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ABSTRACT
MOLECULAR DESIGNS TOWARD IMPROVING ORGANIC PHOTOVOLTAICS
FEBRUARY 2009
ARPORNRAT NANTALAKSAKUL, B.S,, CHULALONGKORN UNIVERSITY
M.S., CHULALONGKORN UNIVERSITY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Sankaran Thayumanavan

Organic photovoltaics (OPVs) that have been studied to date have poor power
conversion efficiencies. This dissertation focuses on various molecular designs that
could lead to both a fundamental understanding of photoinduced charge separation at a
molecular level and aso provide a solution to improve bulk properties of organic
materials to overcome the poor efficiencies of OPV devices.

The effect of molecular architectures on the efficiency of electron transfer, a
primary step in OPVs functioning, is evaluated in this work. We have shown that even
though dendrimer provides an interesting architecture for efficient electron transfer due to
the presence of multiple peripheries around a single core, this architecture leads to
trapping of charge at the dendritic core. Thisresultsin a decrease in the electron transfer
efficiency in solution and also limits the possibility of charge transport to the electronin a
photovoltaic device.

Non-conjugated polymers containing conductive EDOT units at side chains were
also designed and synthesized. The frontier energy levels of these polymers can be easily

tuned by changing the conjugation lengths of side chain EDOT oligomers. Moreover, by

Vi



incorporating crosslinkable units as co-side chains, the absorption bandwidth of these

polymers can be manipulated as well.
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CHAPTER 1
INTRODUCTION
1.1 Dendrimers

In natural photosynthetic systems, a large array of chloroplojécules surrounds a
single reaction center. The intricate chlorophyll assembly astsan efficient light
harvesting antenna that captures photons from the sun and trarsferengy to the
reaction center, where conversion of solar energy into chemical pbtenérgy via the
formation of a charge-separated state takes place. Intgigsthe energy of any photon
absorbed anywhere in this relatively large assembly of chromaplsopassed rapidly to
the reaction center with energy transfer quantum yield that ap@m®agnity over
nanometer distancées.

In the past decade, much attention has been devoted to the design hedisyit
supramolecular systems that can function as artificial lightesting systems for the
photochemical conversion of solar enefd{ Five features of these complexes play key
roles in the efficient collection of incident light for conversioroiohemical energy: (1)
large absorption cross-section of the complex due to a large numbkroofiophores
with high extinction coefficients; (2) relative spatial origimia of these chromophores;
(3) energy hopping of the exciton along the chromophores at thef time complex; (4)
efficient and uni-directional energy transfer (ET) of the &xcifrom a chromophore at
the rim to the chromophore in the center of the complex; (5) the ajemenf efficient
photoinduced charge separation from excited state of peripheranabihores and

neutral state of the core.



Dendrimers are perfectly branched synthetic macromolecul@aghaumerous
chain ends all emanating from core (Figure 1.1). The number opheeai
functionalities in dendrimers can be controlled systematicalith vgenerations.
Dendrimers are interesting scaffolds for light harvesting agpdies. Light harvesting is
the trapping of energy where tperipheral chromophores absorb light and funnel it to a
central point, where it can be utilized as photon energy or convertedchemical
energy. Dendrimers possess the architecture to facilitath & conversion. These
properties include its tree-like structure that could potentiaityaa an energy gradient
for the funneling process. The periphery of dendrimers can beidnaktted with
multiple light absorbing chromophore units that gives a high probalmlicapture light.
The relatively short through-space distance from the peripbetiyet core, due to back

folding, allows for high efficiency energy transfer.
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Figure 1.1. A dendritic architecture.



1.1.1 Dendrimersfor energy transfer
1.1.1.1 Dendron as a scaffold

Non-conjugated dendrons such as the widely used poly(aryl etherodéction
as just a scaffold linking together light-harvesting chromophatethe rim and the
energy acceptor chromophore at the core. Owing to the lack of tlotroele
communication between donor and acceptor chromophores through dendritic backbone,
these dendrimers provide the ability to independently tune theyyemevel of each
chromophore. Moreover, the flexibility of the backbone also helpsaserthe solubility
and processability of dendrimers.

Fréchet and coworkers synthesized non-conjugated poly (aryl etbadrimers
containing amino-functionalized Coumarin-2 as the donor and acid-furcesha
Coumarin-343 as the acceptor (Figure 1.2(8)The excitation of Coumarin-2 at 343 nm
resulted in the fluorescence mainly at ~480 nm, which representetidhacteristics of
Coumarin-343 acceptor emission. This result implied an efficiearggriransfer within
these molecules. Steady-state and time-resolved studies tetleatiehe energy transfer
efficiency in these dendrimers approached unity even at higmeraiens. Also, an
interesting study on the relative rate between the enesmsfer and nonradiative
relaxation was carried out in this work. The model compounds of thesdrimers
containing chromophores at the periphery, but not at the core, werdesligmed and
used for this study (Figure 1.2fb) The fluorescence spectra of G1 and G2 model
dendrons showed the quenching of the Coumarin-2 emission in methanol upon the
excitation of donors resulting from the nonradiative relaxation duthé@ohydrogen

bonding of the solvent with the tertiary amine lone pair. In contcastesponding



dendrimers with the acceptor at the core showed strong emissatusieely from
Coumarin-343 core. This study revealed that the fast energyeram@sf overcome the

rate of the nonradiative pathways.
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Figure 1.2. G2 dendrimers containing Coumarin-2 as an energy donor and Coumarin-343
as an energy acceptor (left) and dendrimers without Coumarin-343 chromophoje (right
for relative rate study.

1.1.1.2 Dendrimer backbone asthe chromophore

Dendrimer backbone themselves can also be concurrently used asrthedamor.
Conjugated dendrimers such as phenylacetylene chains were nugedly for this
purpose. By controlling over the conjugation length of dendritic dires in these
dendrimers, rapid and directional energy transport could be obtainetihgesukefficient
energy transfer.

Efficient, unidirectional energy transfer from a dendritic feavork to a single core
chromophore was reported by Xu and Moore (Figure 't @pnjugated phenylacetylene
dendrimers functionalized with a low band gap perylene chromophohe abte were
synthesized. Here, the phenylacetylene monomer units act anehgy donors, and

perylene acts as the central energy acceptor. Excitation of the danoizickbone at 312



nm resulted in emission emanating solely from the perylene(4h@-600 nm), with

nearly complete quenching of the dendrimer emission.

Figure 1.3. Chemical structure of perylene-functionalized phenylacetylene dendrimer
Another conjugated dendrimer containing polyphenylene backbone andlenpery

diimide core was synthesized by Mullen and co-workers. (Figuré*1m3his system,
polyphenylene dendrimer scaffold exhibits strong fluorescence, quitmtum vyields
ranging from 0.2 to 0.5 depending on the dendrimer generation. The authorshatted t
high extinction coefficients of polyphenylene dendritic arms attshavavelength and
their strong fluorescence intensity, together with the efficiatramolecular energy
transfer, result in a strong emission from the core by indljreekciting the

polyphenylene dendritic arms.




1.1.1.3 Energy migration

In dendrimers fully decorated with peripheral chromophores, after ontheof
peripheral chromophores were excited by incident light, it vwasvs by several groups
that the migration of the excitation energy could be initiated befoergy transfer to the
core and that this energy migration can enhance the efficaneyergy transfer. Jiang
and Aida demonstrated porphyrin dendrimers (B5n = 1-4) having different number
(n) of five-layered aryl ether dendron subunits (L5) (Figure .5The excitation of
dendron subunits in (L5 at 280 nm in CkCl, resulted in strong emission at 656 and
718 nm which is characteristic of the porphyrin core. In contrashisoresult, the
excitation of partially substituted dendrimers resulted im@gtemission in the dendron
region with only a weak emission from the porphyrin core. The erigggfer quantum
yield dropped dramatically with the decreasing number of gubsts on the porphyrin
core. (N = 4¢pger= 80.3%; N = 3pger= 31.6%; N = 2peer= 19.7%; n = 1peer= 10.1%)
For this observation, the authors suggested that before energy traapfeens, the
excitation energy first migrates among neighboring dialkyerglyl units until it can
find the chromophore that has a suitable orientation for energgféra Then, the
excitation energy is efficiently transferred to the core. aAssult, this energy migration
process would be able to enhance the energy transfer efficiertoy evidence for the
presence of this energy shutting was confirmed by fluoresceanisotropic
measurements. The excitation of (B)at 280 nm with polarized light resulted in the
depolarized emission whereas emission of partially substitutBfiR(L(n = 1-3) still
exhibited polarization character. We have recently showrstltdt energy shuttling is an

important parameter in obtaining high ET efficiency in dendrirfrers.
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Figure 1.5. Structure of porphyrin dendrimers containing different numbers of dendron
subunits.

1.1.1.4 Energy Cascade

A versatile synthetic scheme allowed for the synthesis of deedsi having a
directional energy gradient. Moore and coworkers have reported demnsirbased on
phenylacetylene chains that are specially arranged to foremargy gradient (Figure
1.6). Interestingly, it was found that this energy gradient draaitiincreases (by two
orders of magnitude) the energy transfer rate constant withitetidrimer'® Hence, the
directional energy transfer from periphery to core must belgraailitated by the built-
in energy gradient. Indeed, theoretical work by Klafter and cowodférsded the same
conclusion, suggesting that ‘random walk’ energy transfer from peyigbecore, as in

the former structures, is much less productive than the directazbgs in funnel



structures. '® However, the mechanism of energy transfer in these systenmifficst
to ascertain. Owing to the cross-conjugated dendrimer backbone, oobidap
contributions to the energy transfer cannot be ruled®olt.addition, spectral overlap
between donor emission and acceptor absorption is not very large gaghisand would
preclude the Forster mechanism alone from producing the high enexgsfer

efficiencies that were observéd.
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Figure 1.6. Chemical structure of perylene-functionalized phenylacetylenériheer
with an energy gradient.

