 4, φEET = 80.3%; n = 3, φEET = 31.6%; n = 2, φEET = 19.7%; n = 1, φEET = 10.1%)  

For this observation, the authors suggested that before energy transfer happens, the 

excitation energy first migrates among neighboring dialkyoxybenzyl units until it can 

find the chromophore that has a suitable orientation for energy transfer.  Then, the 

excitation energy is efficiently transferred to the core.  As a result, this energy migration 

process would be able to enhance the energy transfer efficiency.  The evidence for the 

presence of this energy shuttling was confirmed by fluorescence anisotropic 

measurements. The excitation of (L5)4P at 280 nm with polarized light resulted in the 

depolarized emission whereas emission of partially substituted (L5)nP (n = 1-3) still 

exhibited polarization character.  We have recently shown that such energy shuttling is an 

important parameter in obtaining high ET efficiency in dendrimers.15 
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                 a (L5)1P :  R1 = L5, R2 = R3 = R4 = tolyl 
                 b (L5)2P :  R1 = R2 =  L5, R3 = R4 = tolyl or  R1 = R3 =  L5, R2 = R4 = tolyl 
                 c (L5)3P :  R1 = R2 = R3 = L5,  R4 = tolyl, d (L5)4P :  R1 = R2 = R3 = R4 = L5 
 
Figure 1.5. Structure of porphyrin dendrimers containing different numbers of dendron 
subunits. 
 

 1.1.1.4 Energy Cascade 

A versatile synthetic scheme allowed for the synthesis of dendrimers having a 

directional energy gradient. Moore and coworkers have reported dendrimers based on 

phenylacetylene chains that are specially arranged to form an energy gradient (Figure 

1.6).  Interestingly, it was found that this energy gradient dramatically increases (by two 

orders of magnitude) the energy transfer rate constant within the dendrimer.16 Hence, the 

directional energy transfer from periphery to core must be greatly facilitated by the built-

in energy gradient. Indeed, theoretical work by Klafter and coworkers afforded the same 

conclusion, suggesting that ‘random walk’ energy transfer from periphery to core, as in 

the former structures, is much less productive than the directed process in funnel 
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Figure 1.6. Chemical structure of perylene-functionalized phenylacetylene dendrimer 
with an energy gradient. 
 

structures.17, 18  However, the mechanism of energy transfer in these systems was difficult 

to ascertain. Owing to the cross-conjugated dendrimer backbone, orbital overlap 

contributions to the energy transfer cannot be ruled out.19 In addition, spectral overlap 

between donor emission and acceptor absorption is not very large in this case, and would 

preclude the Förster mechanism alone from producing the high energy transfer 

efficiencies that were observed.20 

Dendrimers containing multichromophoric units that can absorb light in a wide 

visible range and efficiently transfer it to the core would be ideal for light harvesting 

systems.  Fréchet and co-workers designed and synthesized poly (aryl ether) dendrimer 

containing coumarin-2 and fluorol-7GA at the third and second branch point, respectively 

as energy donors and a perylenebis(dicarboximide) derivative at the core as the energy 

acceptor (Figure 1.7).21 The cascade energy transfer in this dendrimer was designed in 

such a way that energy would be harvested by coumarin-2 units and transferred to 

fluorol-7GA chromophores and then to perylene core.  The direct energy transfer from 

coumarin-2 to the perylene core was expected to be less favorable owing to the smaller 
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Figure 1.7. The structure of multichromophoric dendrimers containing coumarin-2 and 
fluorol-7GA as energy donors and perylenebis(dicarboximide) as the energy acceptor. 
 

spectral overlap between the emission spectra of coumarin-2 and the absorption spectra 

of perylene core and the longer interchromophore distance between these two dyes.  The 

authors showed spectroscopic evidence for a cascade energy transfer from coumarin-2 to 

fluorol-7GA and finally to perylene core from the steady-state measurements.  The 

energy transfer efficiency from coumarin-2 to fluorol-7GA was 99% and from fluorol-

7GA to perylene core was 96%. Therefore, this would be a more favorable pathway 

compared to a direct transfer from coumarin-2 to perylene core that was calculated to be 

at the most 79%. 

While all these energy cascade schemes increase the efficiency of energy transfer to 

the core, they do so at an energetic cost.  The exciton loses energy at every step down the 

cascade, so the energy available when it reaches the core is less than what it had when it 

started at the periphery.  Thus while the efficiency of an excitation reaching the core may 

be 100%, that excitation may only have 75% of the original photon energy.  It is worth 
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noting that in nature, the light-harvesting complex consists of isoenergetic chlorophylls, 

and that the cascade motif is not the dominant one (although there is some energy 

gradient which directs the excitation to the reaction center).  Thus it is not immediately 

clear that the cascade or energy funnel types of structures are necessarily the best for 

solar light harvesting.  High ET efficiency to the core does not directly translate to high 

overall energy efficiency of the structure.   

1.1.2 Dendrimers for electron transfer            

 After energy transfer, electron transfer (ET) is the next key step in photosynthetic 

systems and it involves a pair of electron-donor and acceptor entities, and its efficiency 

reduces exponentially with donor-acceptor distance. However, while a highly efficient 

FRET results in fluorescence emitted mainly from the acceptor chromophore, a highly 

efficient ET usually leads to a strong quenching of the fluorescence of the emitting 

chromophore. Recently, Müllen and coworkers have reported 

perylenetetracarboxidimides (PDI) with peripheral triphenylamine (TPA) dendrimers 

(Figure 1.8).22 Steady state and time-resolved data revealed that this dendrimer is capable 

of intramolecular electron transfer from periphery to core and this occurs more efficiently 

in polar solvents.   

Guldi and co-workers have reported fullerene based dendrimers to mimic the natural 

photosynthetic assemblies (Figure 1.9).23  These dendrimers function as rigid molecular 

scaffolds where dendritic spacers are end capped with dibutylaniline or 

dodecyloxynaphthalene as donors, while the electron accepting fullerene is placed at the 

focal point of the dendron.  Photophysical investigations showed that upon  
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Figure 1.9. First (1a, 1b) and second (2a, 2b) generations of new C60-dendron dyads. 

 
Figure 1.8. Polyphenylene dendrimer with peripheral triarylamines and a central 
perylenetetracarboxidiimide chromophore. 

photoexcitation there was an efficient and rapid transfer of singlet excited state energy 

that controls the reactivity of the initially excited antenna portion. Spectroscopic and 

kinetic evidence suggests that photoinduced electron transfer from periphery to core 

resulted in C60
.- -dendron.+ charge transfer state with quantum yields as high as 0.76 with 

lifetimes in the order of hundreds of nanoseconds (220-725 ns). They also found that this 
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charge transfer state can be modulated by varying the energy gap and that higher 

generations stabilize this charge transfer state efficiently.  

The example of non-conjugated dendrimers that are capable of photoinduced 

electron transfer was demonstrated by Aida and co-workers.24  Electron donor 

metalloporphyrin having benzyl ether dendritic shell was synthesized (Figure 1.10).  In 

this work, methyl viologen (MV2+) noncovalently-attached on the exterior surface of 

dendritic shell was used as an electron acceptor.  The titration of dendrimer with methyl 

viologen showed no change on absorption spectra of metalloporphyrin region implying 

that dendritic shells protect metalloporphyrin core by steric shielding and that methyl 

viologen has no interaction with the metalloporphyrin core.  However, upon irradiation of 

this dendrimer in the presence of MV2+, fluorescence from the core was quenched and 

fluorescence lifetime was shortened.  This phenomenon implied the long range 

photoinduced electron transfer from metalloporphyrin core to methyl viologen through 

the dendrimer framework.  Similar dendrimer-viologen binding, where a conjugated 

polymer is used as the chromophore, was also used for a demonstration of solar hydrogen 

production. 
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Figure 1.10. Benzyl ether dendrimers having metalloporphyrin core. 

1.1.3 Bifunctional dendrimers 

In order to mimic the complete photosynthetic event, recently, our group had 

designed dendrimers that are capable of undergoing both energy transfer and electron 

transfer properties.  These dendrimers contained benzthiadiazole derivatives as the 

energy and electron acceptor at the core and diarylaminopyrene units as the energy and 

electron donors at the periphery.25 The emission of diarylaminopyrene units overlapped 

with the absorption of benzthiadiazole moiety implying that Förster energy transfer can 

happen in these dendrimers.  Moreover, the oxidation potential of benzthiadiazole units 

obtained from cyclic voltammogram was 595 mV, which is above that of 

diarylaminopyrene units which exhibited at about 444 mV (with respect to 

ferrocene/ferrocenium couple).  This electrochemical data suggested that it is possible for 

the excited state of the chromophore at the core to be reduced by peripheral 

chromophores. 
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Figure 1.11. Light-harvesting dendrimers containing benzthiadiazole derivatives at the 
core and diarylaminopyrene at the periphery. 

