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ABSTRACT

DESIGN OF NON-UNIFORM LINEAR ARRAY
VIA LINEAR PROGRAMMING

AND PARTICLE SWARM OPTIMIZATION
AND STUDIES ON PHASED ARRAY CALIBRATION

SEPTEMBER 2014

HUA BAI

B.Sc., SICHUAN NORMAL UNIVERSITY, CHINA

Directed by: Professor Ramakrishna Janaswamy

For a linear array, the excitation coefficients of each element and its geometry

play an important role, because they will determine the radiation pattern of the given

array. Side Lobe Level (SLL) is one of the key parameters to evaluate the radiation

pattern of the array. Generally speaking, we desire SLL to be as low as possible. For

the linear array with uniform spacing, there are some classic methods to calculate the

excitation coefficients to make the radiation pattern satisfy the given requirements.

For the linear array with non-uniform spacing, linear programming and particle swarm

optimization are proposed to calculate the excitation coefficients to make the array get

minimum SLL in this thesis. They are demonstrated for symmetric and asymmetric

array in the first part of this thesis. In the second part of this thesis, a simple method is

proposed for correcting excitation coefficients of a linear phased array. This proposed

method corrects the coefficients through using the Normalized Least Means Squares

vi
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(NLMS) algorithm, dither signal and a near-field sensor being used for sensing the

field emitted by the array. The advantage of this proposed method is that it avoids the

problem of estimating the largest eigenvalue of the coefficient matrix to get optimal

step size. Its robustness in different environments is demonstrated as well as the

effect of noise with various Signal-to-Noise Ratio (SNR), and mutual coupling. In

addition, the effect of using discrete dither signal to the array is considered, because

the continuous dither signal cannot be generated in practice.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Beamforming is a kind of technology used in phased arrays to get directional

radiation pattern at specified angles. The main lobe is the lobe with maximum

magnitude, it means the array can transmit more energy in the direction of main

lobe when it is used as a transmitter or the signal from that direction will be received

better if the array works as a receiver. Often we need to adjust the radiation pattern

of the phased array to satisfy our various requirements. The radiation pattern of the

phase array is determined by several parameters including the nature of the elements

in the array, the geometry of the array and the excitation coefficients of each element,

etc. The nature of the elements are determined after they are produced, so we are

more interested in adjusting the excitation coefficients and the geometry of the phased

array. This thesis focuses on the excitation coefficients of the linear array. For the

linear array with uniform spacing, the problem of excitation coefficients has already

being solved well, so the linear array with non-uniform spacing will be designed here.

This thesis consists of two parts, the first part (Ch.2 and Ch.3) focuses on figuring out

the optimal excitation coefficients with respect of Side Lobe Level (SLL), the second

part (Ch.4 and Ch.5) solves the problem of correcting the excitation coefficients when

they drift due to environmental conditions.

1



1.2 Motivation

With the development of more than one hundred years, phased arrays are widely

used in a lot of areas now, such as weather forecasting, detecting or tracking targets

and so on [1] [2]. For a phased array, its excitation coefficients play an important

role, because they determine the radiation pattern of the system. Considering its

importance, various classic methods have been proposed to generate the array’s exci-

tation coefficients to design the array meeting certain goals. For example, the Taylor

method is one of the popular methods in designing the array. It was first introduced

by Taylor in 1955 [3] and the design makes a compromise between beamwidth and

SLL[4]. An example of using the Taylor design is illustrated in Fig.1.1, which shows

the electric field in far field region of a 32-element array with spacing of λ/2, the SLL

is around -24 dB. Those classic designs are easy to implement; however most of them

can only be used for the linear array with uniform spacing. Here we want to solve

the problem of designing the excitation coefficient of a non-uniform linear array by

methods of the linear programming and the Particle Swarm Optimization (PSO).