Dendrimers containing multichromophoric units that can absorb lighd imide
visible range and efficiently transfer it to the core would balider light harvesting
systems. Fréchet and co-workers designed and synthesized pblgtiiar) dendrimer
containing coumarin-2 and fluorol-7GA at the third and second branch pointtreslye
as energy donors and a perylenebis(dicarboximide) derivative abtbeas the energy
acceptor (Figure 1.7}. The cascade energy transfer in this dendrimer was designed in
such a way that energy would be harvested by coumarin-2 units antermeshgo
fluorol-7GA chromophores and then to perylene core. The direct etrarggfer from

coumarin-2 to the perylene core was expected to be less lidvanaing to the smaller



spectral overlap between the emission spectra of coumarin-arabsorption spectra
of perylene core and the longer interchromophore distance betweertwlzedyes. The
authors showed spectroscopic evidence for a cascade energy tiransfeoumarin-2 to
fluorol-7GA and finally to perylene core from the steady-staweasurements. The
energy transfer efficiency from coumarin-2 to fluorol-7GA was 9%98d from fluorol-
7GA to perylene core was 96%. Therefore, this would be a moozatale pathway

compared to a direct transfer from coumarin-2 to perylene carevéisacalculated to be
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Figure 1.7. The structure of multichromophoric dendrimers containing coumarin-2 and
fluorol-7GA as energy donors and perylenebis(dicarboximide) as the energyoacce

at the most 79%.

96% efficient

(0]

While all these energy cascade schemes increase thereffiof energy transfer to
the core, they do so at an energetic cost. The exciton losgy ehevery step down the
cascade, so the energy available when it reaches théesdess than what it had when it
started at the periphery. Thus while the efficiency of an&iwn reaching the core may

be 100%, that excitation may only have 75% of the original photon enérgy worth



noting that in nature, the light-harvesting complex consistsoehisrgetic chlorophylls,
and that the cascade motif is not the dominant one (although thewmmis energy
gradient which directs the excitation to the reaction cenf€nus it is not immediately
clear that the cascade or energy funnel types of strucineesecessarily the best for
solar light harvesting. High ET efficiency to the core doesdivettly translate to high
overall energy efficiency of the structure.

1.1.2 Dendrimersfor electron transfer

After energy transfer, electron transfer (ET) is the next &ep in photosynthetic
systems and it involves a pair of electron-donor and acceptor gnéitid its efficiency
reduces exponentially with donor-acceptor distance. However, whilehdy lafficient
FRET results in fluorescence emitted mainly from the accegtaymophore, a highly
efficient ET usually leads to a strong quenching of the fluorescefdhe emitting
chromophore. Recently, Millen and coworkers have reported
perylenetetracarboxidimides (PDI) with peripheral triphenylam({fBA) dendrimers
(Figure 1.8Y2 Steady state and time-resolved data revealed that this denisinapable
of intramolecular electron transfer from periphery to core asdateurs more efficiently
in polar solvents.

Guldi and co-workers have reported fullerene based dendrimers fc themnatural
photosynthetic assemblies (Figure £9)These dendrimers function as rigid molecular
scaffolds where dendritic spacers are end capped with dibuty&nilor
dodecyloxynaphthalene as donors, while the electron accepting fullerplaeed at the

focal point of the dendron. Photophysical investigations showed that upon
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Figure 1.8. Polyphenylene dendrimer with peripheral triarylamines and aratent
perylenetetracarboxidiimide chromophore.

photoexcitation there was an efficient and rapid transfer ofetimgicited state energy
that controls the reactivity of the initially excited anterpation. Spectroscopic and
kinetic evidence suggests that photoinduced electron transfer frophgmrito core
resulted in G~ -dendron’ charge transfer state with quantum yields as high as 0.76 with

lifetimes in the order of hundreds of nanoseconds (220-725 ns). They also fauthistha

Figure 1.9. First (1a, 1b) and second (2a, 2b) generations of ngmdhdron dyads.
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charge transfer state can be modulated by varying the enemyamd that higher
generations stabilize this charge transfer state efficiently.

The example of non-conjugated dendrimers that are capable of photoinduced
electron transfer was demonstrated by Aida and co-wofkersElectron donor
metalloporphyrin having benzyl ether dendritic shell was syntheegzgure 1.10). In
this work, methyl viologen (M¥) noncovalently-attached on the exterior surface of
dendritic shell was used as an electron acceptor. The titratid@nofimer with methyl
viologen showed no change on absorption spectra of metalloporphyrin negitymg
that dendritic shells protect metalloporphyrin core by stdmielding and that methyl
viologen has no interaction with the metalloporphyrin core. However, u@ahation of
this dendrimer in the presence of Kiyfluorescence from the core was quenched and
fluorescence lifetime was shortened. This phenomenon implied aihg tange
photoinduced electron transfer from metalloporphyrin core to meibiggen through
the dendrimer framework. Similar dendrimer-viologen binding, wleereonjugated
polymer is used as the chromophore, was also used for a demonsifatider hydrogen

production.
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Figure 1.10. Benzyl ether dendrimers having metalloporphyrin core.

1.1.3 Bifunctional dendrimers

In order to mimic the complete photosynthetic event, recently, our ghawip
designed dendrimers that are capable of undergoing both energy tramgfetectron
transfer properties. These dendrimers contained benzthiadiazolatides as the
energy and electron acceptor at the core and diarylaminopyreseaartite energy and
electron donors at the periphéAThe emission of diarylaminopyrene units overlapped
with the absorption of benzthiadiazole moiety implying that Foestergy transfer can
happen in these dendrimers. Moreover, the oxidation potential of kediattole units
obtained from cyclic voltammogram was 595 mV, which is above that of
diarylaminopyrene units which exhibited at about 444 mV (with resgect
ferrocene/ferrocenium couple). This electrochemical data segmtt it is possible for
the excited state of the chromophore at the core to be reduceperpheral

chromophores.
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Figure 1.11. Light-harvesting dendrimers containing benzthiadiazole derivatives at the
core and diarylaminopyrene at the periphery.

The excitation of peripheral chromophores at 395 nm resulted irasheige of the
fluorescence from the acceptor at 605 nm implying rapid Féestngy transfer in these
molecules. Also, the energy transfer efficiency in these cutde was high even at high
generationst{ger ~ 0.89-0.97). This efficiency was found to be solvent-independent,
which is common for energy transfer processes. However, we foundthbat
fluorescence lifetimes of the core altered with the changlandielectric constant of
solvents. The different degree of the fluorescence quenching froncotiee upon
changing the solvent polarity implied the presence of a chamgedraevent. In fact, this

fluorescence quenching was found to be faster in high polar solvEmtswould be due

14



to the fact that more polar solvent can better stabilize theethantermediate species
and thereby increase the charge transfer rate. In additioasitound that the long-lived
(microseconds) transient absorption spectrum closely resembleaf thatradical cation
spectra obtained from both chemical and electrochemical oxidatidheoperipheral
diarylaminopyrene units. This provided additional evidence to conhierptesence of
charge separated state in these dendrimers. The chargdetr efficiency in these
dendrimers was calculated to be as high as 70% in the polar soMé&ntand the overall
efficiency of the photon to charge-separated state processcaleslated to be
approximately 50%.
1.2 Organic Photovoltaic Devices
1.2.1 Basic principle

A typical organic photovoltaic (OPV) device consists of an actayger
sandwiched between two dissimilar metal/ semiconductor electrddes relatively
higher work function electrode serves as the anode while the lowds farnction
electrode serves as the cathode. Indium-tin-oxide (ITO) coated gdashe most
commonly used transparent anode. The cathode can be a metal suchAas Al, Ca,

and Mg.
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The active layer consists of a chromophore, a hole transportinyy gRd” an
electron transporting (ET) material. A single material cantfanas a chromophore and
hole transporter or electron transporter, though most commonly a chromoglsor
functions as a hole transporter. Commonly used HT materials a@d basconjugated
polymers as shown in Figure 1?22vhile ET materials are often based on fullerene

derivatives.

Figure 1.12. Structures of (a) RR-P3HT, (b) MDMO-PPV, (c) MEH-PPV, @50 and
(e) PCBM.

The working of an OPV device in terms of relative energy leptlsonstituent
materials is depicted in Figure 1.13. When the incident light hits an organic chromophor

excitation of the molecules can occur if the light is of equahigher energy than the

lllumination of Exciton generated Exciton splitting
chromophore in chromophore generates free charges

Figure 1.13. Working of an OPV device in terms of energy levels.
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band gap of the chromophore. The highest flux of photons occurs around 7aBnm
eV) in the solar spectrufi. Therefore the most preferred chromophore for OPVs is that
which has a band gap of 1.8 eV. Once the exciton is generated, agbat#f@rence
greater than its binding energy (approximately 0.3 eV) is redjtirgplit it into electrons
and holes. This potential difference can be created at an irtevidt a material with a
relatively larger electron affinity. Such an interface howgrrist be encountered within
the diffusion length in order to obtain high exciton splitting efficienidpon separation
of charges, these must be carried to electrodes whichccaptahem to be subsequently
run through an external circuit. Thus, the challenge in designganier semiconductor
based photovoltaics is to generate large number of excitons, harvest aynodjiwdise, if
not all, and ensure efficient charge transport to electrodes.h@kideen the focus of
research for the past few decades.
1.2.2. Device perfor mance

Each of the stages mentioned above, from exciton generation t@ dudligrtion,
impacts the overall efficiency,, of the device which is determined using measurable
parameters, viz. the open circuit voltagedyVshort circuit current £), fill factor (FF),
incident radiation intensity (f}, voltage at peak power g and current at peak power

(Iop). The mathematical expression relating these parameters is as follows

n= FF*Voc * Isc

FF = Vpp * Ipp
Voc * Isc (1.2)
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organic layer was concentrated under reduced pressure to afford crude mixtlrevadi
taken for further step without any purification.