The excitation of peripheral chromophores at 395 nm resulted in the fast rise of the 

fluorescence from the acceptor at 605 nm implying rapid Förster energy transfer in these 

molecules.  Also, the energy transfer efficiency in these molecules was high even at high 

generations (ηEET ~ 0.89-0.97).   This efficiency was found to be solvent-independent, 

which is common for energy transfer processes.  However, we found that the 

fluorescence lifetimes of the core altered with the change in the dielectric constant of 

solvents.  The different degree of the fluorescence quenching from the core upon 

changing the solvent polarity implied the presence of a charge transfer event.  In fact, this 

fluorescence quenching was found to be faster in high polar solvents.  This would be due 



 15

to the fact that more polar solvent can better stabilize the charged-intermediate species 

and thereby increase the charge transfer rate. In addition, it was found that the long-lived 

(microseconds) transient absorption spectrum closely resembled that of the radical cation 

spectra obtained from both chemical and electrochemical oxidation of the peripheral 

diarylaminopyrene units.  This provided additional evidence to confirm the presence of 

charge separated state in these dendrimers.  The charge transfer efficiency in these 

dendrimers was calculated to be as high as 70% in the polar solvent DMF, and the overall 

efficiency of the photon to charge-separated state process was calculated to be 

approximately 50%. 

1.2 Organic Photovoltaic Devices 

1.2.1 Basic principle 

A typical organic photovoltaic (OPV) device consists of an active layer 

sandwiched between two dissimilar metal/ semiconductor electrodes. The relatively 

higher work function electrode serves as the anode while the lower work function 

electrode serves as the cathode. Indium-tin-oxide (ITO) coated glass is the most 

commonly used transparent anode. The cathode can be a metal such as Au, Ag, Al, Ca, 

and Mg.   
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Figure 1.12. Structures of (a) RR-P3HT, (b) MDMO-PPV, (c) MEH-PPV, (d) C60 and 
(e) PCBM. 

The active layer consists of a chromophore, a hole transporting (HT) and an 

electron transporting (ET) material. A single material can function as a chromophore and 

hole transporter or electron transporter, though most commonly a chromophore also 

functions as a hole transporter. Commonly used HT materials are based on conjugated 

polymers as shown in Figure 1.1226 while ET materials are often based on fullerene 

derivatives.  

The working of an OPV device in terms of relative energy levels of constituent 

materials is depicted in Figure 1.13. When the incident light hits an organic chromophore, 

excitation of the molecules can occur if the light is of equal or higher energy than the 
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η =  FF * Voc * Isc

Pin          (1.1) 

FF =  Vpp * Ipp

Voc * Isc          (1.2) 

 

band gap of the chromophore.  The highest flux of photons occurs around 700 nm (1.8 

eV) in the solar spectrum.27  Therefore the most preferred chromophore for OPVs is that 

which has a band gap of 1.8 eV. Once the exciton is generated, a potential difference 

greater than its binding energy (approximately 0.3 eV) is required to split it into electrons 

and holes. This potential difference can be created at an interface with a material with a 

relatively larger electron affinity. Such an interface however, must be encountered within 

the diffusion length in order to obtain high exciton splitting efficiency. Upon separation 

of charges, these must be carried to electrodes which can accept them to be subsequently 

run through an external circuit.  Thus, the challenge in designing organic semiconductor 

based photovoltaics is to generate large number of excitons, harvest a majority of these, if 

not all, and ensure efficient charge transport to electrodes. This has been the focus of 

research for the past few decades. 

1.2.2. Device performance 

Each of the stages mentioned above, from exciton generation to charge collection, 

impacts the overall efficiency, η, of the device which is determined using measurable 

parameters, viz. the open circuit voltage (Voc), short circuit current (Isc), fill factor (FF), 

incident radiation intensity (Pin), voltage at peak power (Vpp) and current at peak power 

(Ipp). The mathematical expression relating these parameters is as follows. 
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3-21 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 1.31 g (15.20 mmol) of LiBr was added and 

the contents were allowed to reflux overnight. After completion of the reaction, the 

mixture was partitioned between water and dichloromethane. The aqueous layer was 

extracted twice with dichloromethane, dried over Na2SO4 and evaporated under reduced 

pressure. The crude product was purified by column chromatography using 50% hexane 

in dichloromethane as the eluent to afford the product. (3.69 g, quantitative yield)  1H 

NMR (CDCl3, ppm): δ 8.20-7.76 (m, 18H, a), 7.23-6.68 (m, 16H, b), 6.33 (s, 2H, c), 6.23 

(s, 1H, d), 4.75 (s, 4H, e), 4.16 (s, 2H, f), 2.51 (br, 4H, g), 1.54 (br, 4H, h), 1.24 (br, 28H, 

i), 0.86 (m, 6H, j).  13C NMR, (CDCl3, ppm): δ 160.0, 149.5, 146.2, 141.2, 139.6, 138.0, 

137.5, 131.5, 131.3, 129.8, 129.5, 128.4, 128.2, 127.9, 127.5, 127.3, 126.6, 126.5, 126.3, 

125.4, 125.3, 125.1, 123.7, 123.3, 120.7, 120.3, 120.2, 108.2, 102.2, 70.2, 35.7, 33.8, 

32.2, 21.8, 29.9, 23.0, 14.5.  

Synthesis of compound 3-21 
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3-7 

A mixture of 0.11 g (0.73 mmol) of 3,5-dihydroxybenzyl alcohol, 3.70 g (1.52 

mmol) of compound 3-6, 0.31 g (2.14 mmol) of K2CO3 and 0.04 g (0.07 mmol) of 18-

crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and aqueous layer was extracted with dichloromethane. The combined organic 

layer was dried over Na2SO4 and evaporated to dryness. The crude product was purified 

by column chromatography using 50% dichloromethane in hexane as the eluent to afford 

the product. (1.47 g, 78% yield)  1H NMR (CDCl3, ppm): δ 8.15-7.72 (m, 36H, a), 7.19-

7.08 (m, 4H, b), 7.05-6.85 (m, 28H, c), 6.48 (s, 2H, d), 6.38 (s, 5H, e), 6.25 (s, 2H, f), 

4.74 (s, 8H, g), 4.69 (s, 4H, h), 4.53 (s, 2H, i), 2.49 (br, 8H, j), 1.54 (br, 8H, k), 1.22 (br, 

56H, l), 0.85 (m, 12H, m).  13C NMR, (CDCl3, ppm): δ 160.3, 149.5, 146.3, 143.6, 141.2, 

139.2, 138.2, 137.4, 131.5, 131.4, 129.8, 129.7, 129.5, 128.4, 128.2, 127.9, 127.5, 127.3, 

126.6,126.5, 126.3, 125.4, 125.3, 125.1, 123.7, 123.2, 120.7, 120.3, 106.6, 105.9, 101.6, 

70.2, 65.6, 35.7, 32.2, 31.8, 29.9, 23.0, 14.5. 

Synthesis of compound 3-7 
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1.00 g (0.41 mmol) of compound 3-21 and catalytic amount of DMAP were 

dissolved in THF and the solution was cooled to 0 oC under argon atmosphere. 0.14 mL 

(1.02 mmol) of triethylamine and 0.06 mL (0.81 mmol) of mesyl chloride were added 

dropwise, and allowed to stir at room temperature for 3 h. Upon completion of the 

reaction, water was added and the compound was extracted with dichloromethane. The 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 0.17 g (2.03 mmol) of LiBr was added and 

the contents were allowed to reflux overnight. After completion of the reaction, the 

reaction mixture was partitioned between water and dichloromethane. The aqueous layer 

was extracted twice with dichloromethane, dried over Na2SO4 and evaporated under 

reduced pressure. The crude product was purified by column chromatography using 50% 

dichloromethane in hexane to afford the product (1.03 g, quantitative yield) 1H NMR 

(CDCl3, ppm): δ 8.15-7.71 (m, 36H, a), 7.31-7.07 (m, 4H, b), 7.04-6.85 (m, 28H, c), 6.49 

(s, 2H, d), 6.35 (s, 5H, e), 6.25 (s, 2H, f), 4.74 (s, 8H, g), 4.64 (s, 4H, h), 4.33 (s, 2H, i), 

2.49 (br, 8H, j), 1.54 (br, 8H, k), 1.22 (br, 56H, l), 0.85 (m, 12H, m).  13C NMR, (CDCl3, 

ppm): δ 159.8, 149.11, 145.9, 140.8, 139.5, 138.5, 137.7, 137.0, 131.1, 130.9, 129.4, 

129.3, 128.0, 127.7, 127.5, 127.1, 126.9, 126.2, 126.0, 125.9, 125.0, 124.9, 124.7, 123.3, 

122.8, 120.3, 120.0, 119.8, 107.9, 106.2, 101.3, 69.7, 35.2, 33.5, 31.8, 29.5, 22.6, 14.1. 
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3-22 

Synthesis of compound 3-22 

 

 

 

 

 

 

 

 

 

 

 

 

A mixture of 0.03 g (0.27 mmol) of 3,5-dihydroxybenzyl alcohol, 1.43 g (0.56 

mmol) of compound 3-7, 0.12 g (0.86 mmol) of K2CO3 and 0.07 g (0.03 mmol) of 18-

crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and aqueous layer was extracted with dichloromethane. The combined organic 

layer was dried over Na2SO4 and evaporated to dryness. The crude product was purified 

by column chromatography using 50% dichloromethane in hexane to afford the product. 

