2010

Employment and Distribution Effects of the Minimum Wage

Fabian Slonimczyk
International College of Economics and Finance, Higher School of Economics, Moscow

Peter Skott
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/econ_workingpaper

Part of the Economics Commons

Recommended Citation
https://doi.org/10.7275/1297559

This Article is brought to you for free and open access by the Economics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Economics Department Working Paper Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Employment and Distribution Effects of the Minimum Wage

by

Fabian Slonimczyk and Peter Skott

Working Paper 2010-03
Employment and Distribution Effects of the Minimum Wage

Fabián Slonimczyk* Peter Skott†

March 26, 2010

Abstract

This paper analyzes the effects of the minimum wage on wage inequality, relative employment and over-education. Using an efficiency wage model we show that over-education can be generated endogenously and that an increase in the minimum wage can raise both total and low-skill employment, and produce a fall in inequality. Evidence from the US suggests that these theoretical results are empirically relevant. The over-education rate has been increasing and our regression analysis suggests that the decrease in the minimum wage may have led to a deterioration of the employment and relative wage of low-skill workers.

JEL classification: J31, J41, J42

Key words: Minimum wage, earnings inequality, monopsony, efficiency wage, over-education.

*International College of Economics and Finance, Higher School of Economics, Moscow; email: fslonimczyk@hse.ru
†University of Massachusetts, Amherst; email: pskott@econs.umass.edu
1 Introduction

This paper analyzes the effects of changes in the minimum wage on wage inequality, relative employment and the prevalence of mismatch (over-education) in the labor market.

Studies by DiNardo et al. (1995) and Lee (1999) have suggested that changes in the minimum wage and other labor market institutions have been important for the observed increase in inequality. This claim has obvious appeal. It is easy to see how these institutional changes may have put downward pressure on low-skill wages. However, in a standard model the change in relative wages will raise the demand for low-skill workers. Contrary to this prediction, low skill workers appear to have lost ground in terms of both wages and employment.

The simultaneous increase in the relative wage and employment of high-skill workers has been interpreted as evidence of skill-biased technical change (e.g. Levy and Murnane, 1992; Acemoglu, 2002). Other interpretations are possible, however, and in this paper we use the theoretical framework in Skott (2006) to show that a fall in the minimum wage can generate a deterioration in the position of low-skill workers, both in terms of wages and employment. The presence of mismatch is central to the argument. As shown by Sattinger (2006) and Skott (2005, 2006), relative wages and employment can move in the same direction, even in the absence of any skill bias, if the prevalence of mismatch is determined endogenously. Induced changes in mismatch, moreover, can contribute to an explanation of changes in within-group or residual inequality.

To keep matters as simple as possible, we assume that high-skill workers can get two types of jobs (‘good’ high-tech jobs and ‘bad’ low-tech jobs), whereas low-skill workers have only one type of employment opportunity (low-tech). Monitoring of workers’ effort is imperfect, contracts are incomplete, and workers cannot convincingly pre-commit to not shirking. One solution is for firms to use the threat of dismissal as a way to elicit effort (Shapiro and Stiglitz, 1984; Bowles, 1985). For this threat to work, both good and bad jobs must be rationed to ensure that employed workers receive a rent over and above their best alternative. Good jobs pay more than bad jobs, which in turn must pay more than unemployment. In equilibrium there will be both un- and under-employment (some high-skill workers have bad jobs that do not utilize their skills), and inequality between groups will depend not only on the wage gap between good and bad jobs, but also on the degree of mismatch. As long as some matches of high-skill workers and bad jobs are sustained in equilibrium, changes in exogenous variables will affect not only wages and employment rates but also the degree of mismatch. These induced changes in the degree of underemployment of high-skill workers lie behind the monopsonistic effects. An increase in the minimum wage can reduce the employment of high-skill workers in low-tech jobs, and this
deterioration of the employment conditions for high-skill workers relaxes the no-shirking condition in high-tech jobs and stimulates employment.

Monopsonistic effects have been introduced into efficiency wage models by Rebitzer and Taylor (1995) but our mechanism is very different. Rebitzer and Taylor assume that firms have fixed monitoring resources, so that the probability of detecting a shirking worker is decreasing in the total number of employees. Thus, firms are forced to increase wages, and with them the potential penalty of dismissal, pari-passu with employment. In other words, firms face an upward sloping labor (effort) supply curve, and a binding minimum wage may induce an increase in employment, just as in the classical monopsony case. Unlike Rebitzer and Taylor, we have two different types of workers, and this heterogeneity, in combination with the presence of mismatch, implies that monopsonistic features can arise even with exogenously given probabilities of detection.1 In our setting, unemployment, mismatch and monopsonistic effects are generated by the same efficiency-wage mechanism.2

The monopsonistic effects provide a link to another strand of literature. The monopsony model, literally interpreted to apply to single buyer markets, may have little relevance (for example see Stigler, 1946) but as argued by Manning (2003, 2004), labor markets can be monopsonistic, even if there is a multiplicity of buyers of labor. Indeed, the survey by Boal and Ransom (1997) describes several alternative multi-agent models that lead to many of the same conclusions as classic single-buyer monopsony. We contribute to this literature by showing that efficiency wages can generate economy-wide monopsony effects as well as skill mismatch.

The significance of the theoretical analysis depends on the degree of mismatch. While measuring mismatch has proved challenging, studies suggest that over-education is widespread in all OECD countries. Estimates range between 10 and 40\%, and the evidence also shows large differences in the returns to education to different workers, depending on whether they are over- or under-qualified for their jobs (Sicherman, 1991; Groot and Maassen van den Brink, 2000).3 Combining data from the Dictionary of Occupational Titles and the Current Population Survey, our own estimates in this paper produce over-education rates of about 15–25\% in the US, and the rate of over-education changes substantially between 1973 and 2002 (the period for which we have data).

Our theoretical model generates predictions for the effect of the mini-

1The model can be extended to include fixed monitoring resources, as in Rebitzer and Taylor. An appendix with this extension is available on request.

2This is unlike the analysis in Manning (2003, pp. 256–262), where efficiency wage elements and involuntary unemployment are added to models with monopsonistic features.

3Some studies have suggested that individual ability bias explains these results. Slonimczyk (2008), however, shows that differences in the returns to surplus and required qualifications persist when fixed effects are introduced.
mum wage on unemployment, over-education, relative wages and relative employment. We focus on estimating the relevant reduced-form equations. We look at time series variation for the US as a whole and supplement these regressions with panel regressions using state-level data.

This approach is unlike most recent empirical work on the employment effects of the minimum wage, which looks at specific groups or industries that are likely to be strongly affected, such as teenagers and restaurants (see Card and Krueger (1995), Dube et al. (2007), and Brown (1999) and Neumark and Wascher (2006) for surveys). Our theoretical argument, however, concerns macro effects on the entire labor market, and these macro effects can not be captured by a partial study of employment effects for a small subset of workers or industries. Nothing in our argument precludes adverse employment effects in some industries or for some groups of workers. The argument for positive employment effects in this paper is not that the individual employer has monopsonistic power and therefore increases employment and output in response to a rise in the minimum wage. Nor do we rely on inelastic demand for the output of sectors with a high proportion of low-skill workers.