To the above crude mixture in THF, 1.31 g (15.20 mmol) of LiBr wascaddd
the contents were allowed to reflux overnight. After completion ef raction, the
mixture was partitioned between water and dichloromethane. The aqugeusvks
extracted twice with dichloromethane, dried ovepd@, and evaporated under reduced
pressure. The crude product was purified by column chromatography5@Sitidgpexane
in dichloromethane as the eluent to afford the product. (3.69 g, quiaatiyéld) *H
NMR (CDCl, ppm):5 8.20-7.76 (m, 18H, a), 7.23-6.68 (m, 16H, b), 6.33 (s, 2H, c), 6.23
(s, 1H, d), 4.75 (s, 4H, €), 4.16 (s, 2H, f), 2.51 (br, 4H, g), 1.54 (br, 48,24 (br, 28H,
i), 0.86 (M, 6H, ). **C NMR, (CDCE, ppm):8 160.0, 149.5, 146.2, 141.2, 139.6, 138.0,
137.5, 131.5, 131.3, 129.8, 129.5, 128.4, 128.2, 127.9, 127.5, 127.3, 126.6, 126.5, 126.3,
125.4, 125.3, 125.1, 123.7, 123.3, 120.7, 120.3, 120.2, 108.2, 102.2, 70.2, 35.7, 33.8,
32.2,21.8, 29.9, 23.0, 14.5.

Synthesis of compound 3-21
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A mixture of 0.11 g (0.73 mmol) of 3,5-dihydroxybenzyl alcohol, 3.70 g (1.52
mmol) of compound-6, 0.31 g (2.14 mmol) of ¥CO; and 0.04 g (0.07 mmol) of 18-
crown-6 was heated at reflux and stirred vigorously under argoh2fér. The reaction
mixture was allowed to cool to room temperature and solvent was ewegoo dryness.

The residue was partitioned between water and dichloromethane. Thédayar was
separated and aqueous layer was extracted with dichlorometheneombined organic

layer was dried over N&O, and evaporated to dryness. The crude product was purified
by column chromatography using 50% dichloromethane in hexane ds¢héte afford

the product. (1.47 g, 78% yieldH NMR (CDCk, ppm):$ 8.15-7.72 (m, 36H, a), 7.19-

7.08 (m, 4H, b), 7.05-6.85 (m, 28H, c), 6.48 (s, 2H, d), 6.38 (s, 5H, €), 6.25 (3, 2H, f
4.74 (s, 8H, g), 4.69 (s, 4H, h), 4.53 (s, 2H, i), 2.49 (br, 8H, j), 1.54 (br, 8H, k), 1.22 (br,
56H, 1), 0.85 (m, 12H, m)**C NMR, (CDCk, ppm):5 160.3, 149.5, 146.3, 143.6, 141.2,
139.2, 138.2, 137.4, 131.5, 131.4, 129.8, 129.7, 129.5, 128.4, 128.2, 127.9, 127.5, 127.3,
126.6,126.5, 126.3, 125.4, 125.3, 125.1, 123.7, 123.2, 120.7, 120.3, 106.6, 105.9, 101.6,
70.2, 65.6, 35.7, 32.2, 31.8, 29.9, 23.0, 14.5.

Synthesis of compound 3-7




1.00 g (0.41 mmol) of compound21 and catalytic amount of DMAP were
dissolved in THF and the solution was cooled fi€Qunder argon atmosphere. 0.14 mL
(2.02 mmol) of triethylamine and 0.06 mL (0.81 mmol) of mesyl chlorideevadded
dropwise, and allowed to stir at room temperature for 3 h. Upon cbamplef the
reaction, water was added and the compound was extracted with dichltaomeThe
organic layer was concentrated under reduced pressure to afford crude mnttlreves
taken for further step without any purification.

To the above crude mixture in THF, 0.17 g (2.03 mmol) of LiBr was chdae
the contents were allowed to reflux overnight. After completion ofrdaetion, the
reaction mixture was partitioned between water and dichloromethbaeadueous layer
was extracted twice with dichloromethane, dried ovesSia and evaporated under
reduced pressure. The crude product was purified by column chromatpgsapdy 50%
dichloromethane in hexane to afford the product (1.03 g, quantitatil® yi¢ NMR
(CDCl3, ppm):6 8.15-7.71 (m, 36H, a), 7.31-7.07 (m, 4H, b), 7.04-6.85 (m, 28H, c), 6.49
(s, 2H, d), 6.35 (s, 5H, e), 6.25 (s, 2H, f), 4.74 (s, 8H, g), 4.64 (s, 4H, h), 4.33 (5, 2H, i
2.49 (br, 8H, j), 1.54 (br, 8H, k), 1.22 (br, 56H, 1), 0.85 (m, 12H, . NMR, (CDCE,
ppm): 6 159.8, 149.11, 145.9, 140.8, 139.5, 138.5, 137.7, 137.0, 131.1, 130.9, 129.4,
129.3, 128.0, 127.7, 127.5, 127.1, 126.9, 126.2, 126.0, 125.9, 125.0, 124.9, 124.7, 123.3,

122.8, 120.3, 120.0, 119.8, 107.9, 106.2, 101.3, 69.7, 35.2, 33.5, 31.8, 29.5, 22.6, 14.1.
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Synthesis of compound 3-22

'l'

OQ = pyrene proton 2

aromatic proton : b

C1oHa1

@ C10Hz1
%% @

v
CioH21 O
3-22

A mixture of 0.03 g (0.27 mmol) of 3,5-dihydroxybenzyl alcohol, 1.43 g (0.56
mmol) of compound-7, 0.12 g (0.86 mmol) of ¥CO; and 0.07 g (0.03 mmol) of 18-
crown-6 was heated at reflux and stirred vigorously under argoh2fér. The reaction
mixture was allowed to cool to room temperature and solvent was ewegoo dryness.
The residue was partitioned between water and dichloromethane. Thédayar was
separated and aqueous layer was extracted with dichlorometheneombined organic
layer was dried over N&O, and evaporated to dryness. The crude product was purified
by column chromatography using 50% dichloromethane in hexane to dffopdduct.
(0.63 g, 53% yieldfH NMR (CDCk, ppm):5 8.22-7.62 (m, 72H, a), 7.20-6.16 (m, 85H,

b), 4.84-4.57 (m, 28H, c), 4.47 (s, 2H, d), 2.46 (br, 16H, ), 1.55 (br, 16H, j), 1.20 (br,
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56H, g), 0.84 (br, 24H, h)**C NMR (CDCk, ppm):5 160.4, 149.3, 145.9, 140.4, 138.2,
136.3, 130.9, 128.7, 127.5, 126.0, 124.8, 123.3, 120.3, 106.5, 106.1, 70.2, 35.0, 31.6,
29.3,22.1, 14.0.

Synthesis of compound 3-8

*@ . 030
. O |:> pyrene proton : a
can‘@ @\/ Q p\ /@\

aromatic proton : b
CioHas

b

b b

C10H21
3-8
0.50 g (0.09 mmol) of compoun822 and catalytic amount of DMAP were

dissolved in THF and the solution was cooled fi€Qunder argon atmosphere. 0.04 mL
(0.25 mmol) of triethylamine and 0.02 mL (0.19 mmol) of mesyl chlorideevadded
dropwise, and allowed to stir at room temperature for 3 h. Upon cbamplef the
reaction, water was added and the compound was extracted with dichltmomeThe
organic layer was concentrated under reduced pressure to afford crude mixthrevesi
taken for further step without any purification.

To the above crude mixture in THF, 0.04 g (0.50 mmol) of LiBr was chdae
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the contents were allowed to reflux overnight. After completion ofrdaetion, the
reaction mixture was partitioned between water and dichloromethhaeadueous layer

was extracted twice with dichloromethane, dried ovesSia and evaporated under
reduced pressure. The crude product was purified by column chromatpgrsipiy
dichloromethane to afford the product (0.21 g, 40% yief#J. NMR (CDCk, ppm):§
8.22-7.65 (m, 72H, a), 7.15-6.79 (m, 63H, b), 6.51 (s, 8H, b), 6.32 (s, 10H, b), 6.21 (s,
4H, b), 4.81 (s, 4H, c), 4.53-4.74 (s, 24H, c), 4.25 (s, 2H, d), 2.46 (br, 16H, €), 1.54 (br,
16H, f), 1.20 (br, 56H, g), 0.84 (br, 24H, h)>C NMR, (CDC}, ppm): & 159.6, 149.0,

145.9, 140.7, 139.0, 137.9, 136.5, 131.0, 129.3, 128.2, 127.9, 126.2, 124.8, 123.4, 122.7,
120.3, 119.6, 106.2, 69.7, 34.9, 31.8, 29.7, 22.5, 14.2.

Synthesis of compound 3-1

f 9

HO 4 ¢ b aa b ¢ 4 o
-5,
e d Ni \N d e
»
31
A mixture of 0.20 g (0.41 mmol) of dihydroxy benzthiadiazole u2i8), 0.03 g

(0.38 mmol) of propargyl bromide, 0.15 g (1.13 mmol) e€K; and 0.05 g (0.19 mmol)
of 18-crown-6 was heated at reflux and stirred vigorously undgmaovernight. The
reaction mixture was allowed to cool to room temperature and salzenévaporated to
dryness. The residue was partitioned between water and dichloromeffize organic
layer was separated and aqueous layer was extracted whlordioethane. The
combined organic layer was dried over,8@, and evaporated to dryness. The crude
product was purified by column chromatography using 10% ethyl aeceatat

dichloromethane as the eluent to afford the product. (0.09g, 43% yigldYMR

(DMSO-D6, ppm):3 & 8.14 (br, 2H, a), 7.90 (br, 2H, b), 7.59-7.14 (m, 8H, c, d), 6.96-
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6.79 (br, 2H, e), 4.80 (s, 2H, f), 2.59 (s, 1H,'dE NMR, (CDCk, ppm):s 157.4, 151.3,
1455, 144.7, 137.9, 134.1, 129.2, 125.0, 118.4, 116.1, 114.6, 113.5, 111.9, 75.2, 55.4.

