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Figure 4.2: Queuing framework

4.4 Data Collection and Analysis

We analyzed data from all patients who were admitted to an inpatient bed at BMC

from May 2010 to April 2011. We used anonymous patient records which included

patient age and gender, and diagnoses related categorizations. These include the

diagnosis related groups (DRGs) and major diagnostic categories (MDCs). This

MDC categorization was initially created for the claims and administrative process;

each MDC aggregates related DRGs into a single broader category – for example, two

such categories are “Respiratory Diseases” and “Circulatory Diseases”. There are 25

MDCs and this keeps the model concise and tractable. Additional data analysis for

MDCs and the features of the data used in sampling is provided in Appendix B.
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We have also analyzed the time-stamps for each patient and in fact these form

the basis of some key inputs in our simulation model (see Figure 4.3). A patient may

enter the hospital information system by registering through the ED, surgical unit,

a physician’s o�ce or other sources. After the patient goes through the assessment,

consultation and care process, the relevant physician or care provider decides that

the patient should be admitted to an inpatient bed in a desired unit. This is the bed

request time and in our simulation model it translates to a patient arrival.

Figure 4.3: Admission and discharge process

The patient then waits until a bed is available and is then admitted. After staying

for some duration in the inpatient bed, the patient is discharged. The important point

here is that by length of stay we mean time spent by the patient in the inpatient

bed. In Figure 4.3 this is “the discharge time” minus the “in the bed” time. From

the point of view of our simulation model, inpatient bed LOS is the “service time”

and number of inpatient beds in a unit are the number of “servers”.

Unfortunately, we did not have data on patient transfers between units. Overflow

transfers happen because the patient was originally admitted to a non-primary unit

that may not have had the equipment and sta↵ to adequately deal with the patient’s
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condition. Transfers in general are not desirable and are costly (West [2010b], West

[2010a]). In fact, many hospitals are trying to implement a “right patient, right bed”

policy for accommodating patients in the correct place, so they do not have to be

transferred (West [2010a]). We assume in our model that 1) the unit from which

the patient was discharged was the patient’s desired unit; and 2) that there are no

transfers other than critical care unit transfers: the patients simply wait in a non-

ideal location until a bed becomes available in the desired unit. We have performed

some preliminary analysis on overflow transfers, but will only focus on the impact of

discharges in this paper.

Inpatient bed LOS can vary significantly from patient to patient. In addition to

regular inpatients (27,000 in our one year data), there are two separate categories

of patients called “day-stay” and “observation patients”. Day-stay patients, as the

name suggests, are patients who undergo small procedures like tonsillectomy and stay

for 24 hours or less in an inpatient bed (ASCA [2013]). Observation patients refer to

those patients whose conditions can be treated in 48 hours or less, or when the cause

for the symptoms has not yet been determined. Some examples are nausea, vomiting,

and some types of chest pain. Bed requests for these patients are typically made

through the ED (CMS [2011]). In the data we analyzed, day-stays and observation

patients sum up to 20,000 patients. Thus, in total with regular inpatients, we have

a total of 47,000 total patients who used an inpatient bed for the one year period of

interest.

Regular inpatient bed requests can get admitted through the ED, surgical units

(this includes elective surgeries such as hip and knee replacements as well as emer-
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gency surgeries), from physician o�ces (direct admits), from other community hos-

pitals (transfers from other hospitals). Categorizing patients by these admit sources

and their MDC, mimics accurately which units they get admitted to and how long

they stay in an inpatient bed. Figure 4.4 shows total annual bed requests of the

major sources with respect to hours of the day. We can clearly see the time-varying

arrival nature of each source.

Figure 4.4: Arrival pattern by patient sources

Figure 4.5 shows the LOS and daily bed request rate for the patient sources

discussed above. Day-stay patients who exhibit a high annual volume of 10000

patients, spend less than a day in the hospital. On the other hand, ED patients

present an annual volume of 14000 as well as a high LOS of around 5 days. The

“controllable” patients – elective surgery patients, who can be scheduled in advance

– are denoted with solid fill, whereas the “uncontrollable” sources (patients from the

ED, for example) are represented with solid diamonds, and the horizontal lines are
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for patients somewhere in between. Calculating the “patient bed days” (total volume

* average LOS) consumed by each patient category, suggests that ED patients, at

this hospital at least, consume the majority of inpatient capacity. Even though the

literature about changing surgical schedules is abundant (Helm and Van Oyen [2010],

Bekker and Koeleman [2010]), for this specific hospital the impact of ED patients

dominates all the controllable sources. Note however that surgery rates because they

are elective are scheduled over 5 weekdays, whereas emergency surgeries are admitted

throughout the whole week (both weekdays and weekends). Additional analysis on

elective surgeries can be seen in Appendix B.

