2021

The Medium and the Backlash: The Disparagement of the #MeToo Movement in Online Public Discourse in South Korea

Soo Young Bae
Taegyun Kim
Yu-I Ha
Meeyoung Cha

Follow this and additional works at: https://scholarworks.umass.edu/communication_faculty_pubs
The Medium and the Backlash:  
The Disparagement of the #MeToo Movement in Online Public Discourse in South Korea

SOO YOUNG BAE  
University of Massachusetts, Amherst, USA

TAEGYUN KIM  
YU-I HA  
MEEYOUNG CHA  
Korea Advanced Institute of Science and Technology, South Korea

This study examines the #MeToo movement in South Korea to understand the role of online platforms in the development of a backlash discourse. We apply computational methods to analyze how the #MeToo movement was discussed by citizens on Twitter and in online news comments, in contrast to the traditional news media. Our findings show that the public discourse in user-driven online platforms enabled the proliferation of a disparaging narrative that challenged the movement, while the patterns of the backlash differed across platforms. Using word-embedding techniques and network analyses, we illustrate the shift in frames around #MeToo movement and highlight how platform affordances meaningfully shaped the way the backlash unfolded.

Keywords: framing, social movement, news, public opinion, backlash, computational methods

The increasing power of citizen expression in online platforms has been shown in numerous social movements, building on the theoretical scholarship about the role of public discourse in democratic societies. Although the effectiveness of online platforms in disseminating accurate political information or in generating meaningful political action remains challenging, the fact that online platforms have emerged as a central venue for citizens’ public discourse remains unquestionable. We focus on the expansion of the public sphere through online platforms and examine how alternative perspectives to a dominant social movement such as #MeToo develop online. The #MeToo movement, with its clear goal to support victims of sexual harassment, also raised significant concerns about its backlash against women (Atwater, Tringale, Sturm, Taylor, & Braddy, 2019). Although the concerns about the backlash to #MeToo were substantial, little is known of how this discourse developed in public and the ways in which it unfolded in different online platforms.

Soo Young Bae: sooyoungbae@umass.edu  
Taegyun Kim: jgdgj@kaist.ac.kr  
Yu-i Ha: yuiha@kaist.ac.kr  
Meeyoung Cha: mcha@ibs.re.kr  
Date submitted: 2020-02-12

Copyright © 2021 (Soo Young Bae, Taegyun Kim, Yu-i Ha, and Meeyoung Cha). Licensed under the Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd). Available at http://ijoc.org.
Drawing from the literature on framing and counterpublics, we explore the ways in which the discourse around #MeToo movement developed online and test the different outcomes in platforms.

Toward this end, we analyze the news and online public discourse about the #MeToo movement using computational methods. We begin with examining the frames that developed around the #MeToo movement in traditional news media and compare them with the frames that developed in public discourse in online platforms. Next, by applying methods to analyze the corpus of texts as well as hashtag networks in social media, we explore how the different affordances in platforms relate to the alternative framing of the #MeToo movement. The findings of this study illustrate how the backlash discourse manifests in online platforms and explicates the conditions under which this discourse may gain more prevalence in public discourse. Investigating the development of the #MeToo backlash in online platforms is particularly meaningful given its influence on the outcomes of the movement and the growing centrality of online platforms in the development of citizen discourse around social movements.

**Literature Review**

**The Development of #MeToo as a Social Movement**

The use of the phrase "me too" began as early as in 2006, when social activist Tarana Burke coined this expression to foster empathy among sexual harassment survivors and empower them to heal from their experiences (Garcia, 2017; Rodino-Colocino, 2018). It was not until 2017 that this phrase turned into a hashtag and became one of the biggest movements against sexual harassment. In October 2017, Harvey Weinstein’s sex scandal dominated the news, and the phrase "me too" became a hashtag through which women shared their personal stories of sexual abuse or harassment. Hashtag #MeToo was retweeted half a million times within the first 24 hours of its introduction (Kantor & Twohey, 2017), and quickly evolved into a global movement of support, sympathy, and solidarity for women.