Fig. 1.1. The electric field of the array in far-field region

2



The excitation coefficients are of great importance to the array as mentioned be-

fore, but sometimes they may be altered due to the change of working conditions,

errors during fabricating and so on. This will lead to the change of the radiation pat-

tern of the array, which might degrade the gain, directivity of the array and then the

array could not meet the requirement. The second part of the thesis is concerned with

finding a method to calibrate these excitation coefficients. One correction method via

dithering and the Least Mean Squares (LMS) algorithm has been proposed in [5]. In

that paper, the LMS algorithm is used to correct the actual coefficients. In using

the LMS algorithm to correct the coefficients, one necessary step is to estimate the

largest eigenvalue of the coefficient matrix to update the coefficients by following a

gradient based procedure, which makes the method more complicated and increases

execution time. In this thesis, we implement the Normalized Least Mean Squares

(NLMS) algorithm which bypasses finding the minimum eigenvalue, thereby, making

the algorithm faster and more efficient, and demonstrate the robustness of the algo-

rithm.

1.3 Outline of This Thesis

This thesis will be organized as follows: in Chapter 2, we will use linear pro-

gramming to determine the optimal excitation coefficients with the respect of SLL

for a special kind of non-uniform spacing array—the symmetric array. In Chapter

3, the array is extended to the more general case—asymmetric array, and the PSO

algorithm will be introduced for finding out the optimal excitation coefficient. Both

of the two methods will be demonstrated by constructing arrays that meet various

performance requirements. The calibration of the linear array is presented in Chapter

4, the algorithm is demonstrated in noiseless and noisy environment, respectively, and

the effect of mutual coupling and using discrete dithering signal are also considered.

3



The final results of the proposed algorithm is presented in Chapter 5. In Chapter 6,

the thesis work is summarized.

4



CHAPTER 2

LINEAR PROGRAMMING FOR SYMMETRIC ARRAY

2.1 Introduction

An array which consists of multielements is used for improving a radiation pattern

without changing the characteristics of individual elements. Compared with individ-

ual elements, an array can achieve higher directivity, higher gains and lower SLL [6].

The most common geometry for arrays are linear, rectangular and circular [7] [8].

This thesis only focuses on linear arrays. For simplicity and practice, we will only

study the performance of the array consisting of identical elements. An example of a

linear array is shown in Fig.2.1

Fig. 2.1. Linear array with N elements

As illustrated in the above figure, the number of the elements is denoted by N

(N ≥ 2). To start with, the simplest situation is considered: the array consists of 2

infinitesimal dipoles, and the two elements are in phase. For far field (kr � 1, k is

5



the wavenumber, r is the distance from origin to observation point), the electric field

can be written in the xy-plane as [4]

E(φ) = jη
kIole

−jkr

4πr
(w1e

−jkd1cosφ + w2e
−jkd2cosφ) (2.1)

where η is the wave impedance, Io is the current, l is the length of the dipole, dn is the

position of the dipole, and wn is the excitation coefficient for the element, which is also

known as the array weighting characteristics. In 2.1, the element factor is denoted by

jη kIle
−jkr

4πr
, because it is only dependent on the characteristics of elements in the array.

The remaining term, which is inside the parentheses, represents the array factor and

is related to the excitation coefficients of the elements and the geometry of the array.

In order to extend the 2-element array to an N-element array. Equation 2.1 can be

rewritten as

E(φ) = jη
kIole

−jkr

4πr

N∑
n=1

wne
−jkdncosφ = EF ∗ AF (2.2)

where EF is short for element factor, AF is short for array factor. The total radiation

of the array is affected by the element factor and array factor simultaneously, however,

once the element is chosen, the element factor is determined and the electric field is

proportional to AF. In this thesis, we are more interested in the array factor.

When we design the array’s excitation coefficients, some parameters are available

for referring to such as gain, directivity, etc. In this thesis, the SLL is a design

specification meaning that the excitation coefficient which produces the minimum

SLL is optimal. The symmetric broadside array will be designed at first.

2.2 Symmetric Array

Symmetric array means the position of the elements are symmetric with respect

to one axis or some other reference. In this section, the array is symmetric with
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respect to the y-axis, which is illustrated in Fig.2.2. For such an array, the following

equations are valid

AF (φ) = w1e
−jkd1cosφ + w2e

−jkd2cosφ + ...+ wNe
−jkdN cosφ (2.3)

dn = −dN+1−n, n ≤
N

2
(2.4)

wn = wN+1−n, n ≤
N

2
. (2.5)