Figure 4.5: Volume and LOS values of patient sources

There are 25 departments that the patients get admitted to, which total to 575

inpatient beds. The medical specialties include: adult respiratory, oncology, day-

stay, medical, observation, congestive heart failure (CHF), surgical, interventional,

critical care, women health, renal, neurology, orthopedic and pediatric medical and
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surgery units. We have analyzed the units in terms of their bed capacity, daily arrival

rate, the mean and variance of LOS, utilization level and average percentage of total

discharges before noon.

Table 4.3 provides twelve of the most highly utilized units. Here we define “uti-

lization” with an aggregate simple formula: daily bed request times the average

LOS, divided by the number of beds. The LOS values exhibit significant variability,

in most cases it is higher than the mean. There are also some hospital specific dynam-

ics that a↵ect the hospital-wide flow. Di↵erent units host di↵erent kinds of patients.

The highest utilized unit S2, a medicine-telemetry unit, generally hosts “socially

challenging” patients (like overdose patients who require further care). Telemetry

service is often recommended after a heart attack, or when a patient is seriously ill.

Nursing sta↵ in telemetry units is usually highly trained so that they can respond

to emergent issues quickly (McMahon [2014]). Another unit to point out is APTU,

the psychiatric unit which has the highest LOS and highest variability. In both of

these units the predictability of discharge is harder to estimate, than a surgical ward,

because these patients generally require a post-acute care service. Hospital specific

subtleties like these a↵ect the whole admission and discharge process and by using

random sampling from the historical data we are able to incorporate these factors

implicitly to our model.
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Table 4.3: Unit specific analysis

Unit LOS
(days)

Std
Dev
LOS

Daily
Rate

Capacity Utilization % dis-
charge
before
noon

Medical Telemetry 5.09 5.85 5.16 26 101% 16%
Cardiac CHF 4.19 4.29 7.58 32 99% 24%
Cardiac interventional 2.64 3.27 11.87 32 98% 23%
Neurological 3.91 5.08 9.94 41 95% 13%
Renal 3.25 4.19 6.92 24 94% 27%
Adolescents 2.6 3.38 2.86 8 93% 27%
Medical Respiratory 5.27 7.35 5.36 31 91% 29%
Surgical/Orthopedic 4.74 5.02 6.47 34 90% 15%
General Medical 3.26 3.21 11.95 44 89% 23%
Psychiatric 8.68 10.87 2.79 28 87% 21%
Intermediate Surgical 5.41 6.25 6.97 44 86% 9%
Short Stay Surgical 4.25 5.61 6.28 32 83% 12%

4.5 Simulation Model and Analysis

Figure 4.2 and pseudocode presented in Appendix C, show the main idea behind

our simulation model. There are M inpatient bed request sources. The number of

requests from source i in hour t is denoted by the random variable �i,t and is sampled

randomly without replacement in order to reflect the time of day and day of week

e↵ect. These requests fall into some MDC category and are consequently mapped

into demand for N inpatient units. The total number of bed requests for unit j at

hour t is denoted by the random variable �
0
j,t. Each unit has Bj beds, and each

unit is a time-varying G/G/Bj queue. The arrival rate in each hour follows some

general stochastic process; Poisson arrival rates are not a bad assumption, but in

our case, we use arrivals sampled from historical data, hence “G” in the queuing

notation. The random variable LOSj indicates the service time in unit j and follows
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some general distribution. We provide examples for arrival rates and LOS values for

di↵erent admission sources that were used in sampling in Appendix B.

Some patients make their way to an inpatient unit via the ICU where critical care

is provided. We assume that these patients spend a deterministic amount of time

specific to an MDC, CritLOSMDC , before requesting for a regular inpatient bed.

Each hour, bed requests are fulfilled on a first come first served (FCFS) basis. The

patients are ready to be discharged from the hospital after their LOS is completed.

They join a discharge queue, which has a capacity of Dt in hour t. To start with,

patients are discharged on a FCFS basis as well; so there is no speeding up or slowing

down, which is commonly observed in practice (Jaeker et al. [2012], Kc and Terwiesch

[2009]). As an alternative discharge policy, we also consider prioritizing discharges

in units which have the longest admission queues. The bed is available after the bed

turnover time (a deterministic value) is complete.

