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Phenomenology of the Equivalence Principle with Light Scalars

Thibault Damoura and John F. Donoghuea,b
aInstitut des Hautes Études Scientifiques

Bures sur Yvette, F-91440, France
and

bDepartment of Physics
University of Massachusetts
Amherst, MA 01003, USA

Light scalar particles with couplings of sub-gravitational strength, which can generically be called
‘dilatons’, can produce violations of the equivalence principle. However, in order to understand
experimental sensitivities one must know the coupling of these scalars to atomic systems. We report
here on a study of the required couplings. We give a general Lagrangian with five independent
dilaton parameters and calculate the “dilaton charge” of atomic systems for each of these. Two
combinations are particularly important. One is due to the variations in the nuclear binding energy,
with a sensitivity scaling with the atomic number as A−1/3. The other is due to electromagnetism.
We compare limits on the dilaton parameters from existing experiments.

The Equivalence Principle (EP) is one of the most
exquisitely tested features in science, with a present sen-
sitivity of

∆a

a
∼ 10−13 (1)

for comparisons of the acceleration of two test masses in
a gravitational field [1, 2]. Further tests of this prin-
ciple remain important because of this high precision
- the tests can be sensitive to very small effects that
other experiments might not notice [3, 4]. Indeed, new
space-based experiments such as MICROSCOPE [5], the
Galileo Galilei project [6] and STEP [7] as well as inno-
vative experiments with cold atoms [8, 9] and sub-orbital
rockets [10] are being planned that could push the sensi-
tivity several orders of magnitude further.
In comparing experiments, it is common to invoke a

hypothetical model with the exchange of a light vector
particle coupled to baryon number. This is convenient
because it is easy to know the baryon number of a given
material, and hence the coupling of this vector particle
to atomic systems is known. However this is an unlikely
physical situation, as very light and very weakly cou-
pled vectors are rare in modern theories. A more plau-
sible candidate as a source of EP violation is a light1

scalar field with a coupling to matter that is weaker than
gravitational strength. We will refer to these generically
as ‘dilatons’, although they may have origins other than
string theory or models involving dilation symmetry [11–
14]. Being Lorentz scalars, dilatons will couple to Lorentz
invariant combinations of the Standard Model fields, the
quarks, gluons and photons. Significant theoretical effort
is needed to translate these fundamental interactions into
the required couplings of the atomic systems used in ex-

1 We will generally assume in the following that the scalar field
we consider is essentially massless on the scales that we discuss,
although is it simple to modify this assumption.

periments. In [15] we provide an extensive study of the
theoretical ingredients to this program, and in this pa-
per we summarize the results which are most useful to
experiments.
The important physics is readily understood, even if it

is somewhat more difficult to calculate. Most of the mass
of atomic systems comes from the gluonic QCD interac-
tions, which sets the scale for the strong interactions.
However, atomic masses also have smaller dependencies
on the masses of the light quarks and on the electric
charge. This can occur either in the masses of the indi-
vidual nucleons or in the binding energy of the nucleus.
General relativity couples universally to all forms of en-
ergy, but dilaton couplings can and will vary among the
different ingredients to the total atomic mass. We find
particular sensitivity in the binding energy coming from
the quark mass dependence, and this is the most novel
aspect of our analysis2. As described below, in addi-
tion to the well known dependence on electromagnetism,
the binding energy has an enhanced dependence on the
quark masses because of the importance of the pion in
nuclear binding and the strong dependence of the pion
mass on the light quark masses. Although we provide a
description of all effects, we will also provide a simpler
parameterization of the dominant hadronic binding sen-
sitivity, proportional to A−1/3, and the electromagnetic
sensitivy, proportional to Z(Z − 1)/A4/3 .
A massless dilaton φ modifies the Newtonian interac-

tion between a mass A and a mass B, into the form (see,
e.g. [13])

V = −GmAmB

rAB
(1 + αAαB). (2)

If the dilaton mass is important the second term includes
an extra exponential factor exp(−mφrAB). In this inter-

2 Damour [3] and Dent [16] have highlighted this need for the study
of the nuclear binding energies.
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action potential, the scalar coupling to matter is mea-
sured by the dimensionless factors, αA,B. To calculate
these, we add the dilaton Lagrangian to that of the Stan-
dard Model and use the result to evaluate the total mass
of the atomic system. The αA coupling is then found via