(0.63 g, 53% yield) 1H NMR (CDCl3, ppm): δ 8.22-7.62 (m, 72H, a), 7.20-6.16 (m, 85H, 

b), 4.84-4.57 (m, 28H, c), 4.47 (s, 2H, d), 2.46 (br, 16H, e), 1.55 (br, 16H, j), 1.20 (br, 
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3-8 

56H, g), 0.84 (br, 24H, h).  13C NMR (CDCl3, ppm): δ 160.4, 149.3, 145.9, 140.4, 138.2, 

136.3, 130.9, 128.7, 127.5, 126.0, 124.8, 123.3, 120.3, 106.5, 106.1, 70.2, 35.0, 31.6, 

29.3, 22.1, 14.0. 

Synthesis of compound 3-8 

0.50 g (0.09 mmol) of compound 3-22 and catalytic amount of DMAP were 

dissolved in THF and the solution was cooled to 0 oC under argon atmosphere. 0.04 mL 

(0.25 mmol) of triethylamine and 0.02 mL (0.19 mmol) of mesyl chloride were added 

dropwise, and allowed to stir at room temperature for 3 h. Upon completion of the 

reaction, water was added and the compound was extracted with dichloromethane. The 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 0.04 g (0.50 mmol) of LiBr was added and 
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the contents were allowed to reflux overnight. After completion of the reaction, the 

reaction mixture was partitioned between water and dichloromethane. The aqueous layer 

was extracted twice with dichloromethane, dried over Na2SO4 and evaporated under 

reduced pressure. The crude product was purified by column chromatography using 

dichloromethane to afford the product (0.21 g, 40% yield).  1H NMR (CDCl3, ppm): δ 

8.22-7.65 (m, 72H, a), 7.15-6.79 (m, 63H, b), 6.51 (s, 8H, b), 6.32 (s, 10H, b), 6.21 (s, 

4H, b), 4.81 (s, 4H, c), 4.53-4.74 (s, 24H, c), 4.25 (s, 2H, d), 2.46 (br, 16H, e), 1.54 (br, 

16H, f), 1.20 (br, 56H, g), 0.84 (br, 24H, h).  13C NMR, (CDCl3, ppm): δ 159.6, 149.0, 

145.9, 140.7, 139.0, 137.9, 136.5, 131.0, 129.3, 128.2, 127.9, 126.2, 124.8, 123.4, 122.7, 

120.3, 119.6, 106.2, 69.7, 34.9, 31.8, 29.7, 22.5, 14.2. 

Synthesis of compound 3-1 

A mixture of 0.20 g (0.41 mmol) of dihydroxy benzthiadiazole unit (2-3), 0.03 g 

(0.38 mmol) of propargyl bromide, 0.15 g (1.13 mmol) of K2CO3 and 0.05 g (0.19 mmol) 

of 18-crown-6 was heated at reflux and stirred vigorously under argon overnight. The 

reaction mixture was allowed to cool to room temperature and solvent was evaporated to 

dryness. The residue was partitioned between water and dichloromethane. The organic 

layer was separated and aqueous layer was extracted with dichloromethane. The 

combined organic layer was dried over Na2SO4 and evaporated to dryness. The crude 

product was purified by column chromatography using 10% ethyl acetate in 

dichloromethane as the eluent to afford the product. (0.09g, 43% yield) 1H NMR 

(DMSO-D6, ppm): δ δ 8.14 (br, 2H, a), 7.90 (br, 2H, b), 7.59-7.14 (m, 8H, c, d), 6.96-
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3-9 

6.79 (br, 2H, e), 4.80 (s, 2H, f), 2.59 (s, 1H, g)  13C NMR, (CDCl3, ppm): δ 157.4, 151.3, 

145.5, 144.7, 137.9, 134.1, 129.2, 125.0, 118.4, 116.1, 114.6, 113.5, 111.9, 75.2, 55.4. 

Synthesis of compound 3-9  

A mixture of 0.04 g (0.08 mmol) of 3-1, 0.10 g (0.08 mmol) of compound 3-6, 

0.03 g (2.20 mmol) of K2CO3 and 2.00 mg (0.008 mmol) of 18-crown-6 was heated at 

reflux and stirred vigorously under argon for 12 h. The reaction mixture was allowed to 

cool to room temperature and solvent was evaporated to dryness. The residue was 

partitioned between water and dichloromethane. The organic layer was separated and 

aqueous layer was extracted with dichloromethane. The combined organic layer was 

dried over Na2SO4 and evaporated to dryness. The crude product was purified by column 

chromatography using 30% ethyl acetate in hexane to afford the product. (0.05 g, 48% 

yield)  1H NMR (CDCl3, ppm): δ 8.20-7.74 (m, 22H, a, b, c), 7.46-6.82 (br, 26H, d, e, f, 

g), 6.47 (s, 2H, h), 6.30 (s, 1H, i), 4.71-4.92 (m, 8H, j), 2.57 (s, 1H, k), 2.51 (br, 4H, l), 

1.56 (br, 4H, m), 1.26 (br, 28H, n), 0.87 (t, J = 6.8, 6H, o).  13C NMR (CDCl3, ppm): δ: 

159.8, 159.0, 158.0, 152.4, 149.2, 145.9, 145.3, 145.1, 140.8, 138.9, 138.6, 137.8, 137.1, 
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3-10 

135.5, 135.3, 131.1, 129.9, 129.4, 129.1, 128.5, 128.1, 127.8, 127.6, 127.2, 126.9, 126.3, 

125.9, 125.7, 125.3, 124.7, 124.4, 123.3, 122.8, 120.5, 119.9, 119.2, 118.6, 113.9, 

112.5,106.2, 101.5, 69.7, 55.6, 35.2, 31.8, 29.4, 22.1, 13.8. 

Synthesis of compound 3-10 

A mixture of 0.02 g (0.04 mmol) of 3-1, 0.10 g (0.04 mmol) of compound 3-7, 

0.02 g (0.11 mmol) of K2CO3 and 1.00 mg (0.004 mmol) of 18-crown-6 was heated at 

reflux and stirred vigorously under argon for 12 h. The reaction mixture was allowed to 

cool to room temperature and solvent was evaporated to dryness. The residue was 

partitioned between water and dichloromethane. The organic layer was separated and 

aqueous layer was extracted with dichloromethane. The combined organic layer was 

dried over Na2SO4 and evaporated to dryness. The crude product was purified by column 

chromatography using 30% ethyl acetate in hexane to afford the product. (0.17g, 75% 

yield).  1H NMR (CDCl3, ppm): δ 8.31-7.52 (m, 40H, a, b, c), 7.47-7.27 (m, 10H, d), 

7.21-7.06 (m, 4H, e), 7.08-6.79 (m, 28H, f), 6.62 (s, 2H, g), 6.37 (s, 5H, h), 6.25 (s, 2H, 
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i), 4.63-5.07 (s, 16H, j), 2.57 (br, 1H, k), 2.47 (br, 8H, l), 1.56 (br, 8H, m), 1.11-1.39 (br, 

28H, n), 0.84 (m, 12H, o). 13C NMR (CDCl3, ppm): δ 160.1, 159.7, 159.1, 157.9, 152.4, 

149.1, 145.9, 145.3, 145.0, 140.9, 139.2, 138.8, 137.9, 137.0, 135.6, 131.2, 131.0, 129.9, 

129.5, 129.3, 129.1, 128.6, 128.1, 127.9, 127.5, 127.3, 127.1, 126.3, 126.0, 125.7, 125.3, 

125.1, 124.8, 124.3, 123.4, 122.9, 120.4, 120.1, 119.7, 119.2, 118.5, 114.1 112.5, 106.2, 

101.2, 70.1, 55.9, 35.2, 31.4, 29.4, 22.5, 13.8. 