Synthesis of compound 3-9

pyrene proton : a

Cy
Lo
]k
/\ /\
5 S
C10”21
39

A mixture of 0.04 g (0.08 mmol) @-1, 0.10 g (0.08 mmol) of compourgd6,
0.03 g (2.20 mmol) of PCO; and 2.00 mg (0.008 mmol) of 18-crown-6 was heated at
reflux and stirred vigorously under argon for 12 h. The reactiotungxvas allowed to
cool to room temperature and solvent was evaporated to dryness. Sithee rvas
partitioned between water and dichloromethane. The organic layesepasated and
agueous layer was extracted with dichloromethane. The combined ofggmicwas
dried over NaSQ, and evaporated to dryness. The crude product was purified by column
chromatography using 30% ethyl acetate in hexane to affordréitict. (0.05 g, 48%
yield) 'H NMR (CDCk, ppm):5 8.20-7.74 (m, 22H, a, b, c), 7.46-6.82 (br, 26H, d, e, f,
g), 6.47 (s, 2H, h), 6.30 (s, 1H, i), 4.71-4.92 (m, 8H, j), 2.57 (s, 1H, k),(Br52H, I),
1.56 (br, 4H, m), 1.26 (br, 28H, n), 0.87Jt 6.8, 6H, 0).**C NMR (CDC}k, ppm):8&:

159.8, 159.0, 158.0, 152.4, 149.2, 145.9, 145.3, 145.1, 140.8, 138.9, 138.6, 137.8, 137.1,
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135.5, 135.3, 131.1, 129.9, 129.4, 129.1, 128.5, 128.1, 127.8, 127.6, 127.2, 126.9, 126.3,
125.9, 125.7, 125.3, 124.7, 124.4, 123.3, 122.8, 120.5, 119.9, 119.2, 118.6, 113.9,
112.5,106.2, 101.5, 69.7, 55.6, 35.2, 31.8, 29.4, 22.1, 13.8.

Synthesis of compound 3-10

pyrene proton : a

aromatic proton : f

d N :
g ) CioH21
o) o ]
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I h h
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h e

OO QcmHu
3-10
A mixture of 0.02 g (0.04 mmol) &8-1, 0.10 g (0.04 mmol) of compourgd7,

0.02 g (0.11 mmol) of BCO; and 1.00 mg (0.004 mmol) of 18-crown-6 was heated at
reflux and stirred vigorously under argon for 12 h. The reactiotungxvas allowed to

cool to room temperature and solvent was evaporated to dryness. Sithee revas
partitioned between water and dichloromethane. The organic layesepasated and
aqueous layer was extracted with dichloromethane. The combined otggeicwas
dried over NaSO, and evaporated to dryness. The crude product was purified by column
chromatography using 30% ethyl acetate in hexane to afforgrdwict. (0.17g, 75%
yield). *H NMR (CDCk, ppm):$ 8.31-7.52 (m, 40H, a, b, c), 7.47-7.27 (m, 10H, d),

7.21-7.06 (m, 4H, e), 7.08-6.79 (m, 28H, f), 6.62 (s, 2H, g), 6.37 (s, 5H, h), 6.25 (s, 2H,
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i), 4.63-5.07 (s, 16H, j), 2.57 (br, 1H, k), 2.47 (br, 8H, 1), 1.56 (br, 8H, m), 1.11-1.39 (br,
28H, n), 0.84 (m, 12H, of>C NMR (CDCE, ppm):& 160.1, 159.7, 159.1, 157.9, 152.4,
149.1, 145.9, 145.3, 145.0, 140.9, 139.2, 138.8, 137.9, 137.0, 135.6, 131.2, 131.0, 129.9,
129.5, 129.3, 129.1, 128.6, 128.1, 127.9, 127.5, 127.3, 127.1, 126.3, 126.0, 125.7, 125.3,
125.1, 124.8, 124.3, 123.4, 122.9, 120.4, 120.1, 119.7, 119.2, 118.5, 114.1 112.5, 106.2,
101.2, 70.1, 55.9, 35.2, 31.4, 29.4, 22.5, 13.8

Synthesis of compound 3-11

O CioHat
Q N/Q/Cm“u :\N ! ! > pyrene proton : a

BLH &
5
3-11

A mixture of 0.01 g (0.03 mmol) &1, 0.15 g (0.03 mmol) of compourgis,
0.01 g (0.08 mmol) of BCO; and 3.00 mg (0.01 mmol) of 18-crown-6 was heated at
reflux and stirred vigorously under argon for 12 h. The reactionungxwas allowed to
cool to room temperature and solvent was evaporated to dryness. Sithee rvas

partitioned between water and dichloromethane. The organic layesegarated and
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aqueous layer was extracted with dichloromethane. The combined otggeicwas
dried over NaSO, and evaporated to dryness. The crude product was purified by column
chromatography using 50% dichloromethane in hexane to afford the pr¢d@8 g,

19% vyield) *H NMR (CDCk, ppm):& 8.11-7.67 (m, 76H, a, b, c), 7.14-6.80 (m, 72H, d,

e, f), 6.63-6.51 (br, 8H, g, h), 6.30-6.19 (m, 15H, i), 4.98-4.81 (br, 8H, k), 4.71-4.53 (m,
24H, j), 2.54 (s, 1H, 1), 2.44 (br, 16H, m), 1.55 (br, 16H, n), 1.20 (br, 56H, 0), 0.83 (br,
24H, p).**C NMR, (CDCE, ppm): & 160.0, 149.3, 145.9, 141.0, 137.9, 136.9, 131.4,
129.3, 128.2, 127.2, 125.8, 125.1, 122.7, 119.6, 35.2, 31.4, 29.1, 22.5, 13.8.

Synthesis of compound 3-3

Naphthalene dianhydride (15.0 g, 0.55 mol) was taken into a three-nec$led fla
with freshly distilled DMF. The slurry was heated to about @@nder N atmosphere.
To this, decylamine (11.1 mL, 0.55 mol) was added dropwise for about 10es iz
the reaction mixture was refluxed overnight. After the completesumption of
naphthalene dianhydride, 3-amino-1-propanol (4.20 mL, 0.55 mol) was added and the
mixture was left at reflux for overnight. After completion bétreaction, the mixture
was cooled down and DMF was evaporated under low pressure. Tideeregs
partitioned between dichloromethane and water and dried over Mg3$®@e organic
layer was collected and concentrated under low pressure. Thepcoddet was purified
by column chromatography using 30% dichlomethane in hexane to #@f@rgdroduct
(13.25 g, 51% vyield)*H NMR (CDCk, ppm):& 8.72 (s, 4H, a), 4.45( br, 2H, b), 4.20 (br,

2H, ¢), 3.68 (br, 2H, d), 1.98 (br, 2H, €), 1.75(2H, f), 1.30 (br, 14H, g), 0.98 (bh)3H,
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13C-NMR (CDCk, ppm): & 163.5, 131.2, 120.6, 59.2, 40.4, 36.4, 31.8, 29.5, 29.3, 28.1,
27.1,22.7,14.1,

Synthesis of compound 3-4

a a

3-4
Compound3-3 (1.32 g, 2.84 mmol) and a catalytic amount of DMAP were placed

into a round bottom flask and THF was added as a solvent. The soluti@oeked to 0
°C and triethylamine (0.79 mL, 5.67 mmol) was added followed by mathacryloyidghlor
(0.55 mL, 5.67 mmol). The mixture was left at room temperature overmidter the
completion of the reaction, the mixture was extracted using \@attidichloromethane.
Organic layer was collected and evaporated under reduced prefharcrude product
was purified by column chromatography using dichloromethane twdaffale yellow
solid as a product (0.79g, 49% yieldHd NMR (CDCk, ppm):5 8.78 (s, 4H, a), 6.12 (m,
1H, b), 5.54 (m, 1H, ¢), 4.30 (m, 6H, d, e, f), 2.20 (m, 2H, g), 1.76 (m, 2H, h), 1.45 (s,
3H, i), 1.28 (m, 14H, j), 0.89 (s, 3H, K’C NMR (CDCk, ppm):5 167.2, 163.1, 136.3,
131. 3, 131.1, 126.8, 126.3, 125.4, 63.7, 41.0, 38.2, 31.9, 29.5, 29.1, 28.0, 27.4, 26.9,
22.5,18.3, 14.1.
Synthesis of compound 3-23
N3\C/b\o?-|
3-23

To a round bottom flask, 0.25 g (3.08 mmol) chloroethanol and 0.30 g (4.61

mmol) sodium azide were taken and 5 mL DMSO was added as a soMantmixture

was heated at 10t for overnight. After completion of the reaction, water waseddd
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and the mixture was extracted with dichloromethane (3x25 mL). Tdenmr layer was
combined and the solvent was evaporated. The product was obtairrexhitwainy
purifificaiton. *H NMR (CDCk, ppm):8 5.24 (s, 1H, a), 3.68 (m, 2H, b), 3.31 (m, 2H, c)
C-NMR (CDCE, ppm):5 60.7, 53.3.

