Menopause as a measure of population health: An overview

Lynnette Leidy Sievert
University of Massachusetts Amherst, leidy@anthro.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/anthro_faculty_pubs

Part of the Anthropology Commons

Recommended Citation
https://doi.org/10.1002/ajhb.1075 https://scholarworks.umass.edu/anthro_faculty_pubs/122

This Article is brought to you for free and open access by the Anthropology at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Anthropology Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Menopause as a Measure of Population Health: An Overview†

LYNETTE LEIDY SIEVERT*
Department of Anthropology, University of Massachusetts at Amherst, Amherst, Massachusetts

The health of aging women is a global concern (United Nations, 1995; World Health Organization, 1996). No longer perceived to be the responsibility of more developed countries, the delivery of preventative health care to women at menopause and beyond presents a growing challenge to less developed countries more accustomed to battling infant and maternal mortality than osteoporosis and related conditions of aging (Diszfalussy, 1986). In many nations, the cohort of women now reaching menopause has enjoyed “the lowest mortality rates in human history” (Miles and Brody, 1994:5), resulting in an increase in absolute numbers of older women. By the year 2025, there will be a projected 825 million people 65 years and older, the majority of whom (572 million) will reside in less developed nations (United Nations, 1993), and of them the majority (454 million) will be women (United Nations, 1999). A surprising consequence of these demographic changes is that older women in many less developed countries, particularly in Latin America and Asia, will potentially spend more of their lives in the postmenopausal stage due to an earlier mean age at menopause (Wood, 1994) coupled with an increased life expectancy (United Nations, 1995; United States Bureau of the Census, 1992) compared to women in more developed countries.

The papers in this thematic collection focus on menopause and post-reproductive health of women. They share a biocultural framework, including the co-evolution of anatomic and behavioral changes in hominid evolution, which result in a uniquely long postmenopausal stage of life (Peccei); the potential influence of the social custom of marriage on age at menopause through pheromonal effects (Leidy Sievert et al.); and the impact of biomedical treatment on a study of symptom frequencies (Brown et al.). Other contributions (Lock and Kaufert; Beyene and Martin; Johnston; and Hewner) each explore distinct examples of “local biologies” to better understand the experience of menopause in their respective cultural settings. As these studies demonstrate, biological and sociocultural variables are both cause and effect (Wiley, 1992), intertwined in “a continuous feedback relationship of ongoing exchange” (Lock, 1998:410).

In addition to demonstrating the applicability of the biocultural approach, these papers provide an opportunity to explore another unifying idea: that age and symptom experience at menopause may serve as measures of population health, just as age at menarche (Eveleth and Tanner, 1990), child growth status (Schell, 1986), and infant mortality rates (Swedlund, 1990) have been used as indicators of community well-being. Secular trends and comparisons of median ages at menarche have been used as indices of population health associated with industrialization and urbanization (Eveleth and Tanner, 1990; Pasquet et al., 1999), distribution of social resources (Veronesi and Gueresi, 1994), the effects of pesticide use (Graham et al., 1999), and the social disruption of war (van Noord and Kaaks, 1991; Prebeg and Bralic, 2000). As more attention is given to the health concerns of older women (United Nations, 1995; World Health Organization, 1996) and as more information is collected about diversity and change in median ages at menopause, age at menopause may be similarly used as a measure of population health.

AGE AT MENOPAUSE

As reviewed by O’Connor et al. (2001), the mechanism responsible for menopause is the continuous loss of ovarian follicles to the point at which menstrual cycles are increasingly variable in length and finally cease. Menopause is generally defined as the last menstrual period followed by 12 months of amenorrhea (World Health Organization, 1994).

†The articles for this special section on menopause arrived at various times and were acceptable, however, the entire collection was held until all articles were received. This accounts for the delay in publication.

*Correspondence to: L. Leidy Sievert, Department of Anthropology, Machmer Hall, University of Massachusetts at Amherst, Amherst, MA 01003-4805. E-mail: leidy@anthro.umass.edu

Received 5 January 2001; Revision received 29 January 2001; Accepted 2 February 2001