The regression results are consistent with monopsonistic effects of changes in the minimum wage. The coefficient on minimum wages is negative (but not always statistically significant) in all time series and panel regressions for the low-skill unemployment, high-skill unemployment and the degree of over-education. The regressions also give the expected negative effect of the minimum wage on the wage premium in high-skill jobs. The theoretical model and the presence of mismatch, finally, have implications for the estimation of the elasticity of substitution in production, and this paper provides the first estimates of the elasticity of substitution between high- and low-tech jobs—as opposed to between high- and low-skill workers. Our estimates suggest that the degree of substitutability between inputs may be lower than indicated by studies that focused on skills rather than job types.

One obvious shortcoming of aggregate time series data is the small number of observations—in our case 30 years. The construction of a relevant minimum wage also raises problems since some state level minimum wages exceed the Federal minimum. Panel data improves matters in some respects. The number of observations increases, the minimum wage can be defined at the state level, and the non-binding Federal level in some states

4The model in section 3 suggests that an increase in minimum wages may lead to expansion of employment of low-skill adult workers (their no-shirking condition has been relaxed), but the expansion may happen at the expense of both teenage workers and mismatched high-skill workers. This outcome would be in line with Neumark and Wascher’s (2006) finding that an expansion of the earned income tax credits generate a displacement of teenage women by low-skill adult women.

5Changes in the coverage of the minimum wage could also be a potential source of difficulties. However, coverage was stable over the period that we consider.
— which is a problem in time series regressions — now becomes an advantage. But endogeneity issues, in particular with respect to the relative labor supply, lead to other problems.\footnote{Changes in the minimum wage could also be partly endogenous (Card and Krueger, 1995; Autor et al., 2008). We address this issue in section 4.5.} These limitations and problems imply that the results should be interpreted with care.

The paper is in five sections. Section 2 describes the basic efficiency wage model with endogenously generated mismatch. The effects of changes in a binding minimum wage are examined in Section 3. Section 4 presents the empirical evidence, and Section 5 concludes.

2 An efficiency wage model with endogenous mismatch

There are two types of job and two types of workers. Jobs are either high-tech or low-tech. Workers can be high-skill or low-skill, and the level of skill is the product of past decisions to invest in human capital, which are taken as given. Only high-skill workers can occupy high-tech positions, but both worker types compete for the low-tech positions.

Firms maximize profits subject to a production function that has only two inputs,

\[Y = F(N_H, N_L) \]

where \(N_H \) and \(N_L \) are the total number of high- and low-tech jobs that have been filled (with non-shirking workers). This specification assumes that high- and low-skill workers are perfect substitutes in low-tech jobs and, to avoid an extra parameter, that they are equally productive. There are constant returns to scale.

The first order conditions with respect to the employment levels yield:

\[w_H = F_1(N_H, N_L) \]
\[w_L = F_2(N_H, N_L) \]

where it is important to note that the marginal products \((F_i) \) correspond to jobs. If \(N_{ij} \) denotes the employment of worker type \(i \) in jobs of type \(j \) \((i = H, L; j = H, L)\) then \(N_H = N_{HH} \) and \(N_L = N_{HL} + N_{LL} \).

Following Shapiro and Stiglitz (1984), an employed worker of type \(i \) in a job of type \(j \) gets a wage \(w_{ij} \) and instantaneous utility

\[u_{ij} = \begin{cases} w_{ij} - e_{ij} & \text{if not shirking} \\ w_{ij} & \text{if shirking} \end{cases} \]
where e_{ij} is the worker’s disutility associated with exerting effort. Workers are risk neutral and discount future outcomes at the rate ρ.

Firms set wages to ensure that workers’ best response is to exert effort. Monitoring is costly, and shirkers are detected (and fired) according to a positive but finite hazard rate (δ). The rate of job termination for non-shirking workers (p) is also positive and finite. Discount and termination rates are assumed constant across worker types.

These assumptions define three no-shirking conditions:

\begin{align*}
\rho V_{HH} &= w_{HH} - e_{HH} - p(V_{HH} - V_{HU}) \\
&= w_{HH} - (p + \delta)(V_{HH} - V_{HU}) \\
\rho V_{HL} &= w_{HL} - e_{HL} - p(V_{HL} - V_{HU}) + q_{HLH}(V_{HH} - V_{HL}) \\
&= w_{HL} - (p + \delta)(V_{HL} - V_{HU}) + q_{HLH}(V_{HH} - V_{HL}) \\
\rho V_{LL} &= w_{LL} - e_{LL} - p(V_{LL} - V_{LU}) \\
&= w_{LL} - (p + \delta)(V_{LL} - V_{LU})
\end{align*}

where the V_{ij} are the value functions associated with each of the three employment states and q_{ijk} are transition rates for workers of type i in jobs of type j, and transitioning into job type k. Equations (4) through (6) incorporate the assumptions that low-skill workers get only low-tech jobs and high-skill workers prefer high-tech jobs (the transition rates q_{HHL} and q_{LLH} are zero). If the no-shirking conditions are binding, equations (4)–(6) imply that

\begin{align*}
V_{HH} - V_{HU} &= \frac{e_{HH}}{\delta} \\
V_{HL} - V_{HU} &= \frac{e_{HL}}{\delta} \\
V_{LL} - V_{LU} &= \frac{e_{LL}}{\delta}
\end{align*}

There are no unemployment benefits or home production, and the flow of instantaneous utility is zero when unemployed. Thus, the value functions for unemployed workers are given by:

\begin{align*}
\rho V_{HU} &= q_{HUH}(V_{HH} - V_{HU}) + q_{HUL}(V_{HL} - V_{HU}) \\
\rho V_{LU} &= q_{LUL}(V_{LL} - V_{LU})
\end{align*}

Using equations (4)–(11) and assuming that the transition probabilities for a high-skill worker into high-tech jobs are the same independently of whether the worker is unemployed or under-employed ($q_{HUH} = q_{HLH} = q_{HH}$), we can solve for wages:
\[
\begin{align*}
w_{HH} &= e_{HL} \frac{\delta + \rho + p + q_{HH} + q_{HUL}}{\delta} + (e_{HH} - e_{HL}) \frac{\delta + \rho + p + q_{HH}}{\delta} \\
w_{HL} &= e_{HL} \frac{\delta + \rho + p + q_{HH} + q_{HUL}}{\delta} \\
w_{LL} &= e_{LL} \frac{\delta + \rho + p + q_{LUL}}{\delta}
\end{align*}
\]

Given the termination rates for shirkers and non-shirkers and a constant supply of both types of workers \((H, L)\), all transition probabilities \((q)\) can be determined through steady state conditions that depend only on employment levels. In a steady state, the unemployment rates and the rate of mismatch are constant, and entries and exits from each of the employment states are balanced. Formally:

\[
\begin{align*}
q_{HH}(H - N_H) &= pN_H \\
q_{HUL}(H - N_H - N_{HL}) &= pN_{HL} + q_{HH}N_{HL} \\
q_{LUL}(L - N LL) &= pN_{LL}
\end{align*}
\]

Using (15)–(17), the wage equations (the no-shirking conditions) can be written

\[
\begin{align*}
w_{HH} &= e_{HL} \frac{\delta + \rho + p_H}{\delta} + (e_{HH} - e_{HL}) \frac{\delta + \rho + p_{H-H}}{\delta} \\
w_{HL} &= e_{HL} \frac{\delta + \rho + p_H}{\delta} \\
w_{LL} &= e_{LL} \frac{\delta + \rho + p_L}{\delta}
\end{align*}
\]

The no-shirking conditions (18)–(20) define three distinct wage rates. However, at an interior solution with both high- and low-skill workers in low-tech jobs, we must have \(w_{HL} = w_{LL} = w_L\) since otherwise profit maximizing firms would never hire both types of workers. Trivially, \(w_H = w_{HH}\) since only high-skill workers have high-tech jobs.