αA =
1

κmA

∂[κmA(φ)]

∂[κφ]
. (3)

Here, κ ≡
√
4πG is the inverse of the Planck mass3 so

that the products κmA and κφ are dimensionless. This
ensures that this definition of αA is valid in any choice of
units. In terms of the αA’s, the violation of the (weak)
EP, i.e. the fractional difference between the accelera-
tions of two bodies A and B falling in the gravitational
field generated by an external body E, reads

(

∆a

a

)

AB

≡ 2
aA − aB
aA + aB

=
(αA − αB)αE

1 + 1
2 (αA + αB)αE

≃ (αA − αB)αE . (4)

In the last (approximate) equation we have assumed that
the α’s are small.

We couple the dilaton to the light fields of the Stan-
dard Model. The heavy quarks and weak gauge bosons
are assumed to be integrated out and we assume that
the dilaton theory has been matched to the light fields
below the scale of the heavy quarks. This procedure in-
troduces five dimensionless dilaton-coupling parameters,
de, dg for the couplings to the electromagnetic and glu-
onic field-strength terms, and dme

, dmu
, dmd

for the cou-
plings to the fermionic mass terms. [We are using here
the fact that a φ−dependent coupling to the kinetic term
of a fermion, f(φ)ψ̄i /Dψ, can be absorbed in a suitable
φ−dependent rescaling of ψ.] We add these interac-
tions to that of the Standard Model, L = LSM + Lint

and normalize these five dimensionless dilaton parame-
ters de, dg, dme

, dmu
, dmd

so that they correspond (when
considering the linear couplings to φ) to

Lint = κφ

[

+
de
4e2

FµνF
µν − dgβ3

2g3
FA
µνF

Aµν

−
∑

i=e,u,d

(dmi
+ γmi

dg)miψ̄iψi



 (5)

These are chosen to correspond to renormalization group
invariants [14, 15]. For the quark mass terms, physics
tells us that it is preferable to work with the symmetric
and antisymmetric combinations

m̂ =
1

2
(md +mu) , δm = (md −mu) (6)

3 We use units such that c = 1 = ~.

so that we define dilaton parameters dm̂, dδm conjugate
to these combinations

Lint = ....− κφ

[

dm̂m̂(d̄d+ ūu) +
dδm
2
δm(d̄d− ūu)

]

(7)
and use these parameters instead of dmu

, dmd
.

We need to calculate the effect of these couplings for
atoms. In order to do this we transform the scalar field
dependence into an implicit dependence on the param-
eters of the Standard Model, and use the decades of
research connecting the Standard Model to observable
physics. For example, we follow the pioneering method
of [11] for the electromagnetic coupling

LEM = −1− deκφ

4e2
FµνF

µν ≃ − 1

4(1 + deκφ)e2
FµνF

µν

(8)
where the last equality is valid at the linear level in κφ
(which is the level at which we define the dilaton cou-
plings here). As we work with a rescaled electromagnetic
field (Ahere = eAusual), the only location where the elec-
tric charge occurs in the Lagrangian is the one explicitly
shown above. This allows the dilaton field to be absorbed
into the following φ dependence of the fine-structure con-
stant α = e2/(4π)

α(φ) = (1 + deκφ)α . (9)

and allows us to obtain the dilaton coupling from the
dependence of the masses on the electric charge

α
(de)
A =

de
mA

α
∂mA

∂α
. (10)

Likewise the fermion mass terms are normalized such
that we can define a field-dependent mass

mi(φ) = (1 + dmi
κφ)mi , i = u, d, e (11)

and we obtain the dilaton coupling from the dependence
of the atomic masses on the fermion masses. Finally, the
terms proportional to the gluonic coupling dg are normal-
ized so that they are proportional to the QCD trace of
the energy momentum tensor [14, 15], which allows the
matrix element to be readily calculated. This turns the
parameter dg into one that measures the φ sensitivity of
the QCD mass scale, say Λ3. We then have

∂ ln Λ3

∂[κφ]
= dg ,

∂ lnmi(Λ3)

∂[κφ]
= dmi

. (12)

Variation of dimensionless ratios such as ln(mi/Λ3) then
involve differences of the coupling parameters dm − dg.
The structure of the coupling to individual nucleons

is reasonably well known. The quark mass contributions
are known from the nucleon sigma term [17] and from
the baryon mass splittings, and electromagnetic contri-
butions to the masses have been estimated [18].
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Nuclear binding is well parameterized by the semi-
empirical mass formula4,

Ebind = −avA+ asA
2/3 + aa

(A− 2Z)2

A
+ ac

Z(Z − 1)

A1/3
.