© 2001 Wiley-Liss, Inc.
1981; Kaufert et al., 1987). Median ages at menopause vary between 49 and 52 years in developed countries such as the United States (MacMahon and Worcester, 1966; Stanford et al., 1987; Whelan et al., 1990; McKinlay et al., 1992), Italy (Parazzini et al., 1992), Spain (Rebato, 1988; Prado and Canto, 1999), and Finland (Luoto et al., 1994). Mean ages at menopause are earlier, between 41 and 47 years, in less developed countries, for example, Mexico (Beyene and Martin, 2001; Garrido-Latorre et al., 1996), New Guinea (Wood et al., 1985), India (Sarin et al., 1985; Randhawa et al., 1987), Pakistan (Wasti et al., 1993), Bangladesh (Karim et al., 1985), the Philippines (Goodman et al., 1985), and Cuba (Moreno et al., 1991). In Yucatan, Mexico, mean ages at menopause apparently vary along a rural to urban continuum from 42 years to 44 years (Canto-de-Cetina et al., 1988; Beyene, 1989; Dickinson et al., 1992).

The negative correlation between age at menarche and age at menopause in a nutritionally stressed Blackfeet population (Johnston, 2001) and a negative correlation between age at menopause and the probability of death in a White, Seventh-Day Adventist population (Snowdon et al., 1989) suggest that age at menopause may be a measure of population health similar to age at menarche and life expectancy. One important difference between age at menopause and age at menarche is the simple observation that there is more time between birth and menopause than between birth and menarche. In other words, if early nutrition and activity patterns affect both age at menarche and age at menopause (Frisch, 1978; Ellison, 1996, 1999; Johnston, 2001), then changes in childhood nutrition will be measurable after about 10–15 years in the age at menarche but after 35–55 years in the age at menopause. The absence of a secular trend in age at menopause (Malina, 1979; Flint, 1997; Johnston, 2001; Peccei, 2001) could be explained by the length of the time interval between changes in sociocultural conditions at childhood and physiological manifestations at adulthood. Menopause is yet to be evaluated among better-off cohorts of women in countries where improvements in the overall standard of living have been quite recent. When comparable methods across consecutive age cohorts demonstrate an upward secular trend in age at menopause, this will serve as an indicator of improved health not only of individual women, but of entire populations.

The use of menopause as a measure of population health may seem paradoxical since menopause is associated with chronic disease. Menopause is associated with an increased rate of bone loss, but it is not necessarily the most important risk factor for osteoporotic fractures (Beyene and Martin, 2001; Hewner, 2001; Peccei, 2001). Also, earlier ages at menarche are associated with an increased risk of breast cancer (Kvale and Heuch, 1988; Kelsey et al., 1993), but earlier mean ages at menarche are also a marker of overall improvement in a population's standard of living. Late ages at menopause, also associated with an increased risk of breast cancer, can likewise serve as a measure of population health.

A final complicating factor in the use of menopause as a measure of population health is the effect of medical intervention. Brown et al. (2001) observed that 66% of a sample of postmenopausal school teachers in Hawaii had undergone menopause by hysterectomy. Johnston (2001) estimated a rate of surgical menopause of 43% among Blackfeet women of ages 50–69 years. Because hysterectomies are not random but are related to a woman's level of education and other social characteristics, studies that exclude women with hysterectomies may misrepresent the timing of menopause (Leidy, 1999). Further, many postmenopausal women take hormone replacement therapy (Brown et al., 2001); hence, the frequency of hot flash experience prior to interview is correspondingly low.

SYMPTOM EXPERIENCE AT MENOPAUSE

The perimenopause is characterized by increasingly variable hormone levels (O’Connor et al., 2001), and hot flashes are associated with some of these changes (Freedman, 2001). The hormonal changes appear to be universal (Beyene and Martin, 2001); however, the frequency of hot flashes across populations is not (Kroneberg, 1990; Avis et al., 1993; Lock, 1993, 1998; Lock and Kaufert, 2001). Further, simple conclusions cannot be drawn about differences in symptom reporting between developed and developing countries (Obermeyer, 2000). In Turkey, “muscle–joint–bone pain” was the symptom most often associated with menopause (Neslihan Carda et al., 1998), whereas in Japan, shoulder stiffness,
Menopause as a Measure of Population Health

431

ringing in the ears, and a heavy feeling in the head were commonly associated with the menopausal transition (Lock and Kaufert, 2001).

Musculoskeletal symptoms in women of menopausal age may be related to hormonal changes, or they may be due to women’s roles within particular cultures. Interestingly, women’s roles are central to both evolutionary and contemporary investigations into menopause. For example, Peccei (2001) considers the role of grandmothers across hominid evolution in providing food, care, safety, and shelter for altricial young; in fulfilling supervisory roles; and in serving as reservoirs of knowledge. Peccei ultimately dismisses the centrality of grandmothers in the evolution of menopause, in part because grandmother hypotheses ignore other forms of social support.