The #MeToo movement in South Korea was ignited somewhat later, in January 2018, following the intense media coverage of a female prosecutor’s disclosure of sexual harassment and discrimination by her senior prosecutor who is a former Chief Prosecutor. Prosecutor Suh Ji-hyun stated that her initial report to her supervisor was ignored and that she had been penalized for filing a complaint against a superior male colleague (Hasunuma & Shin, 2019). This story made the headlines in all mainstream news media and triggered the #MeToo movement in South Korea. Within only one month after Suh’s report, more than 30 men in the arts, politics, law, academia, and other areas were accused of sexual misconduct. The list of accused men included film director Kim Ki-duk (winner of the Cannes, Berlin, and Venice Film Festivals), poet Ko Un (previous runner for the Nobel Prize in Literature), governor Ahn Hee-jung, and other prominent men, many of whom immediately stepped down from their powerful positions or held a press conference to publicly apologize (S. Kim, 2018). Outraged by the abuse of power, more than 20,000 protestors gathered in Gwanghwamun Square, Seoul, and condemned the hierarchical and male-dominated Korean workplace culture (S. Kim, 2018).
While creating a flood of accusations that followed one after another, #MeToo also created a divide in public opinion. Public discourse linked men’s sexual misconduct to the gap-jil culture in South Korea (S. Lee, 2018). The gap-jil culture refers to the power dynamic between the “gap” and the “eur,” where the dominant “gap” take advantage of their superiority over the subordinate “eur.” Though such power dynamics can be found in any relational context, it is known to be prevalent at the workplace, where the hierarchy of power is clearly defined (S. Lee, 2018). Public discourse on #MeToo focused on the gap-jil of men at the workplace, which caused unrest among those who opposed to the sweeping overgeneralization and treatment of men as potential perpetrators (Kwon, 2019; Smith, 2018). Feeling marginalized by the female-centered discourse of the #MeToo movement, men resorted to the “Pence Rule” for their course of action at the workplace, which in turn marginalized women (J. Kim, 2018; Smith, 2018). The “Pence Rule” refers to the statement that U.S. Vice President Mike Pence once made, about never eating alone with a woman other than his wife, and not attending events featuring alcohol without his wife by his side (Bruenig, 2017; Smith, 2018). Afraid that their gesture of friendliness or collegiality will be misunderstood as sexual harassment, men began to advocate for completely avoiding unnecessary interaction with women colleagues (Smith, 2018). As a result, women reported feeling increasingly shunned by their male colleagues and intentionally left out, illustrating how #MeToo became a source of marginalization, conflict, and division in South Korea (J. Kim, 2018; Smith, 2018).

In addition, alternative narratives about #MeToo emerged in public discourse to explain the motivations of the movement. Some accused the victims of having ulterior motives to come forward after many years had passed (S. Lee, 2018). Others suggested that #MeToo was a pseudomovement created as a means of political maneuver to sabotage a particular politician or political party (J. Kim, 2018). In South Korea’s politically polarized context, the sexual misconduct accusation made against a governor who was then a rising-star presidential hopeful was enough to trigger the spread of such conspiracy. These narratives not only disparaged the legitimacy of the #MeToo movement, but also mocked the victims who had risked their entire careers to come forward with their traumatic experiences. Given these developments, we investigate how such disparaging narratives developed in public discourse by specifically focusing on the role that online platforms played in the process.

Changing the Dynamics of Public Discourse

The sphere for public discourse has exponentially expanded with the emergence of online platforms for citizen communication. News consumption has evolved into a social experience through citizens’ comments to online news (Matsa & Lu, 2016), and social media have evolved as a platform for sharing news and political information. These online venues provide a communication environment that enables users to openly express their interpretations of news and current affairs issues. Although the effects of traditional news media on public opinion still remain, the expansion of the online public sphere has challenged the traditional models of news media effects (Neuman, Guggenheim, Jang, & Bae, 2014).