(13)
Typical fit values for these parameters are [19] av =
16 MeV, as = 17 MeV, aa = 23 MeV, ap = 12 MeV, ac =
0.717 MeV. The Coulomb term ac is linear in the electro-
magnetic fine structure constant and therefore directly
yields the electromagnetic coupling that we need. For
the hadronic component, we use our previous work on
the quark-mass dependence of nuclear binding [20]. The
primary physics here is that the central nuclear potential
has an important component from the exchange of two
pions. Because of the nature of chiral symmetry in QCD,
the pion mass-squared is directly proportional to the av-
erage light quark mass, m2

π ∼ m̂. In the overall binding
energy, there is a partial cancelation between the attrac-
tive two pion component, which is particularly sensitive
to the pion mass, and the repulsive short range potential,
which is less sensitive. The variation with pion mass then
is stronger than simple expectations. We have estimated
the variation of both the central terms av, as and the
asymmetry energy aa and find the following contribution
to αA

ᾱbind
A = (dm̂ − dg)FA ×

[

0.045− 0.036

A1/3

− 0.020
(A− 2Z)2

A2
− 1.42× 10−4 Z(Z − 1)

A4/3

]

.(14)

Here we use the notation

FA ≡ Amamu

mA
(15)

where we takemamu = 931MeV as the nucleon mass with
the average binding energy, 8 MeV, subtracted. This
factor is very close to unity throughout the periodic table.
We estimate a 30% uncertainty in these numbers, and
note that our formalism in [15] is most reliable for heavier
elements.
In order to highlight the difference between various

materials we define

αA = dg + ᾱA (16)

The overall common coupling dg does not violate the EP,
while the EP variation is contained in ᾱ. The result of our
calculation can be summarized in four ‘dilaton charges’
Qm̂, Qδm, Qme

, Qe. Each charge gives the strength
of the EP-violating coupling corresponding to a given
dilaton parameter for an atom of charge Z and atomic

4 For simplicity in this Letter we drop the pairing interaction as it
does not play a significant role in our analysis

number A, namely

ᾱA = [(dm̂ − dg)Qm̂ + (dδm − dg)Qδm

+ (dme
− dg)Qme

+ deQe]A . (17)

The four dilaton charges are given by

Qm̂ = FA

[

0.093− 0.036

A1/3
− 0.020

(A− 2Z)2

A2

− 1.4× 10−4 Z(Z − 1)

A4/3

]

, (18)

Qδm = FA

[

0.0017
A− 2Z

A

]

, (19)

Qme
= FA

[

5.5× 10−4 Z

A

]

, (20)

and

Qe = FA

[

−1.4 + 8.2
Z

A
+ 7.7

Z(Z − 1)

A4/3

]

× 10−4. (21)

Again note that FA (see Eq. (15)) can be readily approx-
imated as unity.
Inspection of our general results of the previous para-

graph reveals that many terms have small effects. In-
deed, insertion of representative values of A, Z indicate
that there are two dominant effects - those of the A−1/3

and Z(Z − 1)/A4/3 variation in the binding energy, from
strong and electromagnetic effects respectively. Until
such fortunate time when we need high precision to ac-
count for multiple measurements, we can obtain a more
useful formula by truncating to these two terms. Doing
so yields a simpler, approximate formula involving only
two dilaton charges

αA ≃ d∗g + [(dm̂ − dg)Q
′

m̂ + deQ
′

e]A (22)

where

d∗g = dg + 0.093(dm̂ − dg) + 0.00027de (23)

and where

Q′

m̂ = −0.036

A1/3
− 1.4× 10−4 Z(Z − 1)

A4/3
(24)

and

Q′

e = +7.7× 10−4Z(Z − 1)

A4/3
. (25)

We think that these approximate expressions capture all
the potentially dominant EP violation effects. These
dilaton charges for many materials are shown in Table
I.
The signals for EP-violation then has two terms,

namely
(

∆a

a

)

BC

= (αB −αC)αE = [Dm̂Q
′

m̂ +DeQ
′

e]BC (26)
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TABLE I: Approximate EP-violating ‘dilaton charges’ for a
sample of materials. These charges are averaged over the
(isotopic or chemical, for SiO2) composition.