Equations (18)–(20) can be combined with the first order conditions (2)–(3) to solve for equilibrium values of employment \((N_H, N_{HL}, N_{LL})\) and wages \((w_H, w_L)\) in the absence of a binding minimum wage. Using (18)–(20) it is readily seen that the two groups of workers will have the same unemployment rates \((u_H = H - N_H - N_{HL}) = L - N_{LL} = u_L\) if \(e_{HL} = e_{LL}\). Empirically, unemployment rates for low-skill workers are higher than for
high-skill workers, and we assume $e_{LL} > e_{HL}$. The same equations show that the two unemployment rates must move together. From the wage equations it follows, finally, that high-tech jobs pay a higher wage than low-tech jobs if $e_{HH} > e_{HL}$; we assume this condition is met.

As shown by Skott (2006), this model can generate seemingly paradoxical effects. Neutral shifts in the production function may affect the relative wage and the relative employment rate of high-skill workers in the same direction and, moreover, since it hurts the employment prospects of low-skill workers, an increase in the supply of high-skill labor can lead to an increase in the skill premium.

3 Minimum wages

Now suppose that a minimum wage w is established and that this minimum wage is binding for low-tech but not for high-tech jobs. We are interested in the effects of an increase in w on employment and wages.

With constant returns to scale and perfect competition, an equilibrium must be characterized by zero profits. To satisfy this condition, an increase in one of the wage rates must be associated with a decline in the other wage. By assumption the minimum wage is binding for low-tech jobs, and an increase in the minimum wage must therefore reduce the wage in high-tech jobs. Using the first-order conditions (2)–(3), the resulting decline in the wage ratio w_H/w_L generates an increase in the employment ratio N_H/N_L. This general result is independent of the wage equations. Additional results, however, require assumptions about mismatch.

3.1 A standard model without mismatch

Without mismatch, the no-shirking condition for high-skill workers reads

$$w_H = e_{HH} \frac{\delta + \rho + p_H}{\delta}$$

and the no-shirking condition for low-skill workers is replaced by the binding minimum wage

$$w_L = w$$

Using (21), a decline in w_H implies a fall in N_H and since the employment ratio N_H/N_L rises, low-skill employment must also fall. These results do

7 A similar result could be obtained with equal levels of effort disutility but different detection rates of shirkers ($\delta_{HL} > \delta_{HH}$).

8 Assume that both wages at the new equilibrium were greater than or equal to wages at the original equilibrium (with at least one strict inequality). In this case firms would have been able to make positive profits at the original configuration of wage rates and the initial position could not have been an equilibrium.
not depend on the efficiency-wage formulation. The same conclusions apply whenever the relevant "supply" curve for high-skill labor is upward sloping and independent of the minimum wage (a completely inelastic curve implies that high-skill employment is unaffected by an increase in the minimum wage while low-skill employment falls).

3.2 Minimum wages and induced mismatch

If the minimum wage is binding then, by definition, the no-shirking condition cannot be binding for both high- and low-skill workers in low-tech jobs. It may be binding for one or the other, but the minimum wage only has bite if firms could fill a larger number of low-tech jobs with non-shirking workers at an unchanged wage. We consider two polar cases. In the first case, the no-shirking condition is always binding for low-skill workers; in the second case it is always binding for high-skill workers.

In his study of wage setting behavior, Bewley (1999) found that overqualified job applicants were common but that many employers were reluctant to hire them. Indeed, this “shunning of overqualified job applicants” is highlighted as one of two novel findings of the study (p.18). Attitudes to overqualified applicants differed somewhat between primary and secondary sector jobs, where secondary sector jobs are defined as short-term positions that are often part time. Both sectors received applications from overqualified workers, but for primary sector jobs 70 percent of firms expressed a “total unwillingness” to hire them, 10 percent were “partially unwilling” and only 19 percent were “ready to hire” overqualified applicants (pp. 282–83). Two main reasons account for the negative attitude to overqualifications: a concern that applicants would quit again as soon as possible and a concern that applicants would be unhappy on the job. Secondary sector employers had fewer reservations, but only a minority (47 percent) “were ready to hire them” with 30 percent being “totally unwilling” and 23 percent “partially unwilling” (p. 324).

Bewley’s findings support our first case: they suggest that firms may prefer low-skill workers in low-tech jobs if both high- and low-skill workers are available at the same wage cost. Büchel (2002), however, suggests that “over-educated workers are generally more productive than others” and that, because of this, “firms hire over-educated workers in large numbers.” This claim would seem to support our second case.

3.2.1 Case 1: Mismatch with low-skill workers preferred in low-tech jobs

When firms prefer low-skill workers in low-tech jobs, high-skill workers will only be hired for low-tech jobs if the no-shirking condition is binding for low-skill workers. Thus, the no-shirking condition for low-skill workers is
satisfied as an equality while the minimum wage exceeds the expression for \(w_{HL} \) in (19).

Since the no-shirking condition for high-skill workers in low-tech jobs fails to be satisfied as an equality, equation (8) no longer holds. Instead—using (4), (5), (10) and \(w_L = \bar{w} \)— we have

\[
V_{HL} - V_{HU} = \frac{w - e_{HL}}{\rho + p + q_{HH} + q_{HUL}} = \frac{w - e_{HL}}{\rho + p_{H - N_H - N_{HL}}} \tag{23}
\]

and the no-shirking conditions for high-skill workers in high-tech jobs and low-skill workers can be written,

\[
w_H = \frac{\delta(w - e_{HL})}{\rho + p_{H - N_H - N_{HL}}} \delta + \rho + p_{H - N_H - N_{HL}} +
\left(e_{HH} - \frac{\delta(w - e_{HL})}{\rho + p_{H - N_H - N_{HL}}} \right) \delta + \rho + p_{H - N_H} \tag{24}
\]

\[
w = w_L = \frac{\delta + \rho + p_{L - N_{LL}}}{\delta} \tag{25}
\]

Equation (25) shows that \(N_{LL} \) will increase following a rise in the minimum wage, that is, low-skill workers will benefit both in terms of wages and employment. This important result is quite intuitive. By assumption the no-shirking condition represents the binding constraint on low-skill employment, and an increase in the minimum wage relaxes this constraint. A higher minimum wage may also affect the number of low-tech jobs but that has no effect on low-skill employment as long as some low-tech jobs are filled with high-skill workers.

The solution for \(N_H \) and \(N_{HL} \) is not quite as simple. The high-tech wage and the ratio of high-tech to low-tech jobs are determined, as before, by the first order conditions (2)–(3), and the values of \(N_H \) and \(N_{HL} \) can be derived using (24) and the definitional relation

\[
N_H = \frac{N_H}{N_L} (N_{HL} + N_{LL}) \tag{26}
\]

The effect of a rise in \(w \) on \(N_H \) is ambiguous. There may be a negative effect on the number of high-skill jobs, not surprisingly, but a positive effect on \(N_H \) can be obtained if \(N_{LL} \) is elastic and an increase in \(w_L \) generates a large decrease in \(N_{HL} \). This possibility is illustrated numerically in Table 1.