Synthesis of compound 3-11 

  A mixture of 0.01 g (0.03 mmol) of 3-1, 0.15 g (0.03 mmol) of compound 3-8, 

0.01 g (0.08 mmol) of K2CO3 and 3.00 mg (0.01 mmol) of 18-crown-6 was heated at 

reflux and stirred vigorously under argon for 12 h. The reaction mixture was allowed to 

cool to room temperature and solvent was evaporated to dryness. The residue was 

partitioned between water and dichloromethane. The organic layer was separated and 

NN
S

S S

O
O

O

O

O

O

NC 10H21

N

O
O

O

O

N

C10H21

N

C 10H21

O

O

N
C10H21

N

C 10H21

O O

O

O N

C10H21

N

C10H21

pyrene proton : a

b bc c

outer layer aromatic proton : d

e ef f

f

f

f

f
g

g

h
h

h

h

h

h

i

i

i

i

i i

i

i

i

i i
i

i

i

i

j

jj

j

j

j

j

j

j

k

j

j

j

k

k
k l

m

n

o

o

o

o

o

o

o

p

 
3-11 



 169

NN

O

O

O

O

HO

a

b

f

de

a

a a

c g

g

g

g

g

g

g

h

 
3-3 

aqueous layer was extracted with dichloromethane. The combined organic layer was 

dried over Na2SO4 and evaporated to dryness. The crude product was purified by column 

chromatography using 50% dichloromethane in hexane to afford the product. (0.03 g, 

19% yield)  1H NMR (CDCl3, ppm): δ 8.11-7.67 (m, 76H, a, b, c), 7.14-6.80 (m, 72H, d, 

e, f), 6.63-6.51 (br, 8H, g, h), 6.30-6.19 (m, 15H, i), 4.98-4.81 (br, 8H, k), 4.71-4.53 (m, 

24H, j), 2.54 (s, 1H, l), 2.44 (br, 16H, m), 1.55 (br, 16H, n), 1.20 (br, 56H, o), 0.83 (br, 

24H, p). 13C NMR, (CDCl3, ppm): δ 160.0, 149.3, 145.9, 141.0, 137.9, 136.9, 131.4, 

129.3, 128.2, 127.2, 125.8, 125.1, 122.7, 119.6, 35.2, 31.4, 29.1, 22.5, 13.8. 

Synthesis of compound 3-3 

Naphthalene dianhydride (15.0 g, 0.55 mol) was taken into a three-necked flask 

with freshly distilled DMF.  The slurry was heated to about 140 oC under N2 atmosphere.  

To this, decylamine (11.1 mL, 0.55 mol) was added dropwise for about 10 minutes and 

the reaction mixture was refluxed overnight.  After the complete consumption of 

naphthalene dianhydride, 3-amino-1-propanol (4.20 mL, 0.55 mol) was added and the 

mixture was left at reflux for overnight.  After completion of the reaction, the mixture 

was cooled down and DMF was evaporated under low pressure.  The residue was 

partitioned between dichloromethane and water and dried over MgSO4.  The organic 

layer was collected and concentrated under low pressure.  The crude product was purified 

by column chromatography using 30% dichlomethane in hexane to afford the product 

(13.25 g, 51% yield). 1H NMR (CDCl3, ppm): δ 8.72 (s, 4H, a), 4.45( br, 2H, b), 4.20 (br, 

2H, c), 3.68 (br, 2H, d), 1.98 (br, 2H, e), 1.75(2H, f), 1.30 (br, 14H, g), 0.98 (br, 3H, h) 
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13C-NMR (CDCl3, ppm): δ 163.5, 131.2, 120.6, 59.2, 40.4, 36.4, 31.8, 29.5, 29.3, 28.1, 

27.1, 22.7, 14.1. 

Synthesis of compound 3-4 

Compound 3-3 (1.32 g, 2.84 mmol) and a catalytic amount of DMAP were placed 

into a round bottom flask and THF was added as a solvent. The solution was cooled to 0 

oC and triethylamine (0.79 mL, 5.67 mmol) was added followed by mathacryloyl chloride 

(0.55 mL, 5.67 mmol). The mixture was left at room temperature overnight. After the 

completion of the reaction, the mixture was extracted using water and dichloromethane. 

Organic layer was collected and evaporated under reduced pressure. The crude product 

was purified by column chromatography using dichloromethane to afford pale yellow 

solid as a product (0.79g, 49% yield).  1H NMR (CDCl3, ppm): δ 8.78 (s, 4H, a), 6.12 (m, 

1H, b), 5.54 (m, 1H, c), 4.30 (m, 6H, d, e, f), 2.20 (m, 2H, g), 1.76 (m, 2H, h), 1.45 (s, 

3H, i), 1.28 (m, 14H, j), 0.89 (s, 3H, k)  13C NMR (CDCl3, ppm): δ 167.2, 163.1, 136.3, 

131. 3, 131.1, 126.8, 126.3, 125.4, 63.7, 41.0, 38.2, 31.9, 29.5, 29.1, 28.0, 27.4, 26.9, 

22.5, 18.3, 14.1. 

Synthesis of compound 3-23 

To a round bottom flask, 0.25 g (3.08 mmol) chloroethanol and 0.30 g (4.61 

mmol) sodium azide were taken and 5 mL DMSO was added as a solvent.  The mixture 

was heated at 100 oC for overnight.  After completion of the reaction, water was added 
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and the mixture was extracted with dichloromethane (3x25 mL). The organic layer was 

combined and the solvent was evaporated. The product was obtained without any 

purifificaiton. 1H NMR (CDCl3, ppm): δ 5.24 (s, 1H, a), 3.68 (m, 2H, b), 3.31 (m, 2H, c) 

13C-NMR (CDCl3, ppm): δ 60.7, 53.3. 

Synthesis of compound 3-2 

. 0.25 g (0.99 mmol) of compound 3-23 and 0.96 g (1.99 mmol) 2-bromoisobutylic 

acid were dissolved in 30 mL dichloromethane. The reaction mixture was cooled down in 

ice-water bath and a solution of 1.18 g (1.99 mmol) dicylclohexyl carbodiimide in 10 mL 

dichloromethane was slowly added while stirring.  A solution of 0.17 g (0.49 mmol) 4-

dimethylaminopyridine in 5 mL dichloromethane was subsequenly added. The mixture 

was stirred at 0 oC for 1 h and then at room temperature for 24 h. The precipitated 

dicyclohexyl urea was filltered on cotton twice and washed with dichloromethane.  The 

solution was extraced with a solution of NaHCO3 (5%) followed by dichloromethane 

(3x25 mL) and dried over MgSO4.  The volatiles were removed by reduced pressure and 

the crude product was purified by column chromatography using 10% ethylacetate in 

hexane.  The product was obtained as a colorless liquid with a quantitative yield.  1H 

NMR (CDCl3, ppm): δ 4.34 (br, 2H, a), 3.53 (br, 2H, b), 1.96 (s, 6H, c) 13C NMR 

(CDCl3, ppm): δ 171.4, 64.6, 55.2, 49.6, 30.6. 
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Synthesis of compound 3-5 

 

 

 

 

 

4.00 mg (0.03 mmol) of Cu(I)Br was taken in a 5 mL round bottom flask 

equipped with a septum and gas inlet/outlet. The flask was degassed with argon for 5 

min. Then, 12.0 µL (0.06 mmol) of N,N,N’,N’,N’’-pentamethyl diethylenetriamine 

(PMDETA) was added and stirred for 5 more minutes. To this reaction mixture, the 

solution of the monomer 3-4 (800 mg, 1.50 mmol) in 400 µL degassed anisole was added 

and it was stirred for another 5 minutes. To this mixture, 5.00 µL (0.03 mmol) of the 

initiator 3-2 was added and the flask was transferred to a preheated oil bath at 65 °C. The 

polymerization was carried out at the same temperature under argon atmosphere for 6 h. 

After that, the reaction was stopped and the polymer was dissolved in THF. The polymer 

solution was filtered though silica to remove copper salt and then precipitated from 

diethylether and dried over vacuum for 6 h. The polymer was obtained as a yellow-brown 

solid with 58% yield. 1H NMR (CDCl3, ppm): δ 8.94-7.95 (br, 4H, a), 4.35-3.83 (br, 8H, 

b, c, d, e), 3.72 (br, 2H, f), 2.21-1.89 (br, 7H, g, h, i), 1.89-1.54 (br, 2H, j), 1.49-0.93 (br, 

20H, k, l-r), 0.93-0.79 (br, 3H, s). Mn= 9326; PDI= 1.14; Degree of polymerization = 17. 
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G1 dendron-rod coil 

Synthesis of G1 dendron-rod coil 

Compound 3-9 (19.0 mg, 11.0 µmole), compound 3-5 (75.0 mg, 9.20 µmole), 

CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) were added into a 

Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The mixture was stirred 

for 10 min and degassed by three freeze-thaw cycles. The Schlenk flask was placed in a 

constant temperature oil bath at 25 0C for 24 h.  After completion of the reaction, the 

THF in the mixture was removed by evaporation and the dry crude product was purified 

by column chromatography using 5% THF in dichloromethane to afford the product. 