Synthesis of compound 3-2

C

'\‘3\/E
a oﬁfr
3-2

0.25 g (0.99 mmol) of compourgd23 and 0.96 g (1.99 mmol) 2-bromoisobutylic
acid were dissolved in 30 mL dichloromethane. The reaction mixtuseaaed down in
ice-water bath and a solution of 1.18 g (1.99 mmol) dicylclohexyl carb@b#iin 10 mL
dichloromethane was slowly added while stirring. A solution of 0.{7.49 mmol) 4-
dimethylaminopyridine in 5 mL dichloromethane was subsequenly addednikhgre
was stirred at 0C for 1 h and then at room temperature for 24 h. The precipitate
dicyclohexyl urea was filltered on cotton twice and washed withloiomethane. The
solution was extraced with a solution of NaH{CB%) followed by dichloromethane
(3x25 mL) and dried over MgSO The volatiles were removed by reduced pressure and
the crude product was purified by column chromatography using 10%aastgte in
hexane. The product was obtained as a colorless liquid with a quemtiteid. ‘H

NMR (CDCk, ppm): & 4.34 (br, 2H, a), 3.53 (br, 2H, b), 1.96 (s, 6H,% NMR

(CDCls, ppm):8 171.4, 64.6, 55.2, 49.6, 30.6.
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Synthesis of compound 3-5

3-5
4.00 mg (0.03 mmol) of Cu(l)Br was taken in a 5 mL round bottom flask

equipped with a septum and gas inlet/outlet. The flask was degagbkedrgon for 5

min. Then, 12.0 pL (0.06 mmol) oN,N,N’,N’,N”-pentamethyl diethylenetriamine
(PMDETA) was added and stirred for 5 more minutes. To thisiogaatixture, the
solution of the monome3-4 (800 mg, 1.50 mmol) in 400 puL degassed anisole was added
and it was stirred for another 5 minutes. To this mixture, 51090.03 mmol) of the
initiator 3-2 was added and the flask was transferred to a preheated odtl&EC. The
polymerization was carried out at the same temperature under angosphere for 6 h.
After that, the reaction was stopped and the polymer was dissollétFinThe polymer
solution was filtered though silica to remove copper salt and thempipaead from
diethylether and dried over vacuum for 6 h. The polymer was obtairegei®w-brown

solid with 58% yield'H NMR (CDCk, ppm):3 8.94-7.95 (br, 4H, a), 4.35-3.83 (br, 8H,

b, c, d, e), 3.72 (br, 2H, f), 2.21-1.89 (br, 7H, g, h, i), 1.89-1.54 (br, 2H, j), 1.49-0.93 (br,

20H, k, I-r), 0.93-0.79 (br, 3H, s). Mn=9326; PDI= 1.14; Degree of polymerization = 17.
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Synthesis of G1 dendron-rod coil
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G1 dendron-rod coil
Compound3-9 (19.0 mg, 11.0 umole), compoueb (75.0 mg, 9.20 umole),

CuBr (5.30 mg, 37.0 pumole) and PMDETA (8.00 pL, 37.0 umole) were adtted
Schlenk flask and 1 mL anhydrous THF was added as a solvent. iXtbeemvas stirred
for 10 min and degassed by three freeze-thaw cycles. ThenBdldsk was placed in a
constant temperature oil bath at 45 for 24 h. After completion of the reaction, the
THF in the mixture was removed by evaporation and the dry crude prnvdsqurified
by column chromatography using 5% THF in dichloromethane to afferdptoduct.

(46.0 mg, 48% vyield), SEC, Mn= 10800, PDI= 1.07.

173



Synthesis of compound G2 dendron-rod-coil

~ol Sho
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G2 dendron-rod-coil

A
b

Compound3-10 (33.0 mg, 11.0 umole), compoueb (75.0 mg, 9.20 umole),
CuBr (5.30 mg, 37.0 pumole) and PMDETA (8.00 pL, 37.0 umole) wededinto a
Schlenk flask and 1 mL anhydrous THF was added as a solvent. Xtueemvas stirred
for 10 min and degassed by three freeze-thaw cycles. ThenBdldsk was placed in a
constant temperature oil bath at 45 for 24 h. After completion of the reaction, the
THF in the mixture was removed by evaporation and the dry crude prdsqurified
by column chromatography using 5% THF in dichloromethane to afferdptoduct.

(80.0 mg, 76% vyield), SEC, Mn= 12900, PDI= 1.05.
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Synthesis of compound G3 dendron-rod-coil
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G3 dendron-rod-coil
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Compound3-11 (76.0 mg, 11.0 umole), compoueéb (75.0 mg, 9.20 umole),
CuBr (5.30 mg, 37.0 umole) and PMDETA (8.00 pL, 37.0 umole) wededinto a
Schlenk flask and 1 mL anhydrous THF was added as a solvent. Xtueenwvas stirred
for 10 min and degassed by three freeze-thaw cycles. ThenBdldsk was placed in a
constant temperature oil bath at 25 °C for 24 h. After completion ottwtion, the THF
in the mixture as removed by evaporation and the dry crude produgbusified by
column chromatography using 5% THF in dichloromethane to afford the pr¢@ad

mg, 41% yield), SEC, Mn= 13200, PDI= 1.09.
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Synthesis of compound 3-24

e d ¢ g _h

A mixture of 0.05 g (0.10 mmol) &-1, 0.02 g (0.30 mmol) of benzyl bromide,
0.04 g (0.29 mmol) of PCO; and 13.00 mg (0.05 mmol) of 18-crown-6 was heated at
reflux and stirred vigorously under argon for 12 h. The reactionungxwas allowed to
cool to room temperature and solvent was evaporated to dryness. Sithee revas
partitioned between water and dichloromethane. The organic layesepasated and
agueous layer was extracted with dichloromethane. The combined ofggmicwas
dried over NaSQ, and evaporated to dryness. The crude product was purified by column
chromatography using 50% ethyl acetate in hexane as thet ¢tuafford the product
(0.04 g, 67% yield)'H NMR (CDCk, ppm):8 8.13 (s, 2H, a), 7.91 (s, 2H, b), 7.38 (m,
13H, c, d), 7.02 — 6.91 (m, 2H, e), 5.15 (s, 2H, f), 4.78 (s, 2H, ), 2.57 (s, g h).
(CDCl;, ppm): 6 159.2, 157.9, 145.6, 138.7, 136.8, 135.3, 130.1, 129.0, 127.5, 125.6,
123.9, 119.6, 118.7, 114.4, 112.3, 69.9, 55.9.

Synthesis of compound 3-12
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3-12
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Compound3-24 (7.0 mg, 11.0 umole), compourdd (75.0 mg, 9.20 pmole),
CuBr (5.30 mg, 37.0 umole) and PMDETA (8.00 pL, 37.0 umole) wededinto a
Schlenk flask and 1 mL anhydrous THF was added as a solvent. Xtueemvas stirred
for 10 min and degassed by three freeze-pump-thaw cycles. The Schlenk flagd&agds
in a constant temperature oil bath at 25 °C for 24 h. After coioplet the reaction, the
THF in the mixture as removed by evaporation and the dry cradeigrwas purified by
column chromatography using 5% THF in dichloromethane to afford the pr¢@dd
mg, 40% yield), SEC, Mn= 9980 PDI= 1.08.

Synthesis of compound 3-25

aa

3-25

1.00 g (4.78 mmol) of 8-bromooctanoic acid was placed in a round bottom flask
and 20 mL of dichloromethane was added as a solvent. To this solution, 0.835mML
mmol) of oxalyl chloride was slowly added. The reaction mixtues stirred at room
temperature for 6 h. Then, the solvent was removed by a rotary at@ptor yield the
corresponding acid chloride which was further used for the next step without piarifica

To the round bottom flask, 1.09 g (4.78 mmol) of acid chloride, 1.11 g (2.38
mmol) of compound-3, 0.45 mL (4.78 mmol) of triethylamine, and catalytic amount of
DMAP were added and THF was used as a solvent. The mixturetiwas at room
temperature overnight. After completion of the reaction, water agiked and the
mixture was partitioned between dichloromethane and water. The olggarcwas

collected and concentrated using a rotary evaporator. The crude tpiogucified by
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column chromatography using 50% dichloromethane in hexane to obtain the product
(0.37 g, 23% vyield)'"H NMR (CDCk, ppm):& 8.79 (s, 4H, a), 4.35 (= 7.1, 2H, b),

4.27 — 4.15 (m, 4H, c, d), 3.43 (m, 4H, e, f), 1.94 — 1.86 (m, 4H, g, h), 1.66 (m, 4H, i, ])
1.36 (m, 20H, k), 0.89 (1] = 6.7, 3H, [):*C NMR (CDCE, ppm):5 173.0, 162.3, 130.9,
126.4, 61.8, 45.1, 41.0, 38.1, 34.2, 32.6, 31.9, 29.6, 29.3, 28.9, 28.5, 28.1, 27.4, 27.0,
26.6, 24.8, 22.5, 14.2.

Synthesis of compound 3-15

pyrene proton : b |:> O
(oo
N

| €

3-15

0.046 g (0.07 mmol) of compourdd25 and 0.007 g (0.11 mmol) of sodium azide
were added into a round bottom flask and acetonitrile was added aseats The
mixture was left at reflux overnight. After completion of teaation, water was added
and the mixture was partitioned between dichloromethane and waterordanic layer
was collected and evaporated to obtain an azide functionalized naphtbaenigle
derivative 8-14). This product was further used in the next step without puriicatH
NMR (CDCh, ppm):5 8.79 (s, 4H), 4.35 (] = 7.2, 2H), 4.29 — 4.17 (m, 4H), 3.281t
6.9, 2H), 2.31 (tJ = 7.5, 2H), 2.23 — 2.10 (m, 2H), 1.77 (s, 2H), 1.68 — 1.52 (m, 4H),
1.31 (d,J = 22.1, 20H), 0.89 (1] = 6.8, 3H).