An increase in \(N_H \) is a necessary condition for other interesting effects. The employment ratio \(N_H/N_L \) must rise, but with an increase in \(N_H \) this condition can be satisfied, even with an increase in \(N_L \). An increase in both \(N_L \) and \(N_H \), moreover, implies that aggregate employment must also increase. These monopsonistic effects are made possible because a rise in
Table 1: Employment and wage effects of changes in the minimum wage when firms prefer low-skill workers in low-tech jobs

\[(L = H = 1, \epsilon_{LL} = 1.3, \epsilon_{HL} = 0.5, \epsilon_{HH} = 2, Y = 5N^0.5_H N^0.5_L, \rho = 0.1, \delta = 1, p = 0.2)\]

<table>
<thead>
<tr>
<th></th>
<th>N_{LL}</th>
<th>N_{HL}</th>
<th>N_L</th>
<th>N_H</th>
<th>w_H</th>
<th>w_L</th>
<th>\Omega</th>
<th>N</th>
<th>\frac{w_{HA}}{w}</th>
<th>\Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>0.03</td>
<td>0.58</td>
<td>0.62</td>
<td>0.29</td>
<td>3.68</td>
<td>0.64</td>
<td>0.9</td>
<td>1.38</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>0.35</td>
<td>0.67</td>
<td>0.35</td>
<td>3.47</td>
<td>0.37</td>
<td>1.02</td>
<td>1.45</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>0.23</td>
<td>0.67</td>
<td>0.39</td>
<td>3.29</td>
<td>0.21</td>
<td>1.06</td>
<td>1.46</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.11</td>
<td>0.66</td>
<td>0.42</td>
<td>3.13</td>
<td>0.10</td>
<td>1.08</td>
<td>1.44</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>0.02</td>
<td>0.63</td>
<td>0.45</td>
<td>2.98</td>
<td>0.02</td>
<td>1.08</td>
<td>1.40</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum wages relaxes the no-shirking constraint for low-skill workers, and as the employment of high-skill workers in low-tech jobs decreases, there is a derived effect on the no-shirking condition for high-skill workers in high-tech jobs.

Table 1 also shows the effects on the degree of over-education (\(\Omega\)), the average wage premium to high-skill workers (\(\frac{w_{HA}}{w_L}\)) and within-group inequality (\(\Theta\)). The increase in \(w\) reduces over-education and within-group inequality. The average wage premium is increasing in \(\frac{w_H}{w_L}\) but decreasing in \(\Omega\), and the net effect is a non-monotonic relation with the minimum wage, increasing for some values of the minimum wage but falling if the minimum wage is raised beyond a certain point.

3.2.2 Case 2: Mismatch when firms prefer high-skill workers in low-tech jobs

In this case firms will not hire low-skill workers unless the no-shirking condition is binding for high-skill workers in low-tech jobs. We assume the condition is binding and that wages satisfy the following equations:

\[\Omega = \frac{N_{HL}}{N_H + N_L}\]
\[\frac{w_{HA}}{w_L} = \frac{N_{HL}w_L + N_Hw_H}{N_H w_L + N_L w_H}\]
\[\Theta = \sqrt{\frac{N_{HL}}{N_H + N_L} \left(\frac{w_L - w_{HA}}{w_{HA}}\right)^2 + \frac{N_H}{N_H + N_L} \left(\frac{w_H - w_{HA}}{w_{HA}}\right)^2}\]
Table 2: Employment and wage effects of changes in the minimum wage when firms prefer high-skill workers in low-tech jobs

\((L = H = 1, e_{LL} = 0.2, e_{HL} = 0.5, e_{HH} = 2, Y = 5N_H^{0.5}N_L^{0.5}, \rho = 0.1, \delta = 1, p = 0.2)\)

<table>
<thead>
<tr>
<th>(w)</th>
<th>(N_{LL})</th>
<th>(N_{HL})</th>
<th>(N_L)</th>
<th>(N_H)</th>
<th>(w_H)</th>
<th>(\Omega)</th>
<th>(N)</th>
<th>(w_HA/\bar{w})</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.61</td>
<td>0.86</td>
<td>0.39</td>
<td>1.25</td>
<td>0.52</td>
<td>3.88</td>
<td>0.22</td>
<td>1.77</td>
<td>1.81</td>
<td>0.39</td>
</tr>
<tr>
<td>1.64</td>
<td>0.50</td>
<td>0.48</td>
<td>0.99</td>
<td>0.42</td>
<td>3.81</td>
<td>0.34</td>
<td>1.41</td>
<td>1.62</td>
<td>0.41</td>
</tr>
<tr>
<td>1.67</td>
<td>0.03</td>
<td>0.62</td>
<td>0.65</td>
<td>0.29</td>
<td>3.74</td>
<td>0.66</td>
<td>0.94</td>
<td>1.40</td>
<td>0.41</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 w_H &= \frac{\delta + \rho + p_{H-N_H-N_{HL}}}{\delta} + \frac{e_{HH} - e_{HL}}{\delta} \quad \text{(27)} \\
 w &= \frac{w_{HL}}{\delta} \quad \text{(28)}
\end{align*}
\]

From profit maximization we know that an increase in \(w\) leads to a decline in \(w_H\) and an increase in \(N_H/N_L\). Equations (27)–(28) now imply that \(N_H\) must fall (substitute (28) into (27) and use the fact that \(w_H - w\) decreases) and hence that \(N_L\) declines.

These implications are qualitatively the same as in the case without mismatch. The presence of mismatch, however, adds a few extra results. Using (28), it follows that a rise of \(w\) will increase aggregate employment of high-skill workers \((N_H + N_{HL})\). Hence, the decline in low-skill employment \((N_{LL} = N_L - N_{HL})\) is exacerbated, the proportion of mismatched high-skill workers \((N_{HL}/(N_H + N_{HL}))\) and the degree of over-education \((\Omega)\) go up, and the wage premium, \(w_{HA}/\bar{w}\) will fall. Total employment \((N = N_H + N_L)\) must decrease since \(N_H/N_L\) increases and \(N_H\) falls.

According to this case, the fall in minimum wages since the 1970s should have led to increases in high-tech wages and the wage premium; the number of high-tech jobs should also have increased but over-education should have dropped, as should total employment of high-skill workers and within-group inequality; low skill workers should have seen an increase in employment. Numerical results are given in Table 2.\(^{10}\)

\(^{10}\)With one exception, the benchmark parameters are the same as in Table 1. The exception is the cost of effort for low-skill workers which has been changed to \(e_{LL} = 0.2\) (compared to \(e_{LL} = 1.3\) in Table 1). The value of \(e_{LL}\) does not affect the solution for low-skill employment, but a lower value of \(e_{LL}\) is used to ensure that the no-shirking constraint is satisfied for low-skill workers at the implied levels of \(N_{LL}\) and \(w_L = \bar{w}\).
4 Evidence

In this section we look at how the theoretical predictions of the model hold up against the available evidence. We first introduce the data and provide a descriptive analysis of the main trends in employment and earnings. This is followed by the estimation of reduced form equations derived from the model.