In each unit j, a queue Qj develops consisting of those patients waiting for a bed

to become available. We assume that the patients simply wait until they receive a

bed, irrespective of the size of the queue; i.e. there is no balking. In practice, the

hospital may use alternate strategies, such as using free beds in other units, though

this is not desirable. Note that the queue is not a physical waiting line of patients;

rather it consists of patients waiting in di↵erent parts of the hospital (ED, PACU)

or other hospitals. Waiting time measured as the time di↵erence between in the

bed time for the right bed and time of bed request. So this measure includes ED

boarding, PACU holds, and all other waiting times relevant for an inpatient to be

placed in an inpatient bed. It is also possible that a patient is waiting at home for an
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inpatient bed, after a bed request was made by a community physician the patient

consulted with.

We used C# for the simulation representing the whole hospital-wide flow. We

run the model for a year, with hourly increments, kept the warm-up period as 2

months. We sample from historical data, observed unit requests and LOS values.

All the �i,t, �
0
j,t and LOSj for each hour and day of week are sampled randomly.

In the sampling process, we retain time of day and day of week e↵ects for arrivals.

As an example, for Monday 8 AM, we randomly sample, without replacement, from

arrival, MDC and desired unit requests observed on 52 Mondays at that exact hour.

We also develop a simulation model in Arena for internal validation purposes (we

provide a detailed explanation of the Arena model in Appendix D).

4.5.1 Replications

We have compared the waiting times and number of people in the queue, using various

discharge profiles. In order to have an unbiased comparison, we use the common set

of random patients for each replication. This is the common random numbers (CRN)

approach which serves as a variance reduction technique when comparing di↵erent

policies (Banks et al. [2004]). We have used 10 replications, following Shi, P. and

Chou, M. C. and Dai,J.G. and Ding, D. and Sim, J. [2012] who also use 10 replications

to perform their analysis. More replications will lead to a higher accuracy, however,

due to the computational complexity (around 2 hours for each run) we limit the

number of replications. Also, the main motivation of these runs is to be able to
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compare and analyze the impact of using di↵erent discharge policies for improving

the bed capacity planning.

4.6 Analyzing the Impact of Discharge Policies

Recall that the purpose of this paper is to test di↵erent discharge profiles by chang-

ing the Dt and observing the impact on queue lengths Qj and the waiting time.

We are evaluating 3 components of discharge profiles: (1) Discharge windows which

determines the hours of the day when the discharges are allowed; (2) The maximum

capacity for discharges in each hour of the discharge window (the Dt values); and

(3) The prioritization of discharges in each hour based on admission unit queues (i.e.

which patients should have first access to discharge capacity in a given hour). We

evaluate di↵erent combinations of these 3 components and compare it with the base-

line which represents our partner hospital’s discharge operations. We now present

all the discharge profiles we test in our simulation and also provide the rationale for

each.

4.6.1 Baseline

The baseline discharge profile for BMC was briefly described in the Introduction. The

discharge window is currently from 10 AM-7 PM. The hourly maximum discharge

capacity is set to the average number of discharges achieved by the hospital in the

one year period studied. As we explained earlier, discharges follow a bell curve that

peaks between 2 and 4 PM. Starting with the hour 10-11 AM, we set Dt equal to

5, 7, 11, 12, 14, 18, 16, 10, 6, 5 until 7 PM. For all other hours Dt is 0. Currently
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at the hospital, there is no obvious prioritization of discharges, so we assume in the

baseline that discharges are done on a FCFS basis. In other words, a patient whose

LOS finishes earlier will be given priority, irrespective of which unit the patient is

from.

4.6.2 DP2: Maximum capacity of 10 in each hour from 10
AM-7 PM, no prioritization

We analyze restricting the number of discharges to 10 each hour. Notice that in the

baseline, the hospital achieves up to 17 discharges on average in each hour. Therefore

10 is a very reasonable upper limit and was suggested by our collaborators. Thus,

in this policy Dt is restricted to be 10 in each hour from 10 AM-7 PM; for all other

hours Dt is 0. This promotes a more even or uniform discharge workload for the

hospital sta↵ in the window rather than having a peak in the afternoon. Discharges

are carried out on a FCFS basis (no prioritization).

4.6.3 DP3: Early in the day discharge policy, 10 AM-7 PM,
no prioritization

The main motivation of early in the day discharge (EITD) policy is to align the

discharges and the admissions by pushing some of the afternoon discharges to the

mornings so that the beds are available before the demand builds up. In this discharge

profile, Dt is only restricted to be less than the remaining number of average daily

discharges. Because of this, most of the patients leave the hospital in the first 2

hours of the window (10 AM-noon). These patients have already completed their

LOS overnight and have been waiting for the hospitalist to discharge them; hence
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the name early in the day discharge. Discharges are carried out on a FCFS basis

(no prioritization). The actual number of discharges realized each hour is analyzed

in Section 4.7.2.3.