Via (2.4) and (2.5), (2.3) can be written as

AF (φ) =


∑N

2
n=1 2wncos(kdncosφ),N is even∑N−1

2
n=1 2wncos(kdncosφ) + wN+1

2
cos(kdN+1

2
cosφ),N is odd

(2.6)

when N is odd, dN+1
2

must be zero to guarantee the array is symmetric, equation

(2.6) is rewritten as

AF (φ) =


∑N

2
n=1 2wncos(kdncosφ),N is even∑N−1

2
n=1 2wncos(kdncosφ) + wN+1

2
,N is odd

(2.7)

According to the definition of Side Lobe Ratio (SLR) [9], we can get

SLR = |AF (φ)|max, φ /∈ main beam (2.8)

the relation between SLL and SLR is SLL = 20 ∗ log10(SLR). Assuming that the

element factor is represented by an isotropic radiator (i.e. EF=1), the desired angle

for the array is denoted by φd, which corresponds to the center point of the main

beam of the radiation pattern; when φ = φd, AF should reach its peak value such

that E in (2.2) is a maximum. The peak value of the array factor is assumed to be

equal to 1, AF (φd) = 1. In order to guarantee AF (φd) is at the peak, its derivative

7



is also forced to be equal to 0 at φd. Now the problem can be summarized as finding

the minimum SLR with the constraints AF (φd) = 1 and ∂AF (φ)
∂φ
|φd = 0.

Fig. 2.2. A symmetric array

2.3 Linear Programming

In the symmetric case, there exists a linear relationship between the array factor

and the excitation coefficients, considering that the liner programming method is

appropriate for solving this kind of problem. Linear programming was first introduced

by Leonid Kantorovich in 1939 [10], this method has been widely used for solving the

linear optimal problem in a number of fields [11]. This method relies on the apparent

or potential linear relationships between different parameters. How to use linear

programming in symmetric array is what we are going to do next. The first step is to

convert the problem of obtaining the minimum sidelobe to a linear optimal problem.

The general linear programming problems can be expressed as

Maximize/Minimize : ATx (2.9)

Subject to : Bx ≤ C (2.10)

Dx = E (2.11)
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where x is a vector denoting the unknown coefficients, letters A, B and D repre-

sent known matrices, symbol (·)T denotes the transpose of a matrix, letters C and

E denote two known vectors. Equation 2.9 represents the function we want to solve,

subject to the constraints of (2.10) and (2.11). Fig.2.3 depicts a simple example of

the linear programming, the x-axis, the y-axis and the two solid lines constitute the

shaded region which is called feasible region, x-axis, y-axis and the two lines are the

constraints, then we need to find out the optimum result in the feasible region de-

pending on the given requirement.

Fig. 2.3. General linear programming problem

For a symmetric array, since its weights are the variable we need to determine, we

can set [12]

x =



w1

w2

·

wN


(2.12)
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the array factor is the objective function, we can get

AT =

 [2cos(kd1cosφ), 2cos(kd2cosφ) · · · 2cos(kdN
2
cosφ)],N is even

[2cos(kd1cosφ), 2cos(kd2cosφ) · · · 2cos(kdN−1
2
cosφ), 1],N is odd

. (2.13)

Assuming the minimum SLR = m, we can get the following inequality

|ATx| ≤ m,φ /∈ main beam (2.14)

another two equations with respect to the array factor at desired angle are

ATφdx = 1 (2.15)

∂ATφx

∂φ
|φd = 0. (2.16)

Now, the problem reduces to, given the beamwidth and element locations

Minimize :m (2.17)

Subject to :|ATx| ≤ m,φ /∈ main beam (2.18)

ATφdx = 1 (2.19)

∂ATφx

∂φ
|φd = 0. (2.20)

Once the problem is converted to a linear programming problem, we can adopt

some algorithms such as the simplex algorithm to solve it. The simplex algorithm is

derived from the concept of simplex, its appearance brought great improvements to

solving the linear programming problem, you can find more details about this algo-

rithm in [13]. In this thesis, Matlab is used to figure out the problem, the numerical

results gotten by Matlab are shown in next section.
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2.4 Numerical Results

A ten-element linear array is used to verify our method. The desired main beam

angle of the array is set as 90 degrees, and the beamwidth is 40 degrees. Then, the

positions of each element are set as [−2λ, −1.3λ, −0.85λ, −0.5λ, −0.2λ, 0.2λ, 0.5λ,