4.1 Measuring mismatch and match premia

The empirical relevance of the analysis in the previous section depends on the extent of mismatch in the labor market. It is notoriously difficult to measure skill requirements but the best existing source for the U.S. is the Dictionary of Occupational Titles (DOT). The DOT reports expert assessment of more than 12,000 job titles. We take the General Education Development (GED) index as our measure of skill requirements. The GED ranks jobs in a scale of 1 to 6 (a GED of 4 roughly represents the skills acquired through high-school). Jobs with GED greater than 4 are considered high-tech. Unfortunately, the very detailed job classification of the DOT is not available in any representative survey of earnings. We use the average GED over 3-digit occupations as a proxy measure. The analysis is thus restricted to the period 1973–2002, during which the 1970 and 1980 census occupational classifications were in use. During this period there were two data issues of the DOT: 1977 and 1991. Other years are obtained through linear extrapolation.

The skill requirements data were merged with the Current Population Survey (CPS) earnings files. We use the education item to identify low-(high school or less) and high-skill workers (at least some college). Figure 1 shows the distribution of employment across job and skill levels over the period. The graph confirms the well studied movement toward higher levels of education attainment. The share of employed workers with at least some college went from around 33% in 1973 to over 58% in 2002. Less well known is the steady increase in the share of high skill workers whose jobs have requirements below their skill level, at least according to the DOT experts. At the beginning of the period only 14.7% of workers were in this category; toward the end of the period the percentage of over-educated workers had increased by 10 percentage points.

Do job types matter for earnings, conditional on education attainment? To answer this question we construct a wage sample from the CPS files.11 Our earnings variable is real weekly earnings divided by usual weekly hours, unless a separate and higher hourly rate is also reported. Earnings are

11In 1973–78 earnings questions were asked to the whole CPS sample in May. Starting in 1979, earnings questions are asked every month to roughly a fourth of the sample (the outgoing rotation groups).
deflated using the CPI (1979 = 100). The wage sample contains all wage and salary workers employed full time who are between 18 and 65 years of age. We weight the CPS data by hours worked and the appropriate sampling weight. The CPS has undergone several changes that reduce its consistency over time; details on the necessary adjustments on earnings and other variables are provided in the appendix.

Figure 2 shows average real wages for workers separated into the same four groups. Wages of high skill workers in high-tech jobs clearly stand out as higher than those of all other groups. Low skill workers in the low-tech
sector are at the bottom of the earnings distribution.12

\subsection*{4.2 Unemployment and mismatch}

The analysis in section 3 generates reduced-form equations of the form

\begin{align}
 u_L &= f(w, \frac{H}{L}) \\
 u_H &= g(w, \frac{H}{L}) \\
 \Omega &= h(w, \frac{H}{L})
\end{align}

This general representation covers both cases 1 and 2, but the precise form of the equations depends on whether firms prefer high- or low-skill workers in low-tech jobs. The expression for \(u_L \), for instance, simplifies to \(u_L = f(w) \) in case 1 (firms prefer low-skill workers in low-tech jobs) and the expression for \(u_H \) to \(u_H = g(w) \) in case 2 (firms prefer high-skill workers in low-tech jobs).

Our regressions use log-linear versions of these equations but also include a time trend to allow for the effects of technical change:

\begin{align}
 u_L &= \gamma_0 + \gamma_1 t + \gamma_2 \log w + \gamma_3 \log \frac{H}{L} \\
 u_H &= \delta_0 + \delta_1 t + \delta_2 \log w + \delta_3 \log \frac{H}{L} \\
 \Omega &= \rho_0 + \rho_1 t + \rho_2 \log w + \rho_3 \log \frac{H}{L}
\end{align}

It is impossible to identify the structural parameters of the model from these reduced forms, but the model implies the following parameter restrictions in cases 1 and 2:

- Case 1: \(\gamma_2 < 0, \gamma_3 = 0, \delta_2 \geq 0, \delta_3 \geq 0, \rho_2 < 0, \rho_3 > 0; 13 \)

12The stylized model in section 3 has only two job categories and two skill levels, and this and other simplifying assumptions imply that \(N_{LH} = 0 \) and \(w_{HL} = w_{LL} \). These strong predictions will not hold if the simplifying assumptions are relaxed. With a range of jobs and skills, for instance, college educated workers with low-tech jobs may hold jobs that are, on average, better than the average job of correctly matched low-skill workers; analogously, undereducated low-skill workers get high-tech jobs but the distribution of these jobs may not be the same as the distribution of the jobs held by correctly matched high-skill workers.

13The ambiguity of the sign of \(\delta_2 \) in case 1 was discussed in section 3. The sign of \(\delta_3 \) is ambiguous for related reasons. An increase in \(H/L \) reduces \(N_{HH}/H \) but raises \(N_{HL}/H \), and the unemployment rate can go either way. The analytics are messy, but simulations confirm the result.
Case 2: $\gamma_2 > 0, \gamma_3 < 0, \delta_2 < 0, \delta_3 = 0, \rho_2 > 0, \rho_3 = 0$.\footnote{These parameter signs follow from equations (27)–(28).}

As discussed above, we have annual data for the period 1973–2002. One possible strategy is to estimate equations (32)–(34) using time series variation for the whole sample. This approach has the advantage of being closest in spirit to the macro model in section 3. The obvious drawback is that it leaves us with only 30 observations. Also, states have the ability— which they often use — to set a minimum wage that is above the federally mandated. Therefore, it is difficult to construct a good measure of the minimum wage at the national level. An alternative strategy is to treat each state as a separate economy. This approach yields a balanced panel of 51 units, dramatically increasing degrees of freedom. It also allows for each state to have its own minimum wage. However, the U.S. labor market is known to be highly mobile and interconnected, and conditions that allow identification at the national level might not hold for states. In particular, our specifications treat the relative share of skilled workers (H/L) as exogenous. This assumption is more likely to hold at the national level since workers already in the work force find it costly to adjust their skill levels and adjustment through new entries is slow. It is harder to make the same case at the state level. Workers can commute or move to the states offering the best prospects for employment and wages. If H/L is endogenous, the reduced form specification should drop this variable. We offer this alternative specification as a robustness check in our tables below.

Tables 3–5 report the estimates of the reduced form regressions (32)–(34). Columns (1)–(2) in Tables 3–4 and (1)–(3) in Table 5 contain time series estimates while columns (3)–(5) in Tables 3–4 and (4)–(8) in Table 5 contain panel regressions using state level data. We estimated the time series regressions using both OLS and GLS-AR(1), since for both unemployment rates the Durbin-Watson test-statistic rejects the null of no first order autocorrelation in the error term at the 5% significance level. For the over-education rate the same test falls in the inconclusive region. The equation for over-education was estimated with and without a cyclical correction (the deviation of unemployment from its trend). Reassuringly, all these different variations in the precise specification had only minor effects on the coefficient estimates.

Looking first at the time series results, all three equations show a negative effect of the minimum wage. Thus, we find no evidence that a rise in the minimum wage will be associated with increased unemployment. Indeed, while the effect may be statistically insignificant, the evidence suggests the opposite: an increase in the minimum wage reduces unemployment and over-education. These results are consistent with case 1, where firms prefer to hire low-skill workers in low-tech jobs. Case 2, by contrast, implies a positive
effect of the minimum wage on both low-skill unemployment and the degree of over-education.

An increase in H/L produces a positive effect on both mismatch and low- and high-skill unemployment. This again contradicts the implications of case 2. The predictions of case 1 fare better: they are consistent with the findings for the degree of over-education (positive effect predicted) and high-skill unemployment (no prediction), but cannot account for the positive effect on low-skill unemployment (zero effect predicted).

We now discuss the panel results. We used both fixed and random effects estimators. The Hausman test rejected the consistency of the random effects estimator in all cases\(^\text{15}\) and we report only the fixed effects results.