(46.0 mg, 48% yield), SEC, Mn= 10800, PDI= 1.07.  
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G2 dendron-rod-coil 

Synthesis of compound G2 dendron-rod-coil 

Compound 3-10 (33.0 mg, 11.0 µmole), compound 3-5 (75.0 mg, 9.20 µmole), 

CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) were added into a 

Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The mixture was stirred 

for 10 min and degassed by three freeze-thaw cycles. The Schlenk flask was placed in a 

constant temperature oil bath at 25 0C for 24 h.  After completion of the reaction, the 

THF in the mixture was removed by evaporation and the dry crude product was purified 

by column chromatography using 5% THF in dichloromethane to afford the product. 

(80.0 mg, 76% yield), SEC, Mn= 12900, PDI= 1.05.  
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G3 dendron-rod-coil 

Synthesis of compound G3 dendron-rod-coil 

Compound 3-11 (76.0 mg, 11.0 µmole), compound 3-5 (75.0 mg, 9.20 µmole), 

CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) were added into a 

Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The mixture was stirred 

for 10 min and degassed by three freeze-thaw cycles. The Schlenk flask was placed in a 

constant temperature oil bath at 25 °C for 24 h. After completion of the reaction, the THF 

in the mixture as removed by evaporation and the dry crude product was purified by 

column chromatography using 5% THF in dichloromethane to afford the product. (62.0 

mg, 41% yield), SEC, Mn= 13200, PDI= 1.09. 
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Synthesis of compound 3-24  

A mixture of 0.05 g (0.10 mmol) of 3-1, 0.02 g (0.30 mmol) of benzyl bromide, 

0.04 g (0.29 mmol) of K2CO3 and 13.00 mg (0.05 mmol) of 18-crown-6 was heated at 

reflux and stirred vigorously under argon for 12 h. The reaction mixture was allowed to 

cool to room temperature and solvent was evaporated to dryness. The residue was 

partitioned between water and dichloromethane. The organic layer was separated and 

aqueous layer was extracted with dichloromethane. The combined organic layer was 

dried over Na2SO4 and evaporated to dryness. The crude product was purified by column 

chromatography using 50% ethyl acetate in hexane as the eluent to afford the product 

(0.04 g, 67% yield). 1H NMR (CDCl3, ppm): δ 8.13 (s, 2H, a), 7.91 (s, 2H, b), 7.38 (m, 

13H, c, d), 7.02 – 6.91 (m, 2H, e), 5.15 (s, 2H, f), 4.78 (s, 2H, g), 2.57 (s, 1H, h).13C 

(CDCl3, ppm): δ 159.2, 157.9, 145.6, 138.7, 136.8, 135.3, 130.1, 129.0, 127.5, 125.6, 

123.9, 119.6, 118.7, 114.4, 112.3, 69.9, 55.9. 

Synthesis of compound 3-12 
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3-25 

Compound 3-24 (7.0 mg, 11.0 µmole), compound 3-5 (75.0 mg, 9.20 µmole), 

CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) were added into a 

Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The mixture was stirred 

for 10 min and degassed by three freeze-pump-thaw cycles. The Schlenk flask was placed 

in a constant temperature oil bath at 25 °C for 24 h.  After completion of the reaction, the 

THF in the mixture as removed by evaporation and the dry crude product was purified by 

column chromatography using 5% THF in dichloromethane to afford the product. (34.0 

mg, 40% yield), SEC, Mn= 9980 PDI= 1.08.  

Synthesis of compound 3-25 

1.00 g (4.78 mmol) of 8-bromooctanoic acid was placed in a round bottom flask 

and 20 mL of dichloromethane was added as a solvent.  To this solution, 0.83 mL (9.57 

mmol) of oxalyl chloride was slowly added.  The reaction mixture was stirred at room 

temperature for 6 h.  Then, the solvent was removed by a rotary evaporator to yield the 

corresponding acid chloride which was further used for the next step without purification. 

To the round bottom flask, 1.09 g (4.78 mmol) of acid chloride, 1.11 g (2.38 

mmol) of compound 3-3, 0.45 mL (4.78 mmol) of triethylamine, and catalytic amount of 

DMAP were added and THF was used as a solvent. The mixture was stirred at room 

temperature overnight.  After completion of the reaction, water was added and the 

mixture was partitioned between dichloromethane and water.  The organic layer was 

collected and concentrated using a rotary evaporator.  The crude product is purified by 
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3-15 

column chromatography using 50% dichloromethane in hexane to obtain the product. 

(0.37 g, 23% yield)  1H NMR (CDCl3, ppm): δ 8.79 (s, 4H, a), 4.35 (t, J = 7.1, 2H, b), 

4.27 – 4.15 (m, 4H, c, d), 3.43 (m, 4H, e, f), 1.94 – 1.86 (m, 4H, g, h), 1.66 (m, 4H, i, j), 

1.36 (m, 20H, k), 0.89 (t, J = 6.7, 3H, l). 13C NMR (CDCl3, ppm): δ 173.0, 162.3, 130.9, 

126.4, 61.8, 45.1, 41.0, 38.1, 34.2, 32.6, 31.9, 29.6, 29.3, 28.9, 28.5, 28.1, 27.4, 27.0, 

26.6, 24.8, 22.5, 14.2. 

Synthesis of compound 3-15 

0.046 g (0.07 mmol) of compound 3-25 and 0.007 g (0.11 mmol) of sodium azide 

were added into a round bottom flask and acetonitrile was added as a solvent.  The 

mixture was left at reflux overnight.  After completion of the reaction, water was added 

and the mixture was partitioned between dichloromethane and water.  The organic layer 

was collected and evaporated to obtain an azide functionalized naphthalene bisimide 

derivative (3-14).  This product was further used in the next step without purification. 1H 

NMR (CDCl3, ppm): δ 8.79 (s, 4H), 4.35 (t, J = 7.2, 2H), 4.29 – 4.17 (m, 4H), 3.28 (t, J = 

6.9, 2H), 2.31 (t, J = 7.5, 2H), 2.23 – 2.10 (m, 2H), 1.77 (s, 2H), 1.68 – 1.52 (m, 4H), 

1.31 (d, J = 22.1, 20H), 0.89 (t, J = 6.8, 3H). 

Above prepared compound (3-14) (8.00 mg, 9.20 µmole), compound 3-9 (19.0 

mg, 11.0 µmole), CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) 
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were added into a Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The 

mixture was stirred for 10 min and degassed by three freeze-pump-thaw cycles. The 

Schlenk flask was placed in a constant temperature oil bath at 25 °C for 24 h.  After 

completion of the reaction, the THF in the mixture as removed by evaporation and the 

dry crude product was purified by column chromatography using 5% THF in 

dichloromethane to afford the product (22.0 mg, 78% yield).  1H NMR (CDCl3, ppm): δ 

8.62 (s, 4H, a), 8.16 – 7.55 (m, 22H, b, c, d), 7.39 – 6.87 (m, 26H, e), 6.88 – 6.74 (m, 1H, 

f), 6.46 (s, 2H, g), 6.30 (s, 1H, h), 5.29 (s, 2H, i), 4.81 (s, 6H, j), 4.01-4.38 (m, 8H, k), 

2.57 – 2.43 (m, 4H, l), 2.26 (m, 2H, m), 2.07 (m, 2H, n), 1.93 (m, 2H, o), 1.59 (m, 28H, 

p, q, r), 1.24 (br, 28H, s), 0.85 (br, 9H, t) 13C NMR (CDCl3, ppm): δ 174.2, 162.7, 159.7, 

158.5, 152.4, 149.3, 145.5, 143.5, 140.9, 138.8, 137.9, 137.1, 135.4, 131.3, 131.0, 130.0, 

129.2, 128.6, 127.9, 127.8, 127.4, 127.2, 126.9, 126.6, 126.3, 126.1, 126.9, 125.6, 125.3, 

125.0, 124.8, 124.2, 123.4, 122.9, 122.6, 120.4, 120.1, 119.9, 118.9, 111.9, 106.9, 101.5, 

69.4, 62.5, 50.7, 35.3, 34.0, 31.9, 31.4, 29.7, 28.8, 27.5, 27.0, 26.1, 24.7, 22.7, 14.1  SEC, 

Mn= 2700, PDI= 1.03. 