Above prepared compoun@-14) (8.00 mg, 9.20 pmole), compouddd (19.0

mg, 11.0 pmole), CuBr (5.30 mg, 37.0 umole) and PMDETA (8.00 pL, 37dleym
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were added into a Schlenk flask and 1 mL anhydrous THF was addesbagent. The
mixture was stirred for 10 min and degassed by three freeze{hawpeycles. The
Schlenk flask was placed in a constant temperature oil bath at 25 22 h. After
completion of the reaction, the THF in the mixture as removed agagation and the

dry crude product was purified by column chromatography using 5% THF
dichloromethane to afford the product (22.0 mg, 78% yiel#).NMR (CDCk, ppm): &

8.62 (s, 4H, a), 8.16 — 7.55 (m, 22H, b, c, d), 7.39 — 6.87 (m, 26H, €), 6.88 — 6.74 (m, 1H,
f), 6.46 (s, 2H, g), 6.30 (s, 1H, h), 5.29 (s, 2H, i), 4.81 (s, 6H, j), 4.01-4.38 (m,)8H, k
257 - 2.43 (m, 4H, 1), 2.26 (m, 2H, m), 2.07 (m, 2H, n), 1.93 (m, 2H, 0), 1.59 (m, 28H,
p, g, 1), 1.24 (br, 28H, s), 0.85 (br, 9H{F NMR (CDC}, ppm):s 174.2, 162.7, 159.7,

158.5, 152.4, 149.3, 145.5, 143.5, 140.9, 138.8, 137.9, 137.1, 135.4, 131.3, 131.0, 130.0,
129.2, 128.6, 127.9, 127.8, 127.4, 127.2, 126.9, 126.6, 126.3, 126.1, 126.9, 125.6, 125.3,
125.0, 124.8, 124.2, 123.4, 122.9, 122.6, 120.4, 120.1, 119.9, 118.9, 111.9, 106.9, 101.5,
69.4, 62.5, 50.7, 35.3, 34.0, 31.9, 31.4, 29.7, 28.8, 27.5, 27.0, 26.1, 24.7, 22.3EC}.1

Mn= 2700, PDI=1.03.

Synthesis of compound 4-5

4-5
In a two-necked 250 mL round-bottom flask filled with 20 mL chlorofotp g
(5.00 mmol) of ProDOT was added and the solution was bubbled under argon fior. 20 m
Then, 0.88 g (5.00 mmol) of N-bromosuccinimide (NBS) was added and thiesalats

stirred for 20 h. After completion, the solvent was removed undesugaand the
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resulting residue was purified by column chromatography using 84 acetate in
CH.Cl, to get a white solid was as a product (0.49 g, 32 %yiéld)NMR ((CDs)-.CO,
ppm):8 6.72 (s, 1H, a), 4.00 (m, 2H, b), 3.61 (m, 2H, b), 3.61 (s, 2H, c), 0.96 (s, 3H, d)
%C NMR ((CD;),CO, ppm)3d 147.8, 90.8, 76.9, 63.7, 43.7, 16.1.

Synthesis of compound 4-2

4-2

In a two-necked 250 mL round-bottom flask filled with 20 mL chlorofddmb6 g
(3.00 mmol) of ProDOT was added and the solution was bubbled under argdd fo
minutes. Then, 1.11 g (9.00 mmol) of N-bromosuccinimide (NBS) was aattkdhe
solution was stirred for 20 h. After completion, the solvent wa®veoh under vaccuo
and the resulting residue was purified by column chromatography 186% CHCI..
The white solid was obtained as a product (1.17 g, quantitative).yild NMR
((CD3),CO, ppm):s 4.00 (d, 2H,J = 12.0, a), 3.73 (d, 2H,= 12, a), 3.60 (s, 2H, b), 0.97
(s, 3H, d)**C NMR ((CD3),CO, ppm):5 147.8, 90.8, 76.9, 63.7, 43.7, 16.1.

Synthesis of compound 4-3

h. € oH

dxd
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b © C b
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b b
4-3
1.00 g, (2.80 mmol) of compourdd2, 0.75 g (6.15 mmol) of phenyl boronic acid

and 1 M aqueous solution of M&0O; (30 mL) were deaerated several times and placed
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under argon followed by the addition of 0.10 g (0.08 mmol) of PdjRPhhe mixture
was stirred under reflux for 10 h. After this period, another portiarataflysts (0.01 g,
0.008 mmol) was added after which the reaction mixture was storeahbther 4 hours
under reflex. The reaction mixture was then poured intgGGHH,O and extracted with
CH.CI, several times, and the combined organic fractions were wastred/ater, dried
and then concentrated. The resulting solid was purified by column chromatogsapiy
40% ethyl acetate in hexane to obtain a white solid as a pr¢@@6tg, 61% yield).*H
NMR (CDChk, ppm): 7.72 (d,J = 8.2, 4H, c), 7.46 — 7.33 (m, 4H, b), 7.31 — 7.20 (m,
2H, a), 4.25 (m, 2H, d), 3.90 (m, 2H, d), 3.84 (m, 2H, e), 1.03 (br, 3HA).NMR
(CDCl, ppm):5 146.2, 132.4, 128.6, 126.5, 120.3, 65.6, 43.5, 17.0.

Synthesis of compound 4-6
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1.00 g, (3.48 mmol) of compourdd5, 0.52 g (4.30 mmol) of phenyl boronic acid
and 1 M aqueous solution of M2O; (30 mL) were deaerated several times and placed
under argon followed by the addition of 0.12 g (0.11 mmol) of PdjRPhhe mixture
was stirred under reflux for 10 h. After this period, another portiaatalysts (0.01 g,
0.01 mmol) was added after which the reaction mixture was sforeghother 4 hours
under reflex. The reaction mixture was then poured intgGGHH,O and extracted with
CH.ClI, several times, and the combined organic fractions were wastredater, dried

and then concentrated. The resulting solid was purified by column chromatogesapiny
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50% ethyl acetate in hexane to get a white solid as a pro@dld€ ¢, 70% yield)'H
NMR (CDClk, ppm):8 7.67 (d,J = 8.1, 2H, c), 7.36 (t) = 7.7, 2H, b), 7.30 — 7.21 (m,
1H, a), 6.46 (s, 1H, d), 4.17 (d#i= 12.1, 26.3, 2H, e,), 3.90 — 3.75 (m, 4H, e, f), 0.99 (s,
3H, g).}*C NMR (CDC}, ppm):& 150.4, 145.2, 133.1, 128.2, 126.5, 122.7, 103.1, 65.9,
43.8, 16.6.

Synthesis of compound 4-18
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4-18

To a two-necked 50 mL round bottom flask, 0.50 g (1.40 mmol) of comp®und
2, 1.32 g (3.07 mmol) of 2-tributyltin EDOB13) in DMF were deaerated several times
and then handled under argon. 0.07 g (0.10 mmol) of Pg@@Phwas added and the
mixture was stirred at 8% for 2 h. After completion of the reaction, water was added
and the mixture was extracted using/CH (3x20 mL). The organic layer was collected
and dried over anhydrous Mg&O The resulting residue was purified by column
chromatography using 50% ethylacetate in dichloromethane. Thmvysolid was
obtained as a product (0.36 g, 53% yielth. NMR (CDCk, ppm):8 6.24 (s, 2H, a), 4.33
(s, 4H, b), 4.21 (br, 6H, c, d), 3.85 (br, 2H, d), 3.75 (br, 2H, €), 0.96 (s, 3ECANMR

(CDCls, ppm): & 145.2, 141.0, 137.2, 112.8, 109.7, 97.6, 76.9, 65.5, 64.2, 63.5, 43.5,

15.6.
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Synthesis of compound 4-11

4-11

To a two-necked 50 mL round bottom flask, 0.50 g (1.36 mmol) of compéund
2, 1.52 g (2.99 mmol) of 2-phenyl-5-tributyl tin EDO%-8) in DMF were deaerated
several times and then handled under argon. 0.07 g (0.10 mmol) of RdUPPlas
added and the mixture was stirred at°80for 2 h. After completion of the reaction,
water was added and the mixture was extracted usin€lgkBx20 mL). The organic
layer was collected and dried over anhydrous MgSihe resulting residue was purified
by column chromatography using 10% ethyl acetate in dichlol@met The yellow
solid was obtained as a product (0.46 g, 17 %yiett) NMR ((CDs).CO, ppm):8 7.74
(br, 4H, c), 7.39 () = 7.7, 4H, b), 7.22 (br, 2H, a), 4.45 (s, 8H, d), 4.29(l11.9, 2H,
e), 3.91 (d,J = 11.9, 2H, e), 3.78 (d) = 6.0, 2H, f), 1.07 (s, 3H, g)."*C-NMR
((CD3),CO, ppm):5 144.1, 128.6, 126.2, 125.5, 76.3, 64.9, 63.0, 43.5, 15.9.

Synthesis of compound 4-7
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In a two-necked 250 mL round-bottom flask filled with 20 mL chlorofodm30 g
(2.09 mmol) of compound-6 was added and the solution was bubbled under argon for
20 min. Then, 0.39 g (2.17 mmol) of N-bromosuccinimide (NBS) was addedchand t
solution was stirred for 20 h. After completion, the solvent wa®veoh under vaccuo
and the resulting residue was purified by column chromatograpimg ui€i% ethyl
acetate in hexane to obtain a white solid as a product (0.25 g, 3% yiel NMR
(CDCls, ppm):6 7.62 (d,J = 7.3, 2H, ¢), 7.38 () = 7.6, 2H, b), 7.30 (m, 1H, a), 4.22
(dd,J = 7.1, 12.1, 2H, d), 3.95 — 3.76 (m, 4H, d e), 1.03 (s, 3HFF-NMR (CDCE,
ppm):5149.0, 145.2, 132.7, 131.4, 128.6, 127.6, 125.5, 90.7, 76.3, 64.2, 43.5, 15.9.