The panel regressions differ from the time series results in some respects. The coefficients on the minimum wage are still negative in all three equations and are now statistically significant. Even though their values have decreased somewhat, a much larger decrease can be observed for the coefficients on the composition of the labor supply (H/L) which in the equation for high-skill unemployment drops to about one tenth of its value in the time series specification (but remains statistically significant). This large fall may be indicative of one of the main weaknesses of using the panel data approach. Arguably, it may be reasonable to take the composition of the labor force as exogenous for the US economy as a whole, but the exogeneity assumption becomes questionable at the state level. The composition of the labor force therefore becomes endogenous, and endogeneity bias may contribute to the sharp reduction in the estimated coefficients: reverse causation suggests that low levels of high-skill unemployment will attract high-skill workers and be associated with a high value of H/L.

The panel estimates were robust to a range of specifications. We ran the regressions with and without a separate time trend for each state and while the state-specific trends improve the fit, the changes in the estimated coefficients are small. We also experimented with specifications that included a full set of year dummies (available upon request). The problem with this specification is that the minimum wage effects can be identified only from the small number of observations where state minimum wages exceed the federal minimum (Burkhauser et al., 2000). Not surprisingly, these specifications showed insignificant (while still negative) effects of the minimum wage on both unemployment rates. The coefficient estimate in the over-education rate regression was still negative and significant.

Overall, the results of both the time series and panel regressions reject the case-2 predictions and are largely consistent with case 1.

\(^{15}\)Pooled OLS, random effects and fixed effects estimates were very close to each other.
Table 3: Reduced Form Regression for High-skill Unemployment

<table>
<thead>
<tr>
<th>Time Series Regressions</th>
<th>State Panel Regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
</tr>
<tr>
<td>Time Trend</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>-0.003***</td>
</tr>
<tr>
<td></td>
<td>[0.001]</td>
</tr>
<tr>
<td>ln (w)</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td>[0.043]</td>
</tr>
<tr>
<td>ln (H_L)</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>0.083**</td>
</tr>
<tr>
<td></td>
<td>[0.034]</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>0.094***</td>
</tr>
<tr>
<td></td>
<td>[0.026]</td>
</tr>
</tbody>
</table>

Obs	30	30	1442	1442	1442
R-squared	0.332	0.154	0.134	0.195	0.187
DW	1.072	1.578	27.216	234.602	226.37

Notes: Dependent variable is the unemployment rate for high-skill workers (0–1 range). Regression (2) assumes the error term follows an AR(1) process. Panel regressions include 51 state fixed effects. Regressions (4)–(5) include state-specific linear time trends. Standard errors in brackets. *** significant at 1% level; ** significant at 5% level; * significant at 10% level.

Table 4: Reduced Form Regression for Low-skill Unemployment

<table>
<thead>
<tr>
<th>Time Series Regressions</th>
<th>State Panel Regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
</tr>
<tr>
<td>Time Trend</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>-0.010***</td>
</tr>
<tr>
<td></td>
<td>[0.003]</td>
</tr>
<tr>
<td>ln (w)</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>[0.094]</td>
</tr>
<tr>
<td>ln (H_L)</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>0.267***</td>
</tr>
<tr>
<td></td>
<td>[0.074]</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>0.246***</td>
</tr>
<tr>
<td></td>
<td>[0.057]</td>
</tr>
</tbody>
</table>

Obs	30	30	1442	1442	1442
R-squared	0.354	0.059	0.06	0.123	0.086
DW	0.838	1.621	36.333	35.254	181.53

Notes: Dependent variable is the unemployment rate for low-skill workers (0–1 range). Regression (2) assumes the error term follows an AR(1) process. Panel regressions include 51 state fixed effects. Regressions (4)–(5) include state-specific linear time trends. The variance matrix for the Hausman statistic for regression (3) had to be obtained by using the disturbance variance estimate from the FE estimation only to avoid a negative result. Standard errors in brackets. *** significant at 1% level; ** significant at 5% level; * significant at 10% level.

4.3 The high-tech wage premium \(w_H/w_L \)

The wage premium in high-tech jobs will be affected by changes in the minimum wage. Our simplified model in section 3 has only two job categories, low- and high-tech. A direct application of the model implies that \(w_L = w \), and – assuming profit maximization under constant returns to scale – an increase in the minimum wage therefore leads to a decline in \(w_H \), that is, \(d \log(w_H/w_L)/d \log w < -1 \). With a range of different jobs and different
Table 5: Reduced Form Regression for Over-education Rate

<table>
<thead>
<tr>
<th></th>
<th>Time Series Regressions</th>
<th>GLS-AR(1)</th>
<th>FE</th>
<th>State Panel Regressions</th>
<th>FE+State Trends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GLS</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Time Trend</td>
<td>-0.004***</td>
<td>-0.004***</td>
<td>-0.004</td>
<td>-0.000***</td>
<td>-0.000***</td>
</tr>
<tr>
<td>ln w</td>
<td>-0.046**</td>
<td>-0.047*</td>
<td>-0.012</td>
<td>-0.016***</td>
<td>-0.016***</td>
</tr>
<tr>
<td>ln H_L (HP-dev)</td>
<td>0.213***</td>
<td>0.202***</td>
<td>0.123***</td>
<td>0.095***</td>
<td>0.093***</td>
</tr>
<tr>
<td>Constant</td>
<td>0.058</td>
<td>0.058</td>
<td>0.0619</td>
<td>0.063***</td>
<td>0.063***</td>
</tr>
<tr>
<td>Obs</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>1442</td>
<td>1442</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.981</td>
<td>0.982</td>
<td>0.880</td>
<td>0.821</td>
<td>0.822</td>
</tr>
<tr>
<td>DW</td>
<td>0.778</td>
<td>0.818</td>
<td>1.598</td>
<td>17.579</td>
<td>17.864</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the over-education rate (range 0–1). Regression (3) assumes the error term follows an AR(1) process. Panel regressions include 51 state fixed effects. Regressions (6)–(8) include state-specific linear time trends. The variance matrix for the Hausman statistic for regressions (4) and (5) had to be obtained by using the disturbance variance estimate from the FE estimation only to avoid a negative result. Standard errors in brackets. *** significant at 1% level; ** significant at 5% level; * significant at 10% level.

skills, however, a change in the minimum wage will generate a cascade of changes in the wage distribution. One would still expect the average wage for the subset of low-tech jobs to move in the same direction as the minimum wage, and the elasticity \(\frac{d \log(w_H/w_L)}{d \log w} \) should be negative. Its value, however, will depend on the distribution of skills and jobs and on the chosen delineation of the subsets of high- and low-tech jobs.

We estimated a reduced form relation with the high-tech wage premium as the dependent variable and the minimum wage, the composition of the labor supply and a time trend as regressors:

\[
\log \frac{w_{H,t}}{w_{L,t}} = \beta_0 + \beta_1 t + \beta_2 \log w + \beta_3 \log H_L \quad (35)
\]

The results are in Table 6. Column 1 has the baseline time series specification. Column 2 adds a cyclical correction (the deviation of the unemployment rate from its trend) since the adjustment speeds of both wages and employment in response to shocks may be different for high- and low-tech jobs. The DW statistic rejects the null of no autocorrelation, so in Column 3 we offer GLS estimates that assume an AR(1) process for the error term.