0.85λ, 1.3λ, 2λ]. By (2.13), AT = [2, 2, 2, 2, 2] at φ = 90◦, then using (2.19), it is clear

to show that

2(w1 + w2 + ...+ w5) = 1. (2.21)

It is not hard to see the above equation satisfies (2.20) at the same time when φd =

90◦. There are just 5 excitation coefficients, because the array is symmetric, the

corresponding elements share the weight and the weights are set to be real numbers

for the broadside array. x′ is set as

x′ =



m

w1

w2

w3

w4

w5


(2.22)

where m is just the minimum SLR. Using (2.21) and (2.22), we get

a · x′ = 1 (2.23)

where a = [0 2 2 2 2 2]. As the beamwidth is chosen as 40 degrees, the side lobe

occurs in the angles range [0◦,70◦] and [110◦,180◦]. The side lobe region is observed

finely every degree so as to not miss the peak of the side lobe. Equation 2.18 can be

11



seen as two inequalities without the absolute value sign, which is helpful for future

calculation

ATx ≤ m (2.24)

ATx ≥ −m. (2.25)

Converting the above two inequalities to the following two inequalities

b · x′ ≤ 0 (2.26)

c · x′ ≤ 0 (2.27)

where b = [−1, 2cos(kd1cosφ), 2cos(kd2cosφ), ... 2cos(kd5cosφ)], c = [−1,

−2cos(kd1cosφ), −2cos(kd2cosφ), ... − 2cos(kd5cosφ)]. For φ, it is chosen from

the side lobe region, and as mentioned before, the pattern in side lobe region is

sampled every degree. If the observation number is too small, it may lead to a wrong

result because the peak of any particular side lobes may not be captured by sparse

observation. The optimal excitation coefficients for each element we get finally are

[0.0535, 0.1152, 0.0888, 0.1224, 0.1201, 0.1201, 0.1224, 0.0888, 0.1152, 0.0535], the

SLL is -30.343 dB. The array factor of the array is illustrated in Fig.2.4, the position

and optimal excitation coefficients determined for the array with different number

of elements is shown in Table 2.1 and Table 2.2 respectively. In Table 2.1, Min.

and Max. denote the minimum and maximum spacing, respectively. Notice that for

N=6,8,10, the spacing exceeds the traditional limit of λ/2.
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Fig. 2.4. The array factor with optimal excitation coefficients

Number of Elements d1/λ d2/λ d3/λ d4/λ d5/λ Min./λ Max./λ
2 0.2 0.4 0.4
4 0.2 0.5 0.3 0.4
6 0.2 0.5 0.85 0.3 0.4
8 0.2 0.5 0.85 1.3 0.3 0.55
10 0.2 0.5 0.85 1.3 2 0.3 0.7

Table 2.1. Element spacing of the symmetric array

Number of Elements w1 w2 w3 w4 w5 Minimum SLL(dB)
2 0.5 -0.828
4 0.1504 0.3496 -4.344
6 0.1861 0.0657 0.2482 -11.204
8 0.1466 0.1228 0.1098 0.1209 -19.948
10 0.1201 0.1224 0.0888 0.1152 0.0535 -30.343

Table 2.2. Optimum weights for symmetric arrays, broadside and BW=40◦

For the same broadside arrays with beamwidths being 50 degrees and and 60

degrees, the optimum weights and the minimum SLL are shown in Table 2.3 and

Table 2.4, respectively.
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Number of Elements w1 w2 w3 w4 w5 Minimum SLL(dB)
2 0.5 -1.276
4 0.1966 0.3034 -6.282
6 0.2112 0.0958 0.1930 -15.603
8 0.1733 0.1221 0.1216 0.083 -26.859
10 0.1433 0.1215 0.1051 0.0971 0.033 -32.111

Table 2.3. Optimum weights for symmetric arrays, broadside and BW=50◦

Number of Elements w1 w2 w3 w4 w5 Minimum SLL(dB)
2 0.5 -1.841
4 0.2361 0.2639 -8.259
6 0.2308 0.1140 0.1552 -20.265
8 0.1924 0.1233 0.1237 0.0606 -34.067
10 0.1756 0.1225 0.1163 0.0725 0.0132 -34.846

Table 2.4. Optimum weights for symmetric arrays, broadside and BW=60◦

From Table 2.2 to Table 2.4, it can be seen that the SLL can be improved with

adding more elements and extending beamwidth. Fig.2.5 and Fig.2.6 illustrate the

array factor of the ten-element array with BW=50◦ and BW=60◦.