This profile is of particular interest since many hospitals have been emphasizing

that discharges should happen before noon. This is quite a di�cult process because

even if the patients are ready, their post-hospitalization transition (family pick-ups,

rehab facility and so forth) may not have been coordinated. However some of the

patients are more amenable to early discharge, especially “simple discharges” that

account to 80% of hospitals’ discharges. These are the patients who are discharged

to their homes or do not require complex planning, like most of the surgical floor

patients (DH [2004]). Motivated from this, Department of Health in UK has reported

a 40% decrease in the number of elective surgery cancellations in Nottingham City

Hospital, simply by implementing a policy based on discharging medically fit patients

by midday.

4.6.4 Expanded discharge windows

Our collaborators in BMC also urged us to test the feasibility of expanding discharge

hours as an alternative to early in day discharges, because they felt that discharges

by noon were very di�cult to implement in practice (as explained in Section 4.6.3).

So instead of having a 10 AM to 7 PM discharge window, an expanded window from

10 AM to 9 PM or 10 AM to 11 PM could be tested. Each hour in the expanded

window Dt = 10 and 0 otherwise. We test three discharge profiles with expanded

windows:
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DP3: Maximum capacity of 10 in each hour from 10 AM-9 PM, no prioritization.

DP4: Maximum capacity of 10 in each hour from 10 AM-11 PM, no prioritization.

DP5: Early in the day combined with a 4-hour expanded window, 10 AM-11 PM,

no prioritization.

The end result of an expanded discharge window is that more patients could be

discharged in the day; more beds become available the next day as a result. The

expanded window is also more in line with the hospitalists’ natural prioritization

rules. They can see the most recently admitted patients, who need more urgent

attention, in the morning, and get to the patients who are ready to be discharged

later in the day. Expanding the discharge hours also allows them to discharge those

patients who would unnecessarily wait until the next day. The families of patients

may be more available to pick up patients in the evening rather than during the

day. The actual number of discharges realized in each hour after 7 PM is analyzed

in Section 4.7.2.3.

Caveats do apply. An expanded discharge window does require staggering of shifts

so that hospitalists are available between 7-9 PM or 7-11 PM (like nurse shifts).

Additionally ancillary services that are essential for a patient’s discharge process

also need to be available in the evening hours. The patients need to pick up their

medication from the pharmacy, and perhaps equipment such as walkers. Patient

transport and valet services are also needed to escort the patients out of the hospital.

In general, the more services that patients need after their discharge, the greater

the sta↵ availability needs to be in the evening hours. Thus the hospital needs to

adopt a case-by-case approach, and utilize evening discharges wisely. Our partner
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collaborators in BMC agreed that these changes that need to accompany expanded

hours are indeed feasible.

4.6.5 Prioritization of discharges

Up until now, decisions in our simulation have not been responsive to the state of the

system. Thus even when the hospital is facing a gridlock, our assumption is that the

hospital carries out its regular operations and queues continue to grow. However, in

practice hospitals may respond by canceling elective surgeries, diverting ambulances,

or by speeding up discharges. All of these have potentially negative outcomes.

We take a di↵erent approach to model the hospital’s responsiveness. In our simu-

lation, we prioritize the use of hourly discharge capacity. This prioritization is based

on front-end admission queues for each unit. If queue is larger than some threshold

the hospitalist and related sta↵ first focus on discharging patients from these units.

However, it is important to point out that these are not hasty discharges (which may

cause readmissions), rather a policy that allocates the restricted discharge capacity

to the units that require it the most. Using the red-yellow-green system discussed in

(Resar et al. [2011]), we categorize the units into two: red and green units. For the

red units the current queue length of the unit exceeds a predefined threshold. Green

units are those that do not exceed this value. Prioritization in our model implies

that the hourly discharge capacity should be first used for the red units. Thus, this

state-dependent discharge policy observes the congestion in the first service line (ad-

mitting patients to an inpatient unit) and accordingly adjusts the use of capacity in

the second service line (discharging patients from the unit). Pseudo-code for priori-
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tization is provided in the Appendix C. We test this prioritization for the following

discharge profiles:

DP6: Baseline with prioritization.

DP7: Maximum capacity of 10 in each hour from 10 AM-7 PM with prioritiza-

tion.

DP8: Maximum capacity of 10 in each hour from 10 AM-9 PM with prioritiza-

tion.

4.6.6 DP9: 24-hour discharge

This discharge profile cannot be realized in practice and is meant purely as a bench-

mark. Dt is unrestricted in each hour of the day. No prioritization is necessary as

patients can leave as soon as their LOS is finished.

