Semantic Categories of Artifacts and Animals Reflect Efficient Coding

Noga Zaslavsky
The Hebrew University, nogsky@gmail.com

Terry Regier
University of California, Berkeley, terry.regier@berkeley.edu

Naftali Tishby
The Hebrew University, tishby@cs.huji.ac.il

Charles Kemp
University of Melbourne, c.kemp@unimelb.edu.au

Follow this and additional works at: https://scholarworks.umass.edu/scil

Part of the Computational Linguistics Commons

Recommended Citation

DOI: https://doi.org/10.7275/2rd2-xy92

Available at: https://scholarworks.umass.edu/scil/vol3/iss1/61
It has been argued that cross-language variation in semantic categories reflects pressure for efficient communication (e.g. Kemp et al. 2018). On this view, the lexicons of different languages represent a variety of means to the same functional end: transmitting ideas accurately, with minimal cognitive complexity. Recently, Zaslavsky et al. (2018) cast this idea in terms of an independent information-theoretic principle of efficiency, the Information Bottleneck (IB) principle (Tishby et al., 1999), which is closely related to Shannon’s rate distortion theory. In this context, IB is given an underlying cognitive representation of a semantic domain, and a prior over objects in the domain, and it produces a set of optimal category systems for that domain, for different trade-offs between system complexity and accuracy. These optimal systems define the theoretical limit of efficiency. Zaslavsky et al. (2018) showed that IB explains much of the variation in color naming across languages, and also accounts for the emergence and evolution of named color categories, including soft structure and patterns of inconsistent naming. However, it has remained unclear to what extent this account generalizes to semantic domains other than color. Here we show that it generalizes to two qualitatively different semantic domains: names for containers, and for animals.

Containers. We considered container naming and pile-sorting data collected by White et al. (2017), relative to a stimulus set of 192 images of household containers (see Figure 2A for examples), produced by Dutch and French monolingual speakers, and by bilinguals in each of the two languages, yielding four conditions: language (Dutch, French) × linguistic status (monolingual, bilingual). We took the sorting data to provide
for some objects, showing that these phenomena can be explained by a drive for efficiency.

Animals. Brown (1984) proposed an implicational hierarchy of animal categories across languages, based on data from 144 languages. We conducted an analysis of animal naming broadly analogous to the container analysis described above, based on human-generated features and familiarity ratings drawn from the Leuven Natural Concept Database (De Deyne et al., 2008). That analysis (not illustrated or elaborated here for reasons of space) revealed that the IB theoretical limit of efficiency in this domain correctly predicts several aspects of Brown’s hierarchy.

Conclusion. These findings suggest that fundamental information-theoretic principles of efficient coding may shape semantic categories across languages and across domains.

References