Fig. 2.5. The array factor with optimal excitation coefficients and BW=50◦
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Fig. 2.6. The array factor with optimal excitation coefficients and BW=60◦

For the non-broadside arrays, the phase part of the excitation coefficients for the

elements should be considered to make the array scanning to other degrees. For that

kind of arrays, we will use the Particle Swarm Optimization(PSO) method to design

them, which will be discussed in next chapter.
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CHAPTER 3

PARTICLE SWARM OPTIMIZATION FOR
ASYMMETRIC ARRAY

3.1 Analysis of asymmetric array

The symmetric array was designed in the preceding chapter. In this chapter, the

asymmetric array will be designed. Compared with the symmetric case, the asym-

metric array will make the problem more complicated because the positions of certain

elements need not to be symmetric. But we can use the same method to analyze it

and solve it.

Fig. 3.1. An asymmetric array

The problem begins with the basic expression of array factor

AF (φ) = w1e
−jkd1cosφ + w2e

−jkd2cosφ + ...+ wNe
−jkdN cosφ (3.1)
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according to the Euler’s formula, (3.1) can be written as

AF (φ) =w1(−jsin(kd1cosφ) + cos(kd1cosφ)) + ...

+ wN(−jsin(kdNcosφ) + cos(kdNcosφ))

(3.2)

since the expression cannot be reduced to the form as the symmetric case, so it is

better to rewrite it as

AF (φ) =w1cos(kd1cosφ) + ...+ wNcos(kdNcosφ)

− j(w1sin(kd1cosφ) + ...+ wNsin(kdNcosφ))

(3.3)

For the array factor, it is the magnitude that is usually important. So the objective

function becomes |AF (φ)| =
√
AF (φ)AF (φ)∗. As we assumed in the case of sym-

metric array, when φ = φd, AF (φd) = 1. We can finally get the first two equations

that govern the performance of the asymmetric array

w1cos(kd1cosφd) + ...+ wNcos(kdNcosφd) = 1 (3.4)

w1sin(kd1cosφd) + ...+ wNsin(kdNcosφd) = 0. (3.5)

The weights are assumed to be real numbers now because the broadside arrays is

designed at first, the non-broadside array with complex weights will be discussed

later. The above two equations cannot guarantee that the magnitude of the array

factor reaches the peak at φd, one more constraint regarding its derivative should be

added:

∂AF (φ)AF (φ)∗

∂φ
|φd = 0. (3.6)
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From Fig.5.3, it can be seen that with iteration number increasing, the error de-

creases quickly, the slope of the line is around −0.007.

5.2 Noisy Environment

Our algorithm will next be demonstrated in the noisy environment, in order to

find the influence of the SNR to the algorithm, four groups of noise are selected, the

values of their SNR being 30dB, 25dB, 20dB and 10dB respectively. When the value

of their SNR is changed, the realization number M should be adjusted at the same

time, because a larger M is necessary to get the stable corrected coefficients and

the relative error with the noise increasing. By doing the comparisons with different

values of M , M is set as 100 for 30dB, 200 for 25dB, 500 for 20dB and 1000 for

10dB. The far-field electric field patterns (the iteration numbers are all set as 2000)

are shown in Fig.5.4-5.7, the error analysis (
P N

n=1|( bwn−wn)|P N
n=1|wn|

) of the cases with various

SNR and free-noise case (SNR=∞) are shown in Fig.5.8.