Synthesis of compound 4-5 

In a two-necked 250 mL round-bottom flask filled with 20 mL chloroform, 1.00 g 

(5.00 mmol) of ProDOT was added and the solution was bubbled under argon for 20 min.  

Then, 0.88 g (5.00 mmol) of N-bromosuccinimide (NBS) was added and the solution was 

stirred for 20 h.  After completion, the solvent was removed under vaccuo and the 
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4-3 

resulting residue was purified by column chromatography using 10% ethyl acetate in 

CH2Cl2 to get a white solid was as a product (0.49 g, 32 %yield).  1H NMR ((CD3)2CO, 

ppm): δ 6.72 (s, 1H, a), 4.00 (m, 2H, b), 3.61 (m, 2H, b), 3.61 (s, 2H, c), 0.96 (s, 3H, d) 

13C NMR ((CD3)2CO,  ppm): δ 147.8, 90.8, 76.9, 63.7, 43.7, 16.1. 

Synthesis of compound 4-2 

In a two-necked 250 mL round-bottom flask filled with 20 mL chloroform, 0.66 g 

(3.00 mmol) of ProDOT was added and the solution was bubbled under argon for 20 

minutes.  Then, 1.11 g (9.00 mmol) of N-bromosuccinimide (NBS) was added and the 

solution was stirred for 20 h.  After completion, the solvent was removed under vaccuo 

and the resulting residue was purified by column chromatography using 100% CH2Cl2.  

The white solid was obtained as a product (1.17 g, quantitative yield).  1H NMR 

((CD3)2CO, ppm): δ 4.00 (d, 2H, J = 12.0, a), 3.73 (d, 2H, J = 12, a), 3.60 (s, 2H, b), 0.97 

(s, 3H, d) 13C NMR ((CD3)2CO, ppm): δ 147.8, 90.8, 76.9, 63.7, 43.7, 16.1. 

Synthesis of compound 4-3 

 1.00 g, (2.80 mmol) of compound 4-2,  0.75 g (6.15 mmol) of phenyl boronic acid 

and 1 M aqueous solution of Na2CO3 (30 mL) were deaerated several times and placed 
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4-6 

under argon followed by the addition of  0.10 g (0.08 mmol) of  Pd(PPh3)4.  The mixture 

was stirred under reflux for 10 h.  After this period, another portion of catalysts (0.01 g, 

0.008 mmol) was added after which the reaction mixture was stirred for another 4 hours 

under reflex.  The reaction mixture was then poured into CH2Cl2/ H2O and extracted with 

CH2Cl2 several times, and the combined organic fractions were washed with water, dried 

and then concentrated.  The resulting solid was purified by column chromatography using 

40% ethyl acetate in hexane to obtain a white solid as a product (0.60 g, 61% yield).  1H 

NMR (CDCl3, ppm): δ 7.72 (d, J = 8.2, 4H, c), 7.46 – 7.33 (m, 4H, b), 7.31 – 7.20 (m, 

2H, a), 4.25 (m, 2H, d), 3.90 (m, 2H, d), 3.84 (m, 2H, e), 1.03 (br, 3H, h).  13C NMR 

(CDCl3, ppm): δ 146.2, 132.4, 128.6, 126.5, 120.3, 65.6, 43.5, 17.0. 

Synthesis of compound 4-6 

1.00 g, (3.48 mmol) of compound 4-5,  0.52 g (4.30 mmol) of phenyl boronic acid 

and 1 M aqueous solution of Na2CO3 (30 mL) were deaerated several times and placed 

under argon followed by the addition of  0.12 g (0.11 mmol) of  Pd(PPh3)4.  The mixture 

was stirred under reflux for 10 h.  After this period, another portion of catalysts (0.01 g, 

0.01 mmol) was added after which the reaction mixture was stirred for another 4 hours 

under reflex.  The reaction mixture was then poured into CH2Cl2/ H2O and extracted with 

CH2Cl2 several times, and the combined organic fractions were washed with water, dried 

and then concentrated.  The resulting solid was purified by column chromatography using 
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50% ethyl acetate in hexane to get a white solid as a product (0.70 g, 70% yield). 1H 

NMR (CDCl3, ppm): δ 7.67 (d, J = 8.1, 2H, c), 7.36 (t, J = 7.7, 2H, b), 7.30 – 7.21 (m, 

1H, a), 6.46 (s, 1H, d), 4.17 (dd, J = 12.1, 26.3, 2H, e,), 3.90 – 3.75 (m, 4H, e, f), 0.99 (s, 

3H, g). 13C NMR (CDCl3, ppm): δ 150.4, 145.2, 133.1, 128.2, 126.5, 122.7, 103.1, 65.9, 

43.8, 16.6. 

Synthesis of compound 4-18 

To a two-necked 50 mL round bottom flask, 0.50 g (1.40 mmol) of compound 4-

2, 1.32 g (3.07 mmol) of 2-tributyltin EDOT (4-13) in DMF were deaerated several times 

and then handled under argon. 0.07 g (0.10 mmol) of Pd(PPh3)2Cl2 was added and the 

mixture was stirred at 80 oC for 2 h.  After completion of the reaction, water was added 

and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic layer was collected 

and dried over anhydrous MgSO4.  The resulting residue was purified by column 

chromatography using 50% ethylacetate in dichloromethane.  The yellow solid was 

obtained as a product (0.36 g, 53% yield).  1H NMR (CDCl3, ppm): δ 6.24 (s, 2H, a), 4.33 

(s, 4H, b), 4.21 (br, 6H, c, d), 3.85 (br, 2H, d), 3.75 (br, 2H, e), 0.96 (s, 3H, f)  13C NMR 

(CDCl3, ppm): δ 145.2, 141.0, 137.2, 112.8, 109.7, 97.6, 76.9, 65.5, 64.2, 63.5, 43.5, 

15.6. 
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Synthesis of compound 4-11 

To a two-necked 50 mL round bottom flask, 0.50 g (1.36 mmol) of compound 4-

2, 1.52 g (2.99 mmol) of 2-phenyl-5-tributyl tin EDOT (4-8) in DMF were deaerated 

several times and then handled under argon.  0.07 g (0.10 mmol) of Pd(PPh3)2Cl2 was 

added and the mixture was stirred at 80 oC for 2 h.  After completion of the reaction, 

water was added and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic 

layer was collected and dried over anhydrous MgSO4.  The resulting residue was purified 

by column chromatography using 10% ethyl acetate in dichloromethane.  The yellow 

solid was obtained as a product (0.46 g, 17 %yield).  1H NMR ((CD3)2CO, ppm): δ 7.74 

(br, 4H, c), 7.39 (t, J = 7.7, 4H, b), 7.22 (br, 2H, a), 4.45 (s, 8H, d), 4.25 (d, J = 11.9, 2H, 

e), 3.91 (d, J = 11.9, 2H, e), 3.78 (d, J = 6.0, 2H, f), 1.07 (s, 3H, g).  13C-NMR 

((CD3)2CO, ppm): δ 144.1, 128.6, 126.2, 125.5, 76.3, 64.9, 63.0, 43.5, 15.9. 

Synthesis of compound 4-7 
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4-9 

In a two-necked 250 mL round-bottom flask filled with 20 mL chloroform, 0.30 g 

(1.09 mmol) of compound 4-6 was added and the solution was bubbled under argon for 

20 min.  Then, 0.39 g (2.17 mmol) of N-bromosuccinimide (NBS) was added and the 

solution was stirred for 20 h.  After completion, the solvent was removed under vaccuo 

and the resulting residue was purified by column chromatography using 10% ethyl 

acetate in hexane to obtain a white solid as a product (0.25 g, 39% yield).  1H NMR 

(CDCl3, ppm): δ 7.62 (d, J = 7.3, 2H, c), 7.38 (t, J = 7.6, 2H, b), 7.30 (m, 1H, a), 4.22 

(dd, J = 7.1, 12.1, 2H, d), 3.95 – 3.76 (m, 4H, d e), 1.03 (s, 3H,f ).  13C-NMR (CDCl3, 

ppm): δ149.0, 145.2, 132.7, 131.4, 128.6, 127.6, 125.5, 90.7, 76.3, 64.2, 43.5, 15.9. 