4.7 Results of the Simulation

4.7.1 Validation

Before trying to improve the existing system, validation was the initial step. The

validation involved two steps: stakeholder face validation and comparison of means

of the inputs and outputs (as discussed in Montgomery and Davis [2013]).

Using mathematical models to solve problems in clinical settings is a very complex

process. The assumptions supporting the mathematical model need to be clinically

realistic. Tucker et al. [2001] remind us that clinicians make decisions based on their

perceived patient priorities, rather than system e�ciency. These decisions dictate

clinicians’ actions (prioritizing which patients to see first). The clinician is motivated
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by their perceived action value to patient care, and system e�ciency is secondary to

this goal. The assumption underlying mathematical projections only include value

weights programmed into the model. This project involved the interactive face to

face process of reviewing and comparing mathematical assumptions and the clinical

assumptions. This process is time consuming but essential to validate the model.

Thus, face validation is a result of our close collaboration with our team of clin-

icians and data managers. It was an iterative process and we asked questions like

“Does it represent the reality?”, “What should be changed?” and so on. We have

also discussed with our clinical collaborators about the system dynamics like queue

sizes (unfortunately we cannot validate this precisely with the data-set). On average

at any given hour 40 people waiting to be admitted to an inpatient unit, was an ac-

curate estimate to the queues in our partner hospital. We have performed sensitivity

analysis (like changing capacities in di↵erent units) in order to further validate the

results of our simulation model.

After face validation, we have also compared the means and quantiles in our

model, with the empirical distribution. We have compared input and output vari-

ables with the empirical data, including the comparison of: waiting times, admission

patterns and LOS values for patients on MDC levels and utilization levels for units.

Some of the output variables overestimate the empirical values. There are 3

main reasons for the overestimated values of our simulation model: firstly in our

simulation model we do not model redirections between units, while in the hospital

patients would be overflown to other units. The simulation model mimics a perfect

world, in which patients are only admitted to their primary unit. Secondly, we sample
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from biased LOS values; since these values from the data-set already have embedded

delays and non-value added times. Lastly, our simulation model is not responsive

to over-crowdedness, whereas in real life the hospital would go on “code red” to

cope with the congestion by employing policies like ambulance diversions, cancelling

transfers, elective surgeries and so on. Thus, in some sense we are modeling a worst

case scenario.

Even though the values do not match precisely, our main objective is to compare

di↵erent scenarios and policies to improve the patient flow. Also, even if the waiting

times or queue sizes are not precisely the same, the congestion pattern is the same.

So the most congested units are the same, the same is true for the patients who wait

the most.

We observe the phenomenon as pointed out in Green [2012], that a hospital

may have ample beds in some units and insu�cient in others, resulting in long

ED waits and ambulance diversions. This is simply because, not all the beds are

identical. Thus, needed bed capacity is highly dependent on the patient mix. Green

also mentions that the smaller the system, the longer the delays will be for a given

utilization level; and the greater the variability in service times, the longer the delays

at any utilization level. So the smaller units with higher variability in LOS will have

a higher wait time. This can also be seen from our results as well. For instance,

psychiatric unit with the highest variability in LOS experiences long queues.
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4.7.2 Impact of discharge policies

We now present results of 10 simulation replications for the various discharge profiles,

with and without prioritization. We begin with the analysis for the average queue

size. The average queue size represents the average number of people waiting to be

admitted to a unit waiting in ED or PACU, or in the community hospitals. We

use one-factor ANOVA to analyze the di↵erences in average queue size between the

discharge profiles (Figure 4.6), and also the all-pairs Tukey test (as can be seen in

Table 4.4).

The red lines in Figure 4.6 represent the quantiles with the box plot, the blue

lines the standard deviation, the green horizontal bar represents the mean for each

category, and the top and bottom of the diamond shape are the 95% confidence

intervals. Lastly, the horizontal line is the overall mean queue length across all

discharge policies and replications. The discharge profiles are presented in descending

order in terms of the average queue size observed. DP9 represents the 24 hour

discharge policy, which is a hypothetical best-case benchmark; DP6, DP7, DP8 are

the prioritized discharge policies, the rest are the un-prioritized discharge profiles and

the baseline represents 10 AM-7 PM with empirically observed discharge capacities

(see Section 4.7.2.3).