The three time series specifications yield virtually identical results\(^\text{16}\). We get a negative and statistically highly significant coefficient on the minimum wage, and the negative effect of an increase in the relative supply of high-skill labor is also what one would expect. The positive time trend, finally, is consistent with skill-biased technical change and/or power-biased technical change.\(^\text{17}\)

\(^{16}\)We also estimated the same set of specifications on a composition-adjusted relative wage dependent variable. These results are available upon request and very close to those of the unadjusted variable.

\(^{17}\)The case for skill-biased technological change has been challenged by, among others,
The panel regressions in columns (4)–(7) differ in whether they include cyclical corrections and state-specific time trends. The effects of these variations in specification are very minor. The panel results, however, differ from the time series: in the panel regressions, an increase in the relative labor supply is associated with a rise in the wage premium. We see this reversal of the sign as the result of the endogeneity of the relative labor supply at the state level. We estimated the same specification omitting the relative supply variable (column (8) in the table). The minimum wage coefficient remains negative and significant.

Table 6: Reduced Form Regression for the Hi/Low-tech Log Wage Gap

<table>
<thead>
<tr>
<th></th>
<th>Time Series Regressions</th>
<th>State Panel Regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>GLS-AR(1)</td>
</tr>
<tr>
<td>Time Trend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.011***</td>
<td>0.012***</td>
<td>0.011***</td>
</tr>
<tr>
<td>[0.002]</td>
<td>[0.002]</td>
<td>[0.002]</td>
</tr>
<tr>
<td>ln w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.179***</td>
<td>-0.182***</td>
<td>-0.169*</td>
</tr>
<tr>
<td>[0.064]</td>
<td>[0.064]</td>
<td>[0.083]</td>
</tr>
<tr>
<td>ln L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.231***</td>
<td>-0.257***</td>
<td>-0.233**</td>
</tr>
<tr>
<td>[0.050]</td>
<td>[0.057]</td>
<td>[0.069]</td>
</tr>
<tr>
<td>u_L (HP-dev)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.146</td>
<td>0.301**</td>
<td>-0.123**</td>
</tr>
<tr>
<td>[0.145]</td>
<td>[0.144]</td>
<td>[0.059]</td>
</tr>
<tr>
<td>Constant</td>
<td>0.286***</td>
<td>0.273***</td>
</tr>
<tr>
<td></td>
<td>[0.018]</td>
<td>[0.041]</td>
</tr>
<tr>
<td>Obs</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.928</td>
<td>0.931</td>
</tr>
<tr>
<td>DW</td>
<td>1.07</td>
<td>0.964</td>
</tr>
<tr>
<td>Hausman</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Dependent variable is ln w_H w_L. Regression (3) assumes the error term follows an AR(1) process. Panel regressions include 51 state fixed effects. Regressions (6)–(8) include state-specific linear time trends. Standard errors in brackets. *** significant at 1% level; ** significant at 5% level; * significant at 10% level.

4.4 Job composition and the elasticity of substitution

Changes in the relative wage have implications for the job composition. Assuming a CES production function, we have

$$Y_t = [\alpha_t (a_t N_{H,t})^\rho + (1 - \alpha_t) (b_t N_{L,t})^\rho]^{1/\rho}$$

where again $N_{H,t}$ and $N_{L,t}$ refer to jobs and not to worker types. The parameters a_t and b_t represent high-tech and low-tech labor augmenting technical change. The constant economy-wide elasticity of substitution is $\sigma = \frac{1}{1-\rho}$.

The first-order conditions for profit maximization imply that

$$\log \frac{w_{H,t}}{w_{L,t}} = \log \frac{\alpha_t}{1 - \alpha_t} + \rho \log \frac{a_t}{b_t} + (\rho - 1) \log \frac{N_{H,t}}{N_{L,t}}$$

(Howell, 1999; Card and DiNardo, 2002). Skott and Guy (2007) and Guy and Skott (2008) suggest that there is stronger evidence for “power-biased” technological change and that, like skill bias, a power bias can increase both wage and employment inequality. Power-biased technical change produces shifts in the no-shirking conditions, and the positive trend could reflect both skill-biased and power-biased technical change.
which can be rewritten as

$$\log \frac{w_{H,t}}{w_{L,t}} = \frac{1}{\sigma} \left[D_t - \log \frac{N_{H,t}}{N_{L,t}} \right]$$

(36)

where D_t measures technological shifts favoring high-tech jobs. Substituting a time trend for the unobserved variable D, we get

$$\log \frac{w_{H,t}}{w_{L,t}} = \frac{1}{\sigma} \left[A + B t - \log \frac{N_{H,t}}{N_{L,t}} \right]$$

(37)

Equation (37) has been used to estimate the elasticity of substitution (for example Katz and Murphy (1992)). Using our notation, a single regression is run with $\log \frac{w_{H,t}}{w_{L,t}}$ as the dependent variable and $\log \frac{N_{H,t} + N_{H,t}}{N_{L,t}}$ as the measure of relative employment. We have replicated this procedure with our data set and time period. The results — which are available on request — are similar to those found in the literature (our estimate for σ is 1.75 compared to 1.57 in Autor et al. (2008)).

From our perspective, there are two problems with these regressions. When there is mismatch, the theoretically correct specification regresses $\log \frac{w_{H,t}}{w_{L,t}}$ on $\log \frac{N_{H,t}}{N_{L,t}}$, rather than $\log \frac{w_{H,t}}{w_{L,t}}$ on $\log \frac{N_{H,t} + N_{H,t}}{N_{L,t}}$. Secondly, by disregarding wage setting, the regressions implicitly assume that relative employment can be taken as exogenous. This exogeneity assumption is reasonable if the labor markets are competitive and the supplies of high- and low-skill labor are inelastic. It becomes questionable, however, if wage formation is governed by efficiency wages and the degree of mismatch is endogenously determined. Thus, the estimates of the elasticity of substitution in Autor et al. (2008) and other studies that follow the same approach may be biased.

Both of these problems can be addressed and an alternative estimate of the substitution elasticity can be obtained by combining equations (35)–(37). Substituting for the relative wage in equation (37) and rearranging, we get a reduced-form equation for the job ratio,

$$\log \frac{N_H}{N_L} = A - \sigma \beta_0 + (B - \sigma \beta_1) t - \beta_2 \sigma \log w - \beta_3 \sigma \log \frac{H}{L}$$

(38)

The elasticity of substitution can be recovered by comparing the parameter estimates in (38) and (35). The regression results for equation (38) are in table (7). As with the relative wage equation, the panel results differ substantially from the time series but are likely to be biased. The time series regressions produce small and statistically insignificant estimates of

18The derivation of (37) follows that in Katz and Murphy (1992), except for the modifications arising from our distinction between job characteristics and worker types. Also see Katz and Autor (1999); Autor et al. (2008).

19More precisely, the dependent variable is the composition-adjusted log wage gap between college and high-school educated workers and the relative employment measure uses labor quantities in efficiency units.
both $\beta_2 \sigma$ and $\beta_3 \sigma$. Also, the DW statistics show the presence of first order autocorrelation in the error term. Therefore, we are left with the estimates in column (3). The implied values of σ and even its sign depend on which ratio is used. Using the results in tables (6) and (7) we get two σ estimates of $-0.117 \approx -0.69$ and $0.143 \approx 0.61$. These magnitudes, however, are calculated with substantial error and neither estimate is statistically different from zero when the standard errors are calculated using the delta method. This low elasticity of substitution between labor inputs is consistent with the findings in Card et al. (1999).