Synthesis of compound 4-9 

To a two-necked 50 mL round bottom flask, 1.00 g (3.01 mmol) of compound 4-

7, 1.83 g (3.62 mmol) of 2-phenyl-5-tributyl tin EDOT (4-8) in DMF were deaerated 

several times and then handled under argon.  0.15 g (0.21 mmol) of Pd(PPh3)2Cl2 was 

added and the mixture was stirred at 80 oC for 2 h.  After completion of the reaction, 

water was added and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic 

layer was collected and dried over anhydrous MgSO4.  The resulting residue was purified 

by column chromatography using  dichloromethane to obtain a white solid as a product 

(0.42 g, 29% yield).1H NMR (CDCl3, ppm): δ 7.82 – 7.66 (m, 4H, c), 7.38 (t, J = 7.4, 4H, 

b), 7.27 – 7.18 (m, 2H, a), 4.36 (m, 6H, d, e), 4.01 – 3.79 (m, 4H, e, f), 1.04 (s, 3H, g). 
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13C NMR (CDCl3, ppm): δ 146.2, 145.2, 138.2, 137.4, 133.1, 128.6, 126.7, 125.7, 120.0, 

115.5, 113.3, 108.3, 65.6, 64.7, 43.7, 17.0. 

Synthesis of compound 4-14 

To a two-necked 50 mL round bottom flask, 1.00 g (3.60 mmol) of compound 4-

5, 1.86 g (4.32 mmol) of 2-tributyltin EDOT (4-13) in DMF were deaerated several times 

and then handled under argon.  0.18 g (0.25 mmol) of Pd(PPh3)2Cl2 was added and the 

mixture was stirred at 80 oC for 2 h.  After completion of the reaction, water was added 

and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic layer was collected 

and dried over anhydrous MgSO4.  The resulting residue was purified by column 

chromatography using 30% ethyl acetate in hexane to obtain a yellow solid as a product 

(1.04 g, 85% yield).  1H NMR ((CD3)2CO, ppm): δ 6.54 (s, 1H, a), 6.34 (s, 1H, b) , 4.34 

(m, 2H, c), 4.26 (m, 2H, c), 4.10 (d, J = 16.0 Hz, 1H, d), 4.00 (d, J = 16.0 Hz, 1H, d), 3.79 

(d, J = 25.2 Hz, 1H, d), 3.72 (d, J = 25.2 Hz, 1H, d), 3.67 (m, 2H, e), 0.99 (s, 3H, f) 13C 

NMR ((CD3)2CO, ppm): δ 149.9, 141.4, 102.8, 97.6, 78.4, 78.1, 77.8, 76.8, 76.5, 65.1, 

64.5, 64.0, 43.8, 17.5.  

Synthesis of compound 4-15 
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4-16 

A round bottom flask with a stirring bar was charged with 0.11 g (0.33 mmol) of 

compound 4-14 in dry dichloromethane.  0.12 g (0.69 mmol) of N-bromosuccinimide 

was added and the reaction was allowed to stir at 0 oC for 2 h.  The slightly blue mixture 

was dissolved in 500 mL of dichloromethane and washed by NH3.H2O (10%, 150 mL), 

H2O (3x50 mL) and brine (2x50 mL) and dried over MgSO4.  The CH2Cl2 was 

evaporated to give a yellowish solid that was further used in the next step without 

purification.  1H NMR (CDCl3, ppm): δ 4.34 (s, 4H, a), 4.22 (t, J = 12.5, 2H, b), 3.89 – 

3.75 (m, 4H, b, c), 1.02 (s, 3H, d).13C-NMR is not taken due to its instability. 

Synthesis of compound 4-16 

To a two-necked 50 mL round bottom flask, 0.12 g (0.24 mmol) of compound 4-

15, 0.26 g (0.51 mmol) of 2-phenyl-5-tributyl tin EDOT (4-8) in DMF were deaerated 

several times and then handled under argon.  0.01 g (0.17 mmol) of Pd(PPh3)2Cl2 was 

added and the mixture was stirred at 80 oC for 2 h.  After completion of the reaction, 

water was added and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic 

layer was collected and dried over anhydrous MgSO4.  The resulting residue was purified 

by column chromatography using 30% ethylacetate in hexane to obtain an orange solid as 

a product (0.02 g, 11% yield).  1H NMR (DMSO-D6, ppm): δ 7.73 – 7.60 (m, 4H, c), 

7.40 (t, J = 7.8, 4H, b), 7.24 (br, 2H, a), 4.43 (d, J = 13.0, 12H, d), 4.09 (br, 2H, e), 3.84 
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4-4 

(br, 2H, e), 3.57 (br, 2H, f), 0.96 (s, 3H, g). 13C NMR (DMSO-D6, ppm): δ 144.7, 138.7, 

137.1, 133.2, 129.5, 125.3, 114.1, 64.9, 33.5, 16.3. 

Synthesis of compound 4-4 

0.25 g (0.77 mmol) of compound 4-3 and 0.22 g (1.54 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.32 g (1.54 mmol) of dicyclohexyl carbodiimide followed by 

0.19 g (1.54 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0 oC for 2 h.  After completion of the reaction, the precipitated dicyclohexyl 

urea was filtered. Then, water was added and the mixture was extracted using CH2Cl2 

(3x20 mL).  The organic layer was collected and dried over anhydrous MgSO4.  The 

resulting residue was purified by column chromatography using hexane to obtain a 

yellow solid as a product (0.36 g, quantitative yield).  1H NMR (CDCl3, ppm): δ 7.74 (d, 

J = 7.5, 4H, c), 7.40 (t, J = 7.6, 4H, b), 7.29 (br, 2H, a), 6.16 (d, J = 9.8, 2H, d), 4.29 (s, 

2H, e), 4.23 (d, J = 12.2, 2H, e), 3.98 (d, J = 11.9, 2H, f), 3.10 (s, 1H, g), 2.96 (s, 1H, h), 

2.31 (s, 1H, i), 1.96 (s, 2H, j, k), 1.42 (s, 2H, j, k), 1.11 (s, 3H, l). 13C NMR (CDCl3, 

ppm): δ 174.1, 145.9, 138.3, 135.2, 132.7, 128.6, 126.9, 120.3, 100.4, 76.2, 46.2, 42.8, 

41.7, 29.7, 16.2. 
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4-10 

Synthesis of compound 4-10 

0.30 g (0.61 mmol) of compound 4-9 and 0.17 g (1.22 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.25 g (1.22 mmol) of dicyclohexyl carbodiimide followed by 

0.15 g (1.22 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0 oC for 2 h.  After completion of the reaction, the precipitated dicyclohexyl 

urea was filtered. Then, water was added and the mixture was extracted using CH2Cl2 

(3x20 mL).  The organic layer was collected and dried over anhydrous MgSO4.  The 

resulting residue was purified by column chromatography using hexane to obtain a 

yellow solid as a product (0.28 g, 76% yield). 1H NMR (CDCl3, ppm) δ 7.74 (m, 4H, c), 

7.36 (t, J = 7.6, 4H, b), 7.29 – 7.16 (m, 2H, a), 6.21 – 6.08 (m, 2H, d), 4.47 – 4.13 (m, 

8H, e, f), 3.94 (m, 2H, g), 3.09 (s, 1H, h), 2.94 (s, 1H, i), 2.30 (s, 1H, j), 1.97 (d, J = 11.9, 

2H, k, l), 1.41 (t, J = 9.5, 2H, k, l), 1.09 (s, 3H, m). 13C NMR (CDCl3, ppm): δ 176.1, 

145.1, 137.9, 135.6, 132.9, 128.3, 126.0, 66.0, 64.9, 53.4, 46.2, 43.4, 41.5, 30.0, 16.7. 
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4-12 

Synthesis of compound 4-12 

0.10 g (0.16 mmol) of compound 4-11 and 0.04 g (0.32 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.05 g (1.32 mmol) of dicyclohexyl carbodiimide followed by 

0.04 g (0.32 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0 oC for 2 h.  After the completion of the reaction, the precipitated 

dicyclohexyl urea was filtered. Then, water was added and the mixture was extracted 

using CH2Cl2 (3x20 mL).  The organic layer was collected and dried over anhydrous 

MgSO4.  The resulting residue was purified by column chromatography using 30% 

ethylacetate in hexane to obtain a yellow solid as a product (0.03 g, 69% yield).  1H NMR 

(CDCl3, ppm): δ 7.72 (br, 4H, c), 7.44 (br, 4H, b), 7.29 (br, 2H, a), 6.22 (br, 2H, d), 4.47 

(d, J = 12.9, 8H, e), 4.36 – 4.22 (m, 4H, f), 3.96 (d, J = 9.6, 2H, g), 3.13 (br, 1H, h), 2.96 

(br, 1H, i), 2.37 (br, 1H, j), 1.96 – 1.89 (m, 2H, k, l), 1.28 (br, 2H, k, l), 1.05 (s, 3H, m).  