The connecting letters report in Table 4.4 summarizes the results of the all-pairs

Tukey tests. If two discharge profiles share the same letter, they cannot be said

to be statistically significant. However, statistical significance, while important to

acknowledge, should not be confused with clinical significance. Clinical significance

has a qualitative component; in our case, it is decided by our clinical collaborators.
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For example, a 6-person average reduction in queue size is non-trivial even though

it may not be statistically significant. In our results we find that a discharge profile

when compared to another (1) may not be either statistically or clinically significant;

(2) may be clinically significant, but not statistically significant; and (3) may be

both statistically and clinically significant. Table 4.4 suggests that the third type of

conclusion is prevalent only with regard to the prioritized discharges.

Table 4.4: Connecting letters report for queue size

Level Mean

Baseline A 45.849
DP1 A 46.122
DP2 A B 39.570
DP3 A B C 38.841
DP4 A B C D 33.733
DP5 B C D 31.319
DP6 B C D 28.596
DP7 B C D 27.012
DP8 C D 24.673
DP9 D 20.481

Our results can be summarized as follows:

(1) The empirical discharge distribution (Baseline) is neither statistically nor

clinically di↵erent from a discharge profile that restricts the number of discharges to

10 each hour (DP1). Thus allowing a steady discharge rate of 10 every hour is not

di↵erent from a discharge policy that peaks in the afternoon.

(2) If the majority of discharges happen before noon, as in the early in the day

discharge policy (DP2), then there are 6 less people waiting in the queue compared

to Baseline (clinical significance) but there is no statistical di↵erence. This supports

the findings in Shi, P. and Chou, M. C. and Dai,J.G. and Ding, D. and Sim, J.
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[2012]. The exact number of people discharged before noon is provided in Section

4.7.2.3; which will demonstrate that early in the day discharges will be very di�cult

to implement in practice. In DP2 the discharge capacities each hour between 10 AM-

7 PM are only restricted to be less than the remaining number of daily discharges.

Despite this, queue sizes do not decrease significantly. This suggests that not enough

patients’ LOS ends in the 10 AM-7 PM window.

(3) With 2 additional hours of discharge and a steady maximum capacity of 10

discharges in each hour (10 AM-9 PM, DP3), we have 7 fewer patients waiting com-

pared to Baseline (clinically significant). Notice that DP3 matches the performance

of early in the day discharge (DP2). Thus expanding discharge by two hours while

limiting the maximum hourly discharge capacity to 10 produces the same e↵ect as

performing a large (and impractical) number of early in the day discharges. In fact,

section 4.7.2.3, we will show that the number of patients discharged in the hours

between 7 PM and 9 PM is actually well below 10 for each hour.

(4) With 4 additional hours of discharge, and a steady maximum capacity of 10

discharges in each hour (10 AM-11 PM, DP4) there are 12 fewer patients waiting

compared to Baseline (clinically quite significant, but not statistically). This rein-

forces the idea that expanding discharge windows while keeping a practically feasible

and steady limit on discharge capacity has a stronger impact than allowing an early

in the day discharge policy between 10 AM-7 PM.

(5) When early in the day discharge profile is combined with a 4-hour expanded

discharge window, we have DP5. Such a discharge profile is not realistic since it

requires too much alteration of current practices; nevertheless, DP5 serves as a
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benchmark. We see that DP5, while statistically di↵erent from Baseline and DP1,

produces only a 2.5 patient reduction in queue size compared to DP4 (not statisti-

cally significant and perhaps not clinically significant either). This again suggests

that expanding the discharge windows has a stronger e↵ect than carrying out early

discharges between 10 AM-7 PM.

(6) We begin to see both statistical and clinical di↵erences when discharges are

prioritized in units that have the most patients waiting (DP6, DP7 and DP8). We

see also from Figure 4.6 that the higher percentiles of the average queue size (for

each discharge profile there are 10 average queue size observations obtained from

the 10 replications) are also reduced drastically. Using the current or empirically

observed discharge capacity as the maximum capacity for each hour and a discharge

window of 10 AM-7 PM with prioritization, produces a statistical improvement from

the Baseline: it leads to 17 less patients waiting to be admitted. The only di↵erence

between Baseline and DP6 is prioritization: the only change in practice is that each

hour the hospital sta↵ (physicians, case-managers, nurses, valets and escorts) has to

prioritize their discharge activities in units that have longer front-end (admission)

queues. Notice also, that DP6 produces a greater improvement (though not statis-

tically significant) than using the combination of early in the day discharge policy

with a 4-hour expanded discharge window (DP5). DP7 shows identical results as

DP6.

(7) The impact of prioritization is further enhanced under when the discharge

window is expanded by 2 hours (DP8), and a maximum of 10 discharges are al-

lowed each hour. Now, we have 20 fewer patients waiting (47% improvement) to be
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admitted, compared to Baseline. This di↵erence is both clinically and statistically

significant. Indeed, DP8 is comparable to the queue size observed from 24 hour

discharge policy (DP9). DP9 is only a benchmark – a lower bound that can never

be achieved. It is surprising how close DP8, which has some feasibility in practice,

performs with regard to this benchmark.

