Jun 7th, 1:50 PM - 2:10 PM

Session C8 - Log Jam Distribution and Carbon Storage in Headwater Streams in Colorado's Front Range

Natalie Beckman

Colorado State University Department of Geosciences, natalie.beckman@colostate.edu

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference
LOG JAMMING:
Log Jams and Carbon Storage in Headwater Streams of Colorado’s Front Range

Natalie Beckman and Ellen Wohl
June 6, 2012

Colorado State University
Warner College of Natural Resources
200 years of human impact which can affect instream wood (Wohl and Goode, 2008)

- Tie drives
- Placer mining
- Logging
- Diversions

Log jams can be a key component of mountain stream habitat (Richmond and Fausch, 1995)

- form pools
- store sediment
- provide overhead cover for salmonids

19th century tie drive, Cheyenne National Forest, Wyoming
http://warnercnr.colostate.edu/geo/front_range/LandUse.php
Do we see significant differences in instream wood loads?
- Total wood load
- Jam density
Is there also an impact on carbon storage?
Can it lead to changes in fish habitat or forest/stream ecology
Background

Typical New Stand

Typical Old Growth
- **Ramp**
 - Log with one end anchored outside the channel
- **Bridge**
 - Log with both ends anchored outside the channel
- **Channel Spanning Jam (CSJ)**
 - Three or more logs touching and which also cross the entire channel
Data Collection

Selected 30 streams with varied:
- valley and channel geometry
- forest stand age
- history of human impact

Measured in the field:
- 2 levels of detail (reach vs jam)
- volume of standing wood (basal area)
- piece spacing and overall wood loads in streams
- longitudinal spacing of Channel Spanning Jams (CSJs)
- volume of wood in jams
- volume of retained sediment

Photo: Theresa Jedd
Data Collection
Data Collection

- Sample size
 - 30 reaches
 - 30 surveyed Channel Spanning Jams (CSJs)
- Elevations avg 2850m (2467-3089)
- Drainage area avg 35 km^2 (7.8 to 89)
- Average Slope 7% (range of 2-28%)
- Forest Ages from ~30 yrs to > 500 yrs
Results

- Significantly different Basal Area based on a priori classification
 - m^2/hectare

- Significantly different Total Wood Load
 - m^3/hectare channel surface
Results

Basal Area vs Total Wood Load

\[y = 3.8231x^{0.593} \]

\[R^2 = 0.5139 \]

Total wood load m³/hectare channel surface

Basal Area m²/hectare

Old Growth Altered Power (All)
\[y = 0.464x + 1.1143 \]
\[R^2 = 0.8066 \]
Ramp and Bridge Spacing vs Total Wood Load

$y = 311.77x^{-0.863}$

$R^2 = 0.8847$

Old Growth Altered

Ramp and Bridge spacing m
Total wood load m3/hectare channel surface
Fire burned Old Growth

Old Growth Forest
(>200 yrs since last disturbance)

Forest logged in last 200 years

Volume of wood in Jam, m^3
Fire burned Old Growth

Old Growth Forest
(>200 yrs since last disturbance)

Forest logged in last 200 years

Carbon Stored in Jams, kg

- From Sediment
- From Wood
Results

- Organic matter
 - Non old growth Jam vs Non-jam
 - All samples Jam vs Non-jam
Conceptual Model
Old Growth

High Basal Area

High Stream Wood Load
• Blow down
• Erosion
• Natural Mortality

Key Pieces
• Ramps and Bridges
• Less than 20m spacing

CSJ Formation
• Keyed on ramps and bridges

Geomorphologic effects
• Fine Sediment storage
• Floodplain connectivity
• Diverse habitat for fish
Conceptual Model
Logged Forest

Low Basal Area

Low Stream Wood Load
- Small diameter trees
- Low natural mortality

Lack of Key Pieces
- More than 20m between Ramps and Bridges

No CSJ Formation
- Mobile pieces exit the reach

Geomorphetic effects:
- Loss of fine sediment
- Reduced floodplain connectivity
- Reduced habitat diversity
Log jams form when there is a high wood load AND key pieces to anchor jams

Key pieces are necessary at a fairly high density (approx 20m spacing) in order to initiate historic numbers of CSJs

Overall, the loss of CSJs has lasting effects on the channel

- Loss of fine sediment and organic matter storage
- Loss of floodplain connectivity (Wohl and Beckman, in review)
- Loss of habitat diversity
Acknowledgements

Research Sponsors:
• American Water Resources Association Colorado Section
• Colorado State University
• Colorado Mountain Club
• Geological Society of America

Field Assistance:
• Allison Jackson
• Cole Green-Smith
• David Dust
• Mario Jimenez
• Richard Beckman
• Mike Magyar
(After Sibold, et al, 2006)
Hydrology

2010

Provisional Data Subject to Revision

2011

Provisional Data Subject to Revision