13C-NMR (CDCl3, ppm): δ 176.5, 135.8, 128.6, 126.3, 124.8, 69.7, 66.6, 64.5, 46.2, 43.1, 

41.1, 30.4, 16.6. 



 190

S

OO

O

S

OO

S

OO

O

a a

b

b

cc
e

dd

f g
h

j,k

l

e

ij,k

 
4-19 

Synthesis of compound 4-19 

0.10 g (0.16 mmol) of compound 4-18 and 0.06 g (0.43 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.09 g (0.43 mmol) of dicyclohexyl carbodiimide followed by 

0.05 g (0.43 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0oC for 2 h.  After completion of the reaction, the precipitated dicyclohexyl 

urea was filtered. Then, water was added and the mixture was extracted using CH2Cl2 

(3x20 mL).  The organic layer was collected and dried over anhydrous MgSO4.  The 

resulting residue was purified by column chromatography using 30% ethyl acetate in 

hexane to obtain a yellow solid as a product (008 g, 65% yield). 1H NMR (CDCl3, ppm): 

δ 6.29 (s, 2H, a), 6.16 (br, 2H, b), 4.37-4.19 (m, 12H, c-e), 3.87 (br, 2H, f), 3.10 (br, 1H, 

g), 2.96 (br, 1H, h), 2.33 – 2.28 (br, 1H, i), 1.96 (br, 2H, j, k), 1.43 (br, 2H, j, k), 1.07 (s, 

3H, l).  13C-NMR (CDCl3, ppm): δ 176.2, 143.8, 141.0, 137.9, 137.2, 135.2, 113.1, 97.6, 

66.3, 64.9, 64.2, 46.6, 43.1, 41.4, 33.9, 30.4, 16.6. 
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4-17 

Synthesis of compound 4-17 

0.16 g (0.21 mmol) of compound 4-16 and 0.06 g (0.42 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.09 g (0.43 mmol) of dicyclohexyl carbodiimide followed by 

0.05 g (0.43 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0 oC for 2 h.  After completion of the reaction, the precipitated dicyclohexyl 

urea was filtered. Then, water was added and the mixture was extracted using CH2Cl2 

(3x20 mL).  The organic layer was collected and dried over anhydrous MgSO4.  The 

resulting residue was purified by column chromatography using 30% ethyl acetate in 

hexane to obtain an orange solid as a product (0.15 g, 79 % yield).  1H NMR (DMSO-D6, 

ppm): δ 7.70-7.72 (m , 4H, a), 7.42-7.46, (m, 4H, b), 7.29 (br, 2H, c), 6.22 (br, 2H, d), 

4.48 (12H, m, e), 4.20-4.37 (4H, m, f), 3.92 (m, 2H, g), 3.11 (s, 1H, h), 2.96 (s, 1H, i), 

2.36 (s, 1H, j), 1.96 (2H, k, l), 1.29 (2H, k, l), 1.05 (s, 3H, m) 13C NMR (DMSO-D6, 

ppm): δ 176.2, 138.1, 135.5, 132.9, 128.8, 126.5, 126.1, 66.9, 64.7, 53.3, 46.8, 43.6, 41.7, 

30.7, 17.4 
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polymer of diphenyl monoEDOT 

Synthesis of polymer of diphenyl monoEDOT 

 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.10 g (0.17 mmol) of monomer 4-4 and 0.04 g (0.04 mmol) of  3rd 

generation Grubbs catalyst were put under vacuum into two separated round bottom 

flasks for 30 minutes before THF was added.  Then, the solution of monomers in THF 

was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in methanol to yield a yellow solid as a 

product (0.07 g, 67% yield). 1H NMR (CDCl3, ppm) δ 7.66 (br, 4H, c), 7.48 – 7.04 (br, 

6H, a, b), 5.49 – 4.90 (br, 2H, d), 4.13 (br, 4H, e), 3.75 (br, 2H, f), 3.22 – 2.77 (br, 2H, g, 

h), 2.77 – 2.25 (br, 1H, i), 2.01 (br, 4H, j-m), 0.94 (br, 3H, o). Mn= 16862, PDI= 1.05. 
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Synthesis of polymer of diphenyl diEDOT 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.10 g (0.17 mmol) of monomer 4-10 and 0.04 g (0.04 mmol) of  3rd 

generation Grubbs catalyst were put under vacuum into two separated round bottom 

flasks for 30 minutes before THF was added.  Then, the solution of monomers in THF 

was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in methanol to yield a yellow solid as a 

product (0.06 g, 59% yield). 1H NMR (CDCl3, ppm): δ 7.68 (br, 4H, c), 7.26 (br, 4H, b), 

7.14 (br, 2H, a), 5.44 – 4.87 (br, 2H, d), 4.24 (br, 8H, e, f), 3.90 – 3.51 (br, 2H, g), 3.33 – 

2.76 (br, 2H, h, i), 2.76 – 2.28 (br, 1H, j), 2.27 – 1.70 (br, 4H, k-m), 0.88 (br, 3H, o). 

Mn= 17679, PDI= 1.36. 
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Synthesis of polymer of diphenyl triEDOT 

 

 

 

 

 

 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.15 g (0.20 mmol) of monomer 4-12 and 0.04 g (0.04 mmol) of  3rd 

generation Grubbs catalyst were put under vacuum into two separated round bottom 

flasks for 30 minutes before THF was added.  Then, the solution of monomers in THF 

was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in methanol to yield a yellow solid as a 

product (0.09 g, 60% yield).  1H NMR (CDCl3, ppm): δ 7.84 – 7.53 (br, 4H, c), 7.26 (br, 

4H, b), 7.18 – 6.91 (br, 2H, a), 5.46 – 4.79 (br, 2H, d), 4.25 (br, 10H, e, f), 3.94 – 3.49 

(br, 4H, f, g), 3.23 – 2.73 (br, 2H, h, i), 2.73 – 2.17 (br, 1H, j), 2.13-1.71 (br, 4H, k-m), 

1.10 – 0.65 (br, 3H, o). Mn= 9975, PDI= 1.09. 
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Synthesis of polymer of triEDOT 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.10 g (0.14 mmol) of monomer 4-19 and 0.06 g (0.004 mmol) of  3rd 

generation Grubbs catalyst (1 equiv) were put under vacuum into two separated round 

bottom flasks for 30 minutes before THF was added.  Then, the solution of monomers in 

THF was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in either methanol or ether to yield a 

product as a yellow solid (0.09 g, 60% yield).  1H NMR (CDCl3, ppm): δ 6.23 (br, 2H, a), 

5.51 – 4.93 (br, 2H, b), 4.24 (br, 12H, c, d), 3.75 (br, 2H, e), 3.30 – 2.81 (m, 2H, f, g), 

2.81 – 2.32 (m, 1H, h), 2.17 (s, 4H, i-l), 0.94 (s, 3H, m). Mn= 12775, PDI= 1.09. 
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Synthesis of polymer of diphenyl tetraEDOT 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.08 g (0.10 mmol) of monomer 4-17 and 0.01 g (0.01 mmol) of  3rd 

generation Grubbs catalyst were put under vacuum into two separated round bottom 

flasks for 30 minutes before THF was added.  Then, the solution of monomers in THF 

was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in methanol to yield a product as a yellow 

solid (0.05 g, 63% yield).  Due to the insolubility of the polymer in deuterated solvents, 

NMR is not taken. Mn= 16802, PDI = 1.12. 
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Synthesis of copolymer  

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  The mixture of 1:3, 1:1 and 3:1 ratio of monomer 4-12: monomer 4-

19 and 100 equiv of 3rd generation Grubbs catalyst were put under vacuum into two 

separated round bottom flasks for 30 minutes before THF was added.  Then, the solution 

of monomers in THF was injected into a stirred solution of catalyst. The mixture was 

allowed to stir for 3 minutes at room temperature followed by irreversible termination via 

the addition of 2 mL of ethyl vinyl ether.  The solution was then concentrated under 

vacuum. The polymers were obtained by precipitation twice in either methanol or ether to 

yield a product as a yellow solid.  1H NMR (CDCl3, ppm) δ 7.81 – 7.61 (br, 4H, p), 7.26 

(br, 6H, n, o), 6.30 – 6.05 (br, 2H, a), 5.50 – 4.88 (br, 4H, b), 4.27 (br, 24H, c, d, q, r), 

3.92 – 3.54 (br, 4H, s, e), 3.19 – 2.79 (br, 4H, j, g), 2.79 – 2.28 (br, 2H, h), 2.28 – 1.67 

(br, 8H, i-l), 1.33 – 0.69 (br, 6H, m, t). 
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