Jun 6th, 1:50 PM - 2:10 PM

Session B5 - Culvert Roughness Elements for Native Utah Fish Passage

Suzanna Monk
Brigham Young University Civil and Environmental Engineering, suji.monk@gmail.com

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Monk, Suzanna, "Session B5 - Culvert Roughness Elements for Native Utah Fish Passage" (2012). International Conference on Engineering and Ecohydrology for Fish Passage. 22.
https://scholarworks.umass.edu/fishpassage_conference/2012/June6/22

This is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Natural Substrate Best Alternative for Native Utah Fish Passage at Culverts

Suzanne Monk, Lindsay Esplin Wait, Mark Belk, Rollin Hotchkiss
Acknowledgments

- Denis Stuhff, Utah Dept. of Transportation
- Brent Mefford, BuRec
- Eric Billman
- Karsten Busby
- Guillermo Bustamante
- Sarah Clark
- Biology research group
Background

• Culvert design for fish passage compares average flow velocities to fishes’ prolonged swim speeds (Hotchkiss and Frei, 2007)
• Method developed for salmonid passage
• Smaller species can take advantage of reduced velocity zones near boundaries within the culvert
• Lack of well documented data to prove it!

http://www.wildlifeandroads.org/decisionguide/2_1_1.cfm
Scope of Work

• Investigate fish passage through culverts for native Utah fishes
 – Longnose dace
 – Leatherside chub
 – Speckled dace

• Work was performed in two phases
 Phase I: Laboratory tests
 Phase II: Field tests
Phase I: Treatments

1. Smooth boundary (bare flume)
2. Cylinders on smooth boundary
3. Natural substrate boundary
Phase I: Testing

– Water velocity set between the fish’s sustained and burst swim speeds (~1 m/s)
Phase I: Velocity Measurements

- Velocities measured 1 and 5 cm above the boundary
 - 5 cm above
 - 10 cm/s contours
 - Plan view
 - Flow from right to left
Phase I: Results and Conclusions

- Energy calculations were made to more effectively compare the three treatments (Behlke)
- Substrate that scaled with fish size will allow for fish passage for native Utah fishes
- Fish were able to pass even when the velocity exceeded their prolonged swim speed
Phase II: Sites

- Corrugated metal arch culvert
- Stream site
- Double barrel concrete box culvert
- All located within 1 km of each other on Salina Creek
Phase II: Methods

• Marking
 – 3 sites
 – 4 groups at each site

• Recapture three weeks later
 – Two passes in 10-m segments
Phase II: Velocity Measurements

- Taken 2 cm above substrate
- 1-m by 1-m grid across entire area at each site
- Plan view, flow to the left
Phase II: Pebble Counts

- Zig-zag method
- Measurements taken every 0.3 m
- Performed at arch culvert and stream sites
- Box culvert was bare except for some sand

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Arch Culvert</th>
<th>Stream Site</th>
<th>Difference (arch - stream)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{16} (mm)</td>
<td>11</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>D_{50} (mm)</td>
<td>44</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>D_{84} (mm)</td>
<td>205</td>
<td>126</td>
<td>79</td>
</tr>
</tbody>
</table>
Phase II: Results and Conclusions

- Population densities at each site were estimated.
- Fish were able to use arch culvert site as refuge.
- Substrate should roughly scale with the size of the fish.
Recommendations

• Provide a layer of suitably scaled substrate in barrel
 – Match size distribution of adjacent reaches
 – Can follow procedures in recent FHWA publication HEC-26

• High assurance of successful fish passage, less invasive, more cost effective

• More work on substrate replenishment
Sources