Fig. 5.4. The electric field patterns in far-field region, SNR=30dB
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Fig. 5.5. The electric field patterns in far-field region, SNR=25dB

Fig. 5.6. The electric field patterns in far-field region, SNR=20dB
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Fig. 5.7. The electric field patterns in far-field region, SNR=10dB

Fig. 5.8. The error analysis vs. the iteration with various SNR

From Fig.5.4-5.7, it can be seen that with the SNR decreasing, the difference be-

tween the corrected electric field pattern and the desired electric field pattern becomes

more and more obvious. When it is 30dB, the electrical pattern is still being corrected

well, but it is not as good as that under the noise-free environment, when the SNR

reaches 10dB, the corrected electric field is even worse than the actual electric field

in Fig.5.2, it means in that case the algorithm does not work at all. By Fig.5.4-5.7, it
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can be concluded that the noise plays an important role in our algorithm and there

exists the limit can make the algorithm stop working. It is more straightforward to

see the effect of noise to our algorithm in Fig.5.8, when there is no noise, the error

keeps decreasing with iteration number increasing. However, after the noise is added,

the performance of the error changes. If the SNR is above 10dB, the residual error

decreases with iteration number increasing at first, then they become constant even

the iteration number is still increasing. If the SNR is set as 10dB, the error increases

with iteration number increasing at first, then it is kept constant; it explains why the

corrected field is even worse than the uncorrected field in Fig.5.7. Another important

point is that when SNR is 30dB the final value of the error is around −13.4dB, then

it will increase to −11dB and −8dB with SNR decreasing to 25dB and 20dB. This

explains why the corrected electric field pattern becomes worse with SNR decreasing

in Fig.5.4-5.6.

Fig. 5.9. The error analysis vs. SNR

Fig.5.9 plots the final error levels for various SNR, it gives the approximate answer

to the question that for a given SNR, what is the accuracy of the algorithm? The

results are generated with 3000 iterations when all the errors are already stable and
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the slope of the line is around −0.53, it means if the SNR decreases by 10dB, the

error will increase by 5.3dB.

5.3 The Effect of Mutual Coupling

Thirdly, the effect of mutual coupling to the proposed algorithm is presented.

The corrected far-field electric field with considering the effect of mutual coupling

in noiseless environment is shown in Fig.5.10, Fig.5.11 shows the field with mutual

coupling and noise (SNR=25dB), both of them are gotten with 2000 iterations , the

error analysis for the case with mutual coupling is shown in Fig.5.12.

Fig. 5.10. The electric field patterns in far-field region with mutual coupling
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Fig. 5.11. The electric field patterns in far-field region with mutual coupling and
noise

Fig. 5.12. The error analysis vs. the iteration for mutual coupling

By comparing Fig.5.10 and Fig.5.11 with the corrected electric field patterns un-

der the environment without mutual coupling (Fig.5.2 and Fig.5.3), it can be seen

that the final results become worse in the case with mutual coupling under the same

condition. Fig.5.12 describes the change of the relative error with introduction of

mutual coupling, it makes the speed of converging of the algorithm slow down and it

will make the final error stay in a higher level (for SNR=25dB, the error is increased
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by around 0.2dB) compared with the case without mutual coupling, this is the same

as what we expected in the preceding chapter. Fig.5.13 shows the accuracy of the

algorithm with mutual coupling, it can be seen that mutual coupling increases the

final error level a little.

Fig. 5.13. The error analysis vs. SNR with mutual coupling

5.4 The Effect of Discrete Dither Signal

Finally, the corrected electric filed using the discrete dither signal and the error

analysis are shown in Fig.5.14-Fig.5.17. In Fig.5.14, the corrected electric filed using

the discrete dither signal in noiseless environment is shown, we can see it is corrected

well after 2000 iterations. Fig.5.15 and Fig.5.16 show the effect of using the discrete

dither signal to the algorithm with noise and mutual coupling, compared with cases

using the continuous dither signal, the difference is not that obvious. The error

analysis is presented in Fig.5.17 to support that.
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Fig. 5.14. The electric field patterns in far-field region with discrete dither signal

Fig. 5.15. The electric field patterns in far-field region with discrete dither signal
and noise
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Fig. 5.16. The electric field patterns in far-field region with discrete dither signal
and mutual coupling

Fig. 5.17. Error analysis with discrete dither signal

From Fig.5.14-5.16, we can get the conclusion that using the discrete dither signal

does not change the corrected fields so much compared with the results we got using

the continuous dither signal. In Fig.5.17, it is clear to see that for the cases with noise

and mutual coupling, the corresponding dash line which represents results using the

discrete dither signal in each case is almost the same as the solid line, for noiseless
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case, the difference is larger with iteration number increasing, but they both keep

decreasing. The effect of using the discrete dither signal is not so obvious because

the mean value we set for the discrete dither signal remains the same as it for the

continuous dither signal and the variance is very close to it in the continuous dither

signal, it ensures the statistical characteristic of the two dither signal being similar.