Table 7: Reduced Form Regression for the Log Job Composition Ratio

<table>
<thead>
<tr>
<th>Time Series Regressions</th>
<th>GLS-AR(1)</th>
<th>FE</th>
<th>State Panel Regressions</th>
<th>FE+State Trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Time Trend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.021***</td>
<td>0.021***</td>
<td>0.013**</td>
<td>0.003***</td>
<td>0.003***</td>
</tr>
<tr>
<td>[0.003]</td>
<td>[0.004]</td>
<td>[0.005]</td>
<td>[0.001]</td>
<td>[0.001]</td>
</tr>
<tr>
<td>ln w</td>
<td>-0.077</td>
<td>-0.077</td>
<td>-0.117</td>
<td>-0.014</td>
</tr>
<tr>
<td>[0.124]</td>
<td>[0.127]</td>
<td>[0.160]</td>
<td>[0.020]</td>
<td>[0.020]</td>
</tr>
<tr>
<td>ln L</td>
<td>-0.083</td>
<td>-0.082</td>
<td>0.143</td>
<td>0.464***</td>
</tr>
<tr>
<td>[0.097]</td>
<td>[0.112]</td>
<td>[0.137]</td>
<td>[0.016]</td>
<td>[0.016]</td>
</tr>
<tr>
<td>u_L (HP-dev)</td>
<td>-0.777***</td>
<td>-0.776***</td>
<td>-0.635***</td>
<td>-0.528***</td>
</tr>
<tr>
<td>[0.075]</td>
<td>[0.080]</td>
<td>[0.109]</td>
<td>[0.022]</td>
<td>[0.022]</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.518***</td>
<td>-0.514***</td>
<td>-0.514***</td>
<td>-0.514***</td>
</tr>
<tr>
<td>[0.149]</td>
<td></td>
<td>[0.123]</td>
<td>[0.024]</td>
<td>[0.024]</td>
</tr>
<tr>
<td>OLS</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>1442</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.944</td>
<td>0.964</td>
<td>0.853</td>
<td>0.876</td>
</tr>
<tr>
<td>DW</td>
<td>1.026</td>
<td>1.028</td>
<td>1.779</td>
<td>0.876</td>
</tr>
<tr>
<td>Hausman</td>
<td>9.262</td>
<td>9.110</td>
<td>982.868</td>
<td>986.478</td>
</tr>
</tbody>
</table>
| Notes: Dependent variable is $\ln NH_{NL}$. Regression (3) assumes the error term follows an AR(1) process. Panel regressions include 51 state fixed effects. Regressions (6)–(8) include state-specific linear time trends. The variance matrix for the Hausman statistic for regressions (4) and (5) had to be obtained by using the disturbance variance estimate from the FE estimation only to avoid a negative result. Standard errors in brackets. *** significant at 1% level; ** significant at 5% level; * significant at 10% level.

4.5 Spurious correlation?

The correlation between the minimum wage and wage inequality has been noted in previous studies. It has also been suggested, however, that this correlation may be spurious and that shifts in the demand for skills, rather than autonomous changes in non-market factors, have been central to the movements in relative wages and employment.

Is there any direct evidence of spurious correlation? Autor et al. (2008) point to the existence of a time series correlation not just between the minimum wage and lower tail inequality (the 50/10 ratio) but also between the minimum wage and upper tail inequality (90/50). The latter correlation, they argue, is “unlikely to provide causal estimates of minimum wage impacts” (p.311). Instead, this correlation suggests that causal influence of minimum wages in these regressions should be discounted. We do not find this conclusion persuasive.

Our model, first, implies that changes in the minimum wage has ripple effects on over-education and wages throughout the wage distribution. We would expect the effects to be stronger at the lower tail than at the upper tail of the distribution, but there will be some effect at the upper tail too. In
line with this expectation, the results reported by Autor et al. (2008) show much stronger effects at the lower tail than at the upper tail: the coefficients on the minimum wage are -.23 and -.10, respectively. Had the coefficients been reversed — with the stronger effect on upper tail inequality — then it could have been seen as evidence of spurious correlation, but it is not obvious that a coefficient of -0.10 is too high to be plausible.

One should still be cautious about causal attribution, in particular if there are reasons to suspect that changes in the minimum wage may be determined endogenously by labor market conditions. It could be argued that the decline in the minimum wage reflects the decrease in the demand for low-skill workers and that the slide in the real value of the minimum wage was necessary to prevent rising low-skill unemployment. Our model questions this premise: low-skill employment may suffer as a result of a falling minimum wage.

Lastly, changes in the minimum wage are related to political pressures and general ideological trends. These trends have generated a range of non-market changes, from labor market legislation and declining unionization to the deregulation of the financial industry. The estimated effect of the minimum wage may be capturing the influence of these other non-market factors. This potential problem of interpretation, however, does not imply that non-market changes merely reflect market fundamentals.

5 Conclusion

The theoretical model in this paper is highly stylized and clearly tells—at best—a small part of the story behind increasing inequality. Several results, however, stand out and may play a role in a more elaborate account of the observed changes.

We have shown that if firms prefer to fill low-tech jobs with low-skill workers rather than with over-educated high-skill workers then “aggregate monopsonistic elements” arise naturally in a model with mismatch. These monopsonistic elements imply that a fall in the minimum wage can have adverse effects on aggregate employment as well as on the degree of mismatch and the rate of underemployment of high-skill workers. A fall in the minimum wage can produce a rise in both within and between group inequality and low-skill workers may suffer a double blow of declining employment and wages.

The evidence reported in section 4 suggest that these theoretical results may be empirically relevant. There is strong evidence of mismatch in the labor market, and the degree of mismatch has been increasing, especially in the 1970s and 1980s. Moreover, the monopsonistic implications of the theoretical model are supported by US data for 1973–2002. Our regressions suggest that the fall in the minimum wage led to a deterioration of the
employment and relative wage of low-skill workers and an increase in the underemployment of high-skill workers.

A Appendix: basic processing of May/ORG CPS and DOT Data

Data on skill requirements comes from the Dictionary of Occupational Titles 4th Edition (1977) and revised 4th Edition (1991). We use the dataset compiled by Levy and Murnane (1992) that contains weighted averages of three GED scores (language, reasoning, and math) by occupation and sex using both the 1970 and 1980 3-digit occupational classifications. Only the highest GED is binding so we drop the other two. Scores for years other than 1977/91 are linearly extrapolated. The 1970 and 1980 Census occupational classifications are available in the CPS only during the period 1973–2002. Thus, we use the May CPS for 1973–78 and the merged outgoing rotation groups for 1979–2002. The general inclusion criteria are: age in the range 18–65, to have worked in the past, and potential experience between 1 and 40 years (this inclusion criteria will be referred to as counts sample). Calculations that involve earnings are done using the standard earnings weight multiplied by usual weekly hours.

Our wage variable is the log of real hourly earning in 1979 dollars (deflated using the CPI-U-RS). Hourly earnings are weekly earnings divided by usual weekly hours with the exception of cases in which a separate higher hourly wage is reported. After 1994 individuals are allowed to answer that their hours vary. We use a simple regression imputation approach to assign hours to those individuals. No allocated earnings are utilized, however. During the period 1989–93 the allocation flags fail to identify most imputed earnings. Following Lemieux (2006), we use the unedited earnings variable to identify and drop unflagged allocated earnings. Topcoded earnings are winsorized using a 1.4 factor.

References