Material A Z −Q′

m̂ Q′

e

Li 7 3 18.88 ×10−3 0.345 ×10−3

Be 9 4 17.40 ×10−3 0.494 ×10−3

Al 27 13 12.27 ×10−3 1.48 ×10−3

Si 28.1 14 12.1 ×10−3 1.64 ×10−3

SiO2 ... ... 13.39 ×10−3 1.34 ×10−3

Ti 47.9 22 10.28 ×10−3 2.04 ×10−3

Fe 56 26 9.83 ×10−3 2.34 ×10−3

Cu 63.6 29 9.47 ×10−3 2.46 ×10−3

Cs 133 55 7.67 ×10−3 3.37 ×10−3

Pt 195.1 78 6.95 ×10−3 4.09 ×10−3

where [Q]BC ≡ QB−QC , and where the ‘ dilaton charges’
are (approximately) given by Eq. (24) and Eq. (25). The
corresponding dilaton coefficients Di are given by

Dm̂ = d∗g (dm̂ − dg) , De = d∗g de . (27)

If we were assuming that the dilaton parameter de is
much smaller than dm̂ − dg, we could go further and
conclude (in view of the numerical results indicated in
Table I) that the signal Q′

e is sub-dominant w.r.t. Q′

m̂.
In that case we would end up with a uni-dimensional EP
signal proportional to [Q′

m̂]BC .
As an application of our results, let us extract the con-

straints on the dilaton parameters from the most sensi-
tive present experiments. The EötWash experiment [1]
compares Be (A=9, Z=4) and Ti (A=47.9, Z=22), with
the constraint
(

∆a

a

)

BeTi

= (αBe − αTi)αEarth = (0.3± 1.8)× 10−13

(28)
Working at the two-sigma level, i.e. (0.3 ± 3.6)× 10−13,
and neglecting the central value 0.3, the rewriting of this
equation in terms of the theoretical dilaton parameters
Dm̂, De yields

|Dm̂ + 0.22De| ≤ 5.1× 10−11 (29)

The Lunar Laser Ranging experiment [2] compares the
acceleration of the Earth and the Moon towards the Sun,

with the constraint

(

∆a

a

)

LLR

= (αEarth−αMoon)αSun = (−1.0±1.4)×10−13

(30)
We approximate the Earth’s mantle composition as being
SiO2, and the Earth’core as being iron, with the Moon
being similar to the mantle. The constraint here is

|Dm̂ + 0.28De| ≤ 24.6× 10−11 (31)

We see that although the Lunar experiment has a
slightly better differential-acceleration sensitivity, the
laboratory-based test is more sensitive to the dilaton co-
efficients because of a greater difference in the dilaton
charges of the materials used, and of the fact that only
one-third of the Earth mass is made of a different mate-
rial. Note that, in the dilaton models considered here, the
EP-violation associated to the gravitational self energy
[21] is negligible compared to the the matter couplings
that we have calculated above.

In summary we have given a general description of EP
violations associated to the possible couplings of light
scalars, and in particular have calculated, for the first
time, the effects of nuclear binding (using recent work
on its quark-mass dependence). The resulting A−1/3 de-
pendence is seen to be one of the major factors for EP
violations due to the dilaton couplings, along with the
previously quantified Z(Z − 1)/A4/3 dependence of the
electromagnetic interaction. We expect that our results
will be useful in assessing the optimal choices for ma-
terials in future experiments, and in interpreting their
results. These upcoming experiments have the poten-
tial to probe new territory in fundamental physics and
may have the opportunity to uncover rare and exciting
physics.
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