4.7.2.1 Unit specific analysis

We present how the queue size changes with di↵erent discharge profiles, in Table 4.5,

for the 5 units with the highest queues; Medical Telemetry, Renal, Medical Respi-

ratory, Cardiac Interventional units. As can be seen prioritization mostly benefits

Medical Telemetry unit, whereas the queue size in the Neurological unit is worse o↵

with this policy.

Table 4.5: Average queue size

Admit unit Baseline DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9

Medical Telemetry 16.46 16.31 14.81 13.37 16.36 13.08 9.75 9.78 8.98 8.01
Renal 4.63 4.44 3.86 3.41 4.43 3.42 2.95 3.00 2.53 2.26
Medical Respiratory 3.81 3.69 3.37 3.08 3.67 3.02 1.77 1.81 1.67 2.15
Cardiac interventional 4.40 4.62 3.00 2.18 2.27 1.56 1.66 2.13 1.53 1.00
Neurological 3.36 4.06 2.62 1.85 1.82 1.30 2.02 2.44 1.76 0.78
SUM 32.66 33.12 27.67 23.90 28.56 22.38 18.15 19.15 16.46 14.21
% improvement -1% 11% 19% 9% 22% 32% 30% 35% 40%

We also study the queue size quartiles for the two units of interest: Medical

Telemetry and Neurological unit in Table 4.6. Note that average queue sizes are

highly driven by higher percentiles, with median and 25th percentile typically having

a value of 0 for most of the units. Only Medical Telemetry unit has a queue size

greater than 0 in the first quartile, observed in the Baseline discharge profile.
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Table 4.6: Queue size percentiles using di↵erent discharge policies

BASELINE EITD PRIORITY
Med-tele Neuro Med-tele Neuro Med-tele Neuro

1st quartile 3 0 3 0 1 0
Median 14 0 13 0 8 0

3rd quartile 27 2 26 0 15 0
Avg 16.85 2.66 16.76 1.86 9.92 1.55
Max 55 34 55 29 39 24

4.7.2.2 Waiting time analysis

The second output measure of interest is the waiting time, which is a weighted average

of the admissions waiting time. Di↵erent from previous research in the literature, it

is not only based on ED boarding time, but rather includes the PACU holds, transfer

waiting times and ICU holds as well. The reason why the waiting times are higher

than the average values in the literature is because we are calculating the time for

patients to be admitted into their primary units and consider the waiting times from

all di↵erent patient sources. The improvements in waiting times follow the same

trend as queue sizes, as can be observed from the ANOVA analysis in Figure 4.7.

The confidence intervals for the waiting times are provided as well.

4.7.2.3 Resulting discharge capacities

In order to analyze the resulting discharge capacities from di↵erent discharge profiles,

we have looked at two of the most highly utilized units: Medical Telemetry and

Surgical/Orthopedic. The limited discharge capacity is especially allocated for these

units under the prioritized discharge policy (Figure 4.8). Medical Telemetry unit

benefits the most from this prioritization, in improving the long waiting times.
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We have also analyzed these di↵erent discharge profiles, in terms of the actual

realization of hourly discharges for the whole hospital. The hourly discharge capacity

thresholds and the actual discharge number, using di↵erent discharge profiles can be

observed from the Figure 4.9 below.

The infeasibility of early in the day discharge policy can clearly be explained with

the graph. As can be seen the first two hours together require almost 70 discharges,

which is more than the double of the average discharge capacity observed in peak

hours (approximately 16 patients). And even with this unlimited discharge capacity,

the improvements are not significant.

Figure 4.9: Capacity thresholds and actual realizations
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It is also noteworthy that with only 7 to 13 more discharges after 7 PM the queue

sizes and waiting times improve drastically with the expanded discharge window. The

reason is that the discharges are performed more evenly throughout the day. The

discharge capacities are not reached in most of the cases, as can be observed from

Figure 4.9.
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Figure 4.6: Queue size ANOVA analysis where Baseline: 10 AM to 7 PM empirical
discharge distribution, DP1: 10 AM-7 PM max 10, DP2: 10 AM-7 PM EITD, DP3:
10 AM-9 PM max 10, DP4: 10 AM-11 PM max 10, DP5: 10 AM-11 PM EITD,
DP6: 10 AM-7 PM Empirical Priority, DP7: 10 AM-7 PM max 10 Priority, DP8:
10 AM-9 PM max 10 Priority, DP9: 24 hour discharge