Synthesis of compound 4-9

To a two-necked 50 mL round bottom flask, 1.00 g (3.01 mmol) of compsund
7, 1.83 g (3.62 mmol) of 2-phenyl-5-tributyl tin EDO%-§) in DMF were deaerated
several times and then handled under argon. 0.15 g (0.21 mmol) of RdURPlas
added and the mixture was stirred at°80for 2 h. After completion of the reaction,
water was added and the mixture was extracted using€lkBx20 mL). The organic
layer was collected and dried over anhydrous MgSthe resulting residue was purified
by column chromatography using dichloromethane to obtain a whitkasoh product
(0.42 g, 29% yieldjH NMR (CDCk, ppm):5 7.82 — 7.66 (m, 4H, c), 7.38 (t= 7.4, 4H,

b), 7.27 — 7.18 (m, 2H, a), 4.36 (m, 6H, d, e), 4.01 — 3.79 (m, 4H, e, f), 1.04 (s, 3H, Q).
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3C NMR (CDCE, ppm):& 146.2, 145.2, 138.2, 137.4, 133.1, 128.6, 126.7, 125.7, 120.0,
115.5, 113.3, 108.3, 65.6, 64.7, 43.7, 17.0.

Synthesis of compound 4-14

4-14
To a two-necked 50 mL round bottom flask, 1.00 g (3.60 mmol) of compsund

5, 1.86 g (4.32 mmol) of 2-tributyltin EDOB13) in DMF were deaerated several times
and then handled under argon. 0.18 g (0.25 mmol) of Pgfd@Phwas added and the
mixture was stirred at 8%C for 2 h. After completion of the reaction, water was added
and the mixture was extracted using CH (3x20 mL). The organic layer was collected
and dried over anhydrous Mg&O The resulting residue was purified by column
chromatography using 30% ethyl acetate in hexane to obtailoa/ w®lid as a product
(1.04 g, 85% yield)."H NMR ((CDs)-.CO, ppm):5 6.54 (s, 1H, a), 6.34 (s, 1H, b) , 4.34
(m, 2H, c), 4.26 (m, 2H, c), 4.10 (d, J = 16.0 Hz, 1H, d), 4.00 (d, J = 16.0 Hz, 1H, d), 3.79
(d, J = 25.2 Hz, 1H, d), 3.72 (d, J = 25.2 Hz, 1H, d), 3.67 (m, 2H, €), 0.99 (s, 3@, )
NMR ((CDs3).CO, ppm):6 149.9, 141.4, 102.8, 97.6, 78.4, 78.1, 77.8, 76.8, 76.5, 65.1,
64.5, 64.0, 43.8, 17.5.

Synthesis of compound 4-15
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A round bottom flask with a stirring bar was charged with 0.11 g (0.38Iyroh
compound4-14 in dry dichloromethane. 0.12 g (0.69 mmol) of N-bromosuccinimide
was added and the reaction was allowed to stir’& for 2 h. The slightly blue mixture
was dissolved in 500 mL of dichloromethane and washed byHN8 (10%, 150 mL),
H,O (3x50 mL) and brine (2x50 mL) and dried over MgSOThe CHCI, was
evaporated to give a yellowish solid that was further used in the step without
purification. *H NMR (CDCk, ppm):& 4.34 (s, 4H, a), 4.22 (§,= 12.5, 2H, b), 3.89 —
3.75 (m, 4H, b, c), 1.02 (s, 3H, H.-NMR is not taken due to its instability.

Synthesis of compound 4-16

4-16

To a two-necked 50 mL round bottom flask, 0.12 g (0.24 mmol) of compéund
15, 0.26 g (0.51 mmol) of 2-phenyl-5-tributyl tin EDO%-8) in DMF were deaerated
several times and then handled under argon. 0.01 g (0.17 mmol) of RdUPPlas
added and the mixture was stirred at°80for 2 h. After completion of the reaction,
water was added and the mixture was extracted usin@€igkBx20 mL). The organic
layer was collected and dried over anhydrous MgSihe resulting residue was purified
by column chromatography using 30% ethylacetate in hexane o abtarange solid as
a product (0.02 g, 11% yield)'H NMR (DMSO-D6, ppm): 7.73 — 7.60 (m, 4H, c),

7.40 (t,J = 7.8, 4H, b), 7.24 (br, 2H, a), 4.43 (U= 13.0, 12H, d), 4.09 (br, 2H, e), 3.84
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(br, 2H, e), 3.57 (br, 2H, f), 0.96 (s, 3H, §)C NMR (DMSO-D6, ppm)5 144.7, 138.7,
137.1, 133.2,129.5, 125.3, 114.1, 64.9, 33.5, 16.3.

Synthesis of compound 4-4

4-4
0.25 g (0.77 mmol) of compound-3 and 0.22 g (1.54 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichlorometaad the mixture
was cooled down to C. 0.32 g (1.54 mmol) of dicyclohexyl carbodiimide followed by
0.19 g (1.54 mmol) of 4-dimethyl aminopyridine were added portionwige mixture
was stirred at C for 2 h. After completion of the reaction, the precipitated dicyclohexyl
urea was filtered. Then, water was added and the mixture xtt@sted using CKCl,
(3x20 mL). The organic layer was collected and dried over anbgdMgSQ. The
resulting residue was purified by column chromatography usingnkeia obtain a
yellow solid as a product (0.36 g, quantitative yielth. NMR (CDCk, ppm):5 7.74 (d,
J=17.5, 4H, c), 7.40 () = 7.6, 4H, b), 7.29 (br, 2H, a), 6.16 (= 9.8, 2H, d), 4.29 (s,
2H, e), 4.23 (dJ = 12.2, 2H, €), 3.98 (d,= 11.9, 2H, f), 3.10 (s, 1H, g), 2.96 (s, 1H, h),
2.31 (s, 1H, i), 1.96 (s, 2H, j, k), 1.42 (s, 2H, j, k), 1.11 (s, 3HQ.NMR (CDCE,
ppm): & 174.1, 145.9, 138.3, 135.2, 132.7, 128.6, 126.9, 120.3, 100.4, 76.2, 46.2, 42.8,

41.7,29.7, 16.2.
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Synthesis of compound 4-10

4-10

0.30 g (0.61 mmol) of compound-9 and 0.17 g (1.22 mmol) of 5-exo-
norbornene-2-acetic acid were dissolved in dry THF or dichlorometaad the mixture
was cooled down to C. 0.25 g (1.22 mmol) of dicyclohexyl carbodiimide followed by
0.15 g (1.22 mmol) of 4-dimethyl aminopyridine were added portionwides nixture
was stirred at 6C for 2 h. After completion of the reaction, the precipitated dicyclohexyl
urea was filtered. Then, water was added and the mixture xtt@sted using CkCl,
(3x20 mL). The organic layer was collected and dried over anbgdMgSQ. The
resulting residue was purified by column chromatography usingnkeia obtain a
yellow solid as a product (0.28 g, 76% yieft). NMR (CDCk, ppm)8 7.74 (m, 4H, c),
7.36 (t,J = 7.6, 4H, b), 7.29 — 7.16 (m, 2H, a), 6.21 — 6.08 (m, 2H, d), 4.47 — 4.13 (m,
8H, e, ), 3.94 (m, 2H, g), 3.09 (s, 1H, h), 2.94 (s, 1H, i), 2.30 (s, 1H, j), 1.9%&(#1.9,
2H, k, 1), 1.41 (tJ = 9.5, 2H, k, 1), 1.09 (s, 3H, m*C NMR (CDC}, ppm):& 176.1,

145.1, 137.9, 135.6, 132.9, 128.3, 126.0, 66.0, 64.9, 53.4, 46.2, 43.4, 41.5, 30.0, 16.7.
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Synthesis of compound 4-12

4-12
0.10 g (0.16 mmol) of compound-11 and 0.04 g (0.32 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichlorometaad the mixture
was cooled down to C. 0.05 g (1.32 mmol) of dicyclohexyl carbodiimide followed by
0.04 g (0.32 mmol) of 4-dimethyl aminopyridine were added portionwige nixture
was stirred at @C for 2 h. After the completion of the reaction, the precipitated
dicyclohexyl urea was filtered. Then, water was added and theimmiwas extracted
using CHCI, (3x20 mL). The organic layer was collected and dried over aobgd
MgSQ,. The resulting residue was purified by column chromatographg u30%
ethylacetate in hexane to obtain a yellow solid as a product (0.03 g, 69% }itKMR
(CDCls, ppm):o 7.72 (br, 4H, ¢), 7.44 (br, 4H, b), 7.29 (br, 2H, a), 6.22 (br, 2H, d), 4.47
(d,J=12.9, 8H, e), 4.36 — 4.22 (m, 4H, f), 3.96J& 9.6, 2H, g), 3.13 (br, 1H, h), 2.96
(br, 1H, i), 2.37 (br, 1H, j), 1.96 — 1.89 (m, 2H, k, 1), 1.28 (br, 2H, k, 1), 1.05 (siBH,
¥C-NMR (CDCE, ppm):5 176.5, 135.8, 128.6, 126.3, 124.8, 69.7, 66.6, 64.5, 46.2, 43.1,

41.1, 30.4, 16.6.
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Synthesis of compound 4-19
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4-19