In contemporary investigations of the health and roles of aging women, Beyene and Martin (2001) note that Mayan women are habitually physically active. It was estimated that Mayan women pull at least 114 kg of water weight every day and, during the farming season, walk a least two hours every day to farm plots. Physical fitness reflected in flexibility and muscular strength may compensate for a relatively low bone mineral density to prevent age-related fractures. Lock and Kaufert (2001) also emphasize the pervasiveness of exercise and weight-bearing activities among Japanese women, along with a low frequency of symptoms associated with menopause.

Hewner (2001) situates older women in the context of their household and community to understand postmenopausal aging as an influence on well-being. The relative importance of function, life style, prosperity, and social environment in models of household health show that the functional ability of elders is not necessarily a significant predictor of household well-being. But, the sociocultural context of aging is the critical factor in health, so much so that an Ifugao woman in the Philippines bent horizontal by osteoporosis can still contribute to the well-being of the larger community. Thus, the lack of correlation between illness and function may argue against the use of symptoms associated with menopause as a measure of population health, but emphasizes the importance of cultural context.

There is variation in the type and frequency of symptoms associated with menopause (Beyene and Martin, 2001; Lock and Kaufert, 2001). Similarly, the correlates of menopausal symptoms are variable. Symptoms of menopause have been associated with smoking habits (Dennerstein et al., 1993), socioeconomic status (Wilbur et al., 1998), education level (Avis et al., 1997), parity (Beyene, 1989), prolonged lactation (Lancaster and King, 1992), history of premenstrual symptoms (Leidy, 1996; Skargard et al., 1996), phytoestrogens in the diet (Aldercreutz et al., 1992; Knight et al., 1996), the medicalization of menopause (Obermeyer, 2000), stressful life events (Hunter, 1993), and attitudes toward menstruation, menopause, and aging (Avis and McKinlay, 1991; Lock, 1993). Such variability may argue against the use of the symptoms of menopause as a measure of population health, particularly for comparisons of health across populations, but also indicates the need for comprehensive, biocultural approaches to the study of menopause.

Conclusion

The preceding discussion supports the use of age at menopause as an indicator of population health over broad sweeps of time. Age at menopause would be a conservative measure of well-being, perhaps less sensitive to change than age at menarche. However, if the same methods (e.g., probit and logit analysis) are consistently applied, then long-term patterns of change in age at menopause may be more apparent across age cohorts and across populations.

On the other hand, symptom experience at menopause is quite variable, and the etiology of the symptoms is multifactorial, which may limit the use of menopause as an indicator of population health. The roles, attitudes, and health-related behaviors of women shape culturally specific symptom experiences. Changes in symptom frequencies across age cohorts may be the result of increasing medicalization (Lock and Kaufert, 2001), or related to changes in diet or activity patterns. Unlike age at menopause, symptoms associated with menopause are immediately sensitive to health-related behaviors, such as smoking or coffee intake, changes in weight-bearing activity, or medical interpretation. Cross-cultural comparisons of symptoms at menopause are valuable for understanding many aspects of women’s health (Avis et al., 1993; Lock, 1993, 1998), but symptom frequency cannot
be used as a general measure of population health. Nevertheless, the papers that comprise this thematic collection demonstrate the broad applicability of the biocultural perspective and the need for further study of menopause as a measure of population health.

ACKNOWLEDGMENTS

These papers are brought together as a result of the 1999 Annual Meeting of the Human Biology Association in which a plenary session entitled “Menopause: Biocultural Approaches” was organized with the financial support of the Wenner-Gren Foundation for Anthropological Research and the North American Menopause Society.

LITERATURE CITED


Avis NE, Crawford SL, McKinlay SM. 1997. Psychosocial, behavioral, and health factors related to meno-
pause symptomatology. Women’s Health 3:103–120.

liere’s Clin Endocrinol Metabol 7:31–32.


Beyene Y. 1989. From menarche to menopause: repro-
ductive lives of peasant women in two cultures. Al-
bany: State University of New York Press.


Kaufert P, Gilbert P, Tate R. 1987. Defining meno-
pausal status: the impact of longitudinal data. Matur-


Luoto R, Kaprio J, Uutela A. 1994. Age at natural meno-
pause and sociodemographic status in Finland. Am J Epidemol 139:64–76.


McKinlay SM, Brambila DJ, Posner JG. 1992. The nor-