126



Figure 4.7: Waiting time ANOVA analysis, where Baseline: 10 AM to 7 PM empirical
discharge distribution, DP1: 10 AM-7 PM max 10, DP2: 10 AM-7 PM EITD, DP3:
10 AM-9 PM max 10, DP4: 10 AM-11 PM max 10, DP5: 10 AM-11 PM EITD,
DP6: 10 AM-7 PM Empirical Priority, DP7: 10 AM-7 PM max 10 Priority, DP8:
10 AM-9 PM max 10 Priority, DP9: 24 hour discharge

Figure 4.8: Discharge profile for two units Medical Telemetry and Surgical/
Orthopedic
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4.8 Discussion and Conclusion

As discussed in Powell et al. [2012] e↵ective solutions require a system-wide approach.

Thus, we provide a hospital-wide patient flow model as opposed to a unit specific

analysis, which can be used a decision support mechanism. The clinical leaders

involved in this simulation used the results in deciding on the capacity for new units.

For instance, the medical telemetry unit that was identified as having the longest

queue, was moved to a larger unit with more beds.

In our project, gridlock and long wait times for inpatient beds were compelling

issues to administrators, and managers. Clinicians (physicians and nurses), however,

are more influenced by their most critical patients’ needs. Realistic time-frames and

goals used in the model need to reflect this tension between priorities. The early

in the day discharge option is an example of the conflict between the individual

clinicians’ decisions and the management targets for this model (See Table 4.1).

Historically (see Figure 4.1), the maximum number of discharges accomplished in an

hour has been 17. If the early in the day discharge model is used – there would need

to be 32 to 40 discharges per hour (Figure 4.9), demonstrating an unrealistic clinical

target, with the same system rules and resources. Hospital administrators have been

recommending these early morning discharges. However, in 2004, Kealey and Asplin

[2004] reported the best practice “Forget about trying to get all discharges out by

11 AM”, instead they recommend scheduled discharges.

Many methods have been investigated in the literature to alleviate the bed con-

gestions including using flexible beds, increasing the number of beds (Green [2003]),

optimizing the surgical schedule (Bekker and Koeleman [2010]) or creating some
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kind of admissions control mechanism (Helm et al. [2011]). In our research we in-

vestigate using e↵ective and realistic discharge policies, that could be implemented

and actually create a significant improvement. We evaluate various discharge poli-

cies including expanding discharge windows, limiting the number of discharges to a

threshold and prioritizing discharges based on the admissions queue. We conclude

that e↵ective discharge policies have a significant impact on reducing waiting times.

For example, expanding the discharge windows only by a few hours provides sub-

stantial benefit, although not as significant as prioritized discharge policies (which

reduces queue sizes up to 48%).

By exploring other “windows” (evening hours) for discharge that could decrease

the wait time and queue size, the mathematical model gives the clinicians “new eyes”

to explore a new model to use increased discharges to decrease congestion. Clinical

administrators underestimate the conflict of priorities between system e�ciency and

clinical priorities. Engineers work to identify the mathematical system possibilities

and project the impact of system changes. The best solution exists at the intersection

of all three partners in this modeling, as in Figure 4.10.

Figure 4.10: Best solution
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Like any model there are some points that we have failed to address in this paper.

Our model can be potentially extended in several directions. First of all, we assume

a dedicated system in our simulation for bed capacity planning in which all of the

patients get admitted to their primary units. This is in fact desirable both from

the hospitals’ and patients’ point of view. However, in reality most of the time, the

patients will be redirected to other units (non-primary units) after a certain time.

This will decrease the waiting times and queue sizes, however the patients will not be

receiving the exact medical attention that they require. Even if the room is equipped

adequately, nurses are best prepared to care for the diagnoses commonly accepted to

their units. Each unit has specialty protocols, common treatments, known by the unit

nurses. When they care for patients with di↵erent diagnoses and issues, the match

between the patient and nurse will not be optimal. This mismatch may result in

delayed or inappropriate care. Furthermore, the patients in their non-primary units

will then have to be re-transferred to their primary requested unit. This results in

unnecessary costs, bed turnovers, potential health risks related with unsuitable admit

unit and patient dissatisfaction resulting from an unnecessary transfer (West [2010b],

West [2010a]). Thus in this study, we choose not to incorporate transfers, in order

to model the worst case scenario. As an extension to this study, we have integrated

overflow transfers to our simulation model and performed some preliminary analysis

on the impact of these (see Section 4.10 for detailed explanation).

An important point to consider, like in any data driven modeling, is the reliability

of data. Electronic health record generated admissions data consist of numerous
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