0.10 g (0.16 mmol) of compound-18 and 0.06 g (0.43 mmol) of 5-exo-
norbornene-2-acetic acid were dissolved in dry THF or dichlorometaad the mixture
was cooled down to C. 0.09 g (0.43 mmol) of dicyclohexyl carbodiimide followed by
0.05 g (0.43 mmol) of 4-dimethyl aminopyridine were added portionwige niixture
was stirred at ¥ for 2 h. After completion of the reaction, the precipitated dityetyl
urea was filtered. Then, water was added and the mixture xtt@sted using CKCl,
(3x20 mL). The organic layer was collected and dried over anbgdMgSQ. The
resulting residue was purified by column chromatography using 8084 acetate in
hexane to obtain a yellow solid as a product (008 g, 65% yfeldIMR (CDCk, ppm):

0 6.29 (s, 2H, a), 6.16 (br, 2H, b), 4.37-4.19 (m, 12H, c-e), 3.87 (br, 2H, f),8,10H,
g), 2.96 (br, 1H, h), 2.33 — 2.28 (br, 1H, i), 1.96 (br, 2H, j, k), 1.43 (br, 2B, 1,67 (s,
3H, I). *C-NMR (CDCk, ppm):5 176.2, 143.8, 141.0, 137.9, 137.2, 135.2, 113.1, 97.6,

66.3, 64.9, 64.2, 46.6, 43.1, 41.4, 33.9, 30.4, 16.6.
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Synthesis of compound 4-17

4-17

0.16 g (0.21 mmol) of compound-16 and 0.06 g (0.42 mmol) of 5-exo-
norbornene-2-acetic acid were dissolved in dry THF or dichlorometaad the mixture
was cooled down to C. 0.09 g (0.43 mmol) of dicyclohexyl carbodiimide followed by
0.05 g (0.43 mmol) of 4-dimethyl aminopyridine were added portionwige niixture
was stirred at 6C for 2 h. After completion of the reaction, the precipitated dicyclohexyl
urea was filtered. Then, water was added and the mixture xtt@sted using CkCl,
(3x20 mL). The organic layer was collected and dried over anbgdMgSQ. The
resulting residue was purified by column chromatography using @084 acetate in
hexane to obtain an orange solid as a product (0.15 g, 79 % Yiel®)MR (DMSO-DS,
ppm):d 7.70-7.72 (m , 4H, a), 7.42-7.46, (m, 4H, b), 7.29 (br, 2H, c), 6.22 (br, 2H, d),
4.48 (12H, m, e), 4.20-4.37 (4H, m, f), 3.92 (m, 2H, g), 3.11 (s, 1H, h), 2.96 (s, 1H, i),
2.36 (s, 1H, j), 1.96 (2H, k, 1), 1.29 (2H, k, 1), 1.05 (s, 3H,’) NMR (DMSO-D6,
ppm):6 176.2, 138.1, 135.5, 132.9, 128.8, 126.5, 126.1, 66.9, 64.7, 53.3, 46.8, 43.6, 41.7,

30.7,17.4
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Synthesis of polymer of diphenyl monoEDOT

polymer of diphenyl monoEDOT

Dry THF was taken into a round bottom flask and was freezed-puthpech 3
times before used. 0.10 g (0.17 mmol) of monoférand 0.04 g (0.04 mmol) of 3
generation Grubbs catalyst were put under vacuum into two sepacated bottom
flasks for 30 minutes before THF was added. Then, the solution of mohameHF
was injected into a stirred solution of catalyst. The mixture alfowed to stir for 3
minutes at room temperature followed by irreversible ternunatia the addition of 2
mL of ethyl vinyl ether. The solution was then concentrated umdeuum. The
polymers were obtained by precipitation twice in methanol to yaejellow solid as a
product (0.07 g, 67% yield)}H NMR (CDCk, ppm)s 7.66 (br, 4H, c), 7.48 — 7.04 (br,
6H, a, b), 5.49 — 4.90 (br, 2H, d), 4.13 (br, 4H, e), 3.75 (br, 2H, f), 3.22 — 2.77 (br, 2H, g,

h), 2.77 — 2.25 (br, 1H, i), 2.01 (br, 4H, j-m), 0.94 (br, 3H, 0). Mn= 16862, PDI= 1.05.
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Synthesis of polymer of diphenyl diIEDOT

polymer of diphenyl diEDOT

Dry THF was taken into a round bottom flask and was freezed-puthpeah 3
times before used. 0.10 g (0.17 mmol) of mono#&® and 0.04 g (0.04 mmol) of 3
generation Grubbs catalyst were put under vacuum into two sepacated bottom
flasks for 30 minutes before THF was added. Then, the solution of mohameHF
was injected into a stirred solution of catalyst. The mixture alfowed to stir for 3
minutes at room temperature followed by irreversible ternunatia the addition of 2
mL of ethyl vinyl ether. The solution was then concentrated umdeuum. The
polymers were obtained by precipitation twice in methanol to yejellow solid as a
product (0.06 g, 59% yield)H NMR (CDCk, ppm):3 7.68 (br, 4H, c), 7.26 (br, 4H, b),
7.14 (br, 2H, a), 5.44 — 4.87 (br, 2H, d), 4.24 (br, 8H, e, f), 3.90 — 3.51 (br, 2H, g), 3.33 —
2.76 (br, 2H, h, i), 2.76 — 2.28 (br, 1H, j), 2.27 — 1.70 (br, 4H, k-m), 0.88 (br, 3H, 0).

Mn= 17679, PDI= 1.36.
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Synthesis of polymer of diphenyl triEDOT

polymer of diphenyl triEDOT

Dry THF was taken into a round bottom flask and was freezed-puthpech 3
times before used. 0.15 g (0.20 mmol) of mono&? and 0.04 g (0.04 mmol) of 3
generation Grubbs catalyst were put under vacuum into two sepacated bottom
flasks for 30 minutes before THF was added. Then, the solution of mohameéHF
was injected into a stirred solution of catalyst. The mixture alfowed to stir for 3
minutes at room temperature followed by irreversible ternunatia the addition of 2
mL of ethyl vinyl ether. The solution was then concentrated umdeuum. The
polymers were obtained by precipitation twice in methanol to yaejellow solid as a
product (0.09 g, 60% yield)*H NMR (CDCk, ppm):3 7.84 — 7.53 (br, 4H, c), 7.26 (br,
4H, b), 7.18 — 6.91 (br, 2H, a), 5.46 — 4.79 (br, 2H, d), 4.25 (br, 10H, e, f), 3.94 — 3.49
(br, 4H, f, g), 3.23 — 2.73 (br, 2H, h, i), 2.73 — 2.17 (br, 1H, j), 2.13-1.71 (br, 4hj, k

1.10 — 0.65 (br, 3H, 0). Mn= 9975, PDI= 1.009.
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Synthesis of polymer of triEDOT
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polymer of triEDOT

Dry THF was taken into a round bottom flask and was freezed-puthpech 3
times before used. 0.10 g (0.14 mmol) of mono#&® and 0.06 g (0.004 mmol) of 3rd
generation Grubbs catalyst (1 equiv) were put under vacuum into tvavased round
bottom flasks for 30 minutes before THF was added. Then, the saddittoanomers in
THF was injected into a stirred solution of catalyst. The mexwas allowed to stir for 3
minutes at room temperature followed by irreversible ternunatia the addition of 2
mL of ethyl vinyl ether. The solution was then concentrated umdeuum. The
polymers were obtained by precipitation twice in either methanather to yield a
product as a yellow solid (0.09 g, 60% yieldd NMR (CDCk, ppm):8 6.23 (br, 2H, a),
5.51 — 4.93 (br, 2H, b), 4.24 (br, 12H, c, d), 3.75 (br, 2H, e), 3.30 — 2.81 (m, 2H, f, g),

2.81 —2.32 (m, 1H, h), 2.17 (s, 4H, i-), 0.94 (s, 3H, m). Mn= 12775, PDI= 1.09.
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Synthesis of polymer of diphenyl tetraEDOT

polymer of diphenyl tetraEDOT

Dry THF was taken into a round bottom flask and was freezed-puthpech 3
times before used. 0.08 g (0.10 mmol) of mono&Y and 0.01 g (0.01 mmol) of 3
generation Grubbs catalyst were put under vacuum into two sepacated bottom
flasks for 30 minutes before THF was added. Then, the solution of neesiemTHF
was injected into a stirred solution of catalyst. The mixture alfowed to stir for 3
minutes at room temperature followed by irreversible ternunatia the addition of 2
mL of ethyl vinyl ether. The solution was then concentrated umdeuum. The
polymers were obtained by precipitation twice in methanol tal yagbroduct as a yellow
solid (0.05 g, 63% vyield). Due to the insolubility of the polymer in el@iéd solvents,

NMR is not taken. Mn= 16802, PDI =1.12.

196



Synthesis of copolymer

copolymer

Dry THF was taken into a round bottom flask and was freezed-puthpeah 3
times before used. The mixture of 1:3, 1:1 and 3:1 ratio of mon&hZrmonomer4-
19 and 100 equiv of "8 generation Grubbs catalyst were put under vacuum into two
separated round bottom flasks for 30 minutes before THF was added, tAdsolution
of monomers in THF was injected into a stirred solution of cdtalyse mixture was
allowed to stir for 3 minutes at room temperature followed t@yarsible termination via
the addition of 2 mL of ethyl vinyl ether. The solution was thencentrated under
vacuum. The polymers were obtained by precipitation twice in aitleénanol or ether to
yield a product as a yellow solidH NMR (CDCk, ppm)é 7.81 — 7.61 (br, 4H, p), 7.26
(br, 6H, n, 0), 6.30 — 6.05 (br, 2H, a), 5.50 — 4.88 (br, 4H, b), 4.27 (br, 24Hqcr)d,
3.92 — 3.54 (br, 4H, s, €), 3.19 — 2.79 (br, 4H, |, g), 2.79 — 2.28 (br, 2H, h), 2.28 — 1.67

(br, 8H, i-l), 1.33 — 0.69 (br, 6H, m, 1).
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