Even though sometimes using the discrete dither signal will slow down the speed of

converging for our algorithm, the difference is not so obvious and it can be ignored.
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CHAPTER 6

CONCLUSION

The Linear programming (LP) and the Particle Swarm Optimization (PSO) meth-

ods have been used to design the arrays in the first part of this thesis, respectively.

The LP method is demonstrated by broadside symmetric arrays with element number

from 2 to 10. The advantage of this method that it is easy to implement and fast have

been presented in this thesis, however its disadvantage that it cannot be used to solve

complicated nonlinear problem is also shown. Then the PSO method is introduced,

the PSO method is used to design the asymmetric arrays and the non-broadside ar-

rays, the two cases demonstrate the robustness of the PSO method in designing this

kind of array, the disadvantage that the PSO method is time-consuming is also shown

in this part.

In the second part, an adaptive method for correcting the current excitation of the

phased array via using dither signal and the NLMS algorithm has been proposed, and

it is demonstrated by a 32-element broadside array designed by the Taylor method

with side lobe level of −24dB. The advantage of the NLMS algorithm in determining

the optimal step size is demonstrated and the effect of noise and mutual coupling on

our algorithm have been shown. After the noise is added, it will make the corrected

coefficients stop converging to the desired coefficients when the iteration number reach

some certain numbers. In other words, the noise will decrease the accuracy of our

algorithm and there exists the limit for the noise. When it exceeds the limit, our

algorithm will not work, so when we use the algorithm we should pay attention to it.

For mutual coupling, it will not alter the essence of the algorithm, but it will affect the
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speed of converging and the accuracy of the algorithm. When the noise and mutual

coupling are considered together, they will affect the efficiency at the same time. In

the end, the discrete dither signal is considered because the continuous dither signal

cannot be generated by the attenuator and phase shifter in practice. Compared with

using the continuous dither signal, the discrete dither signal will slightly decrease the

speed of our algorithm, but if the values are set properly, the effect can be ignored.
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APPENDIX

PROOF OF NLMS ALGORITHM

The magnitude of the difference between the actual coefficients and the desired

coefficients is defined as: Γ(n) = |d− d̂(k)|, ρ is defined as ρ(n) = Γ(n)2 = |d− d̂(k)|2.

E[ρ(n+ 1)] = E[|d̂(n) + µ
(e(n))∗h(n)

(h(n))Hh(n)
− d|2] (A.1)

E[ρ(n+ 1)] = E[|d̂(n) + µ
((y(n))∗ − (ŷ(n))∗)h(n)

(h(n))Hh(n)
− d|2]. (A.2)

Let γ(n) = d(n) − d.

E[ρ(n+ 1)] = E[|γ(n) + µ
((y(n))∗ − (ŷ(n))∗)∗h(n)

(h(n))Hh(n)
|2] (A.3)

E[ρ(n+ 1)] = E[(γ(n) + µ
((y(n))∗ − (ŷ(n))∗)∗h(n)

(h(n))Hh(n)
)H(γ(n) + µ

((y(n))∗ − (ŷ(n))∗)∗h(n)

(h(n))Hh(n)
)].

(A.4)

Assuming the independence, we can get

E[ρ(n+ 1)] = ρ(n) + E[(µ
(e(n))∗h(n)

(h(n))Hh(n)
)H(µ

(e(n))∗h(n)

(h(n))Hh(n)
)]− 2E[µ

|(e(n))∗|2

(h(n))Hh(n)
] (A.5)

E[ρ(n+ 1)] = ρ(n) + µ2E[|(e(n))∗|2]
(h(n))Hh(n)

− 2µE[
|(e(n))∗|2

(h(n))Hh(n)
]. (A.6)

The optimal step is gotten at dE[ρ(n+1)]
dµ

= 0, then we can get

2µE[|(e(n))∗|2]− 2E[|(e(n))∗|2] = 0 (A.7)

µ = 1. (A.8)
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