The democratic outcomes of the expanded public sphere are still contested in the field. On the one hand, public opinion developed in online platforms can enrich democratic discourse by challenging the dominant
This resonates with the foundations of deliberative democracy that value citizen engagement in political discourse (Dahlgren, 2005; Price & Cappella, 2005). On the other hand, the limited regulatory system in online platforms leaves them prone to cultivate unverified or misleading narratives that pose a threat to public discourse (Bowyer & Kahne, 2019). Concerns have also been raised about the incivility of public discourse in online platforms and whether such online discourse can lead to meaningful participation in politics (F. L. F. Lee, Liang, & Tang, 2019; Yamamoto, Dalisay, & Kushin, 2020).

Recent studies have illustrated that in the reconfigured online public sphere, citizens can develop counternarratives that challenge mainstream views or develop counterframes that oppose the dominant frames presented in traditional news media (Jackson & Foucault Welles, 2015; Leung & Lee, 2014; Liu & McLeod, 2019; Nikolayenko, 2019). Previous research shows that when it comes to social movements, traditional news tends to marginalize dissenting voices (Chan & Lee, 1984). Our study applies this perspective to explicate how the backlash against #MeToo unfolded in the online public sphere, in contrast to how the social movement was reported in the traditional news media.

**Backlash in the Online Public Sphere**

The framing literature established that the news media selectively present a specific frame on an issue, which influences the public’s interpretation of the problem, as well as their recommendation for treatment (Entman, 1993; Iyengar, 1990). Studies have shown that as a result of news framing, dominant ideologies are reinforced while dissenting voices can be marginalized in public discourse, particularly when it comes to social movements (Chan & Lee, 1984; F. L. F. Lee, 2014). Such marginalized dissenting voices, according to Fraser (1990), develop oppositional interpretations of social and political issues and form groups of subordinate positions in a society, as “counterpublics” (p. 67).

Unlike the traditional public sphere, online venues enable marginalized groups to openly express their nonmainstream interpretations of issues, and thereby build a counterpublic narrative. The liberation from social contextual cues in some online platforms can embolden individuals to share their opinions even though they might not correspond with the dominant narrative. Online platforms provide structural affordances that can allow dissenting voices to emerge (Halpern & Gibbs, 2013). For instance, public discourse in social media platforms can be organized through hashtags or the “crowdsourced elites” (Papacharissi & de Fatima Oliveira, 2012, p. 269). In a study of Twitter, Jackson and Foucault Welles (2015) have shown how marginalized groups reappropriated a hashtag campaign to promote their counternarratives on Twitter.

Online comments accompanying the news have expanded the public sphere for the expression of diverse and heterogeneous views on issues and have enhanced the potential for contesting mainstream narratives (Beckert & Ziegele, 2020; Kaiser, 2017; Liu & McLeod, 2019). While the framing literature had primarily focused on the effects of the news contents, recent studies have recognized the significance of comments to the extent that they influence the framing effects of the new contents (Liu & McLeod, 2019). Online comments, while contesting with the frame or tone of the news article, can serve as a platform for a backlash to develop and perpetuate.
Given the complex power relations embedded in a social movement such as #MeToo and the tendency of traditional media to produce a dominant narrative, our goal is to explore how online platforms function as a sphere for sharing alternative narratives. While previous studies have shown the development of alternative narratives in online social networks (Jackson & Foucault Welles, 2015) or in online comments (Liu & McLeod, 2019) separately, how the framing of a common issue develops in the two platforms remains unclear, particularly at the aggregate level. Thus, we aim to understand the ways in which a social movement is framed in online platforms that offer different affordances, while juxtaposing this to the frames developed in traditional news media. First, we offer a framework to test the intermedia difference in frames using the association of themes and individuals in a social movement. Second, we apply multiple computational methods to analyze the public discourse in online platforms and the traditional news. Finally, focusing on the backlash to the #MeToo movement, we show how the dissenting narratives responded to an external event, and highlight the significance of platform affordances. Toward these goals, we develop the following research questions:

RQ1: How do the frames in online social networks and online news comments differ from those used in traditional news media to cover the #MeToo movement? How have the frames on the #MeToo movement evolved over time?

RQ2: How did the affordances of online social networks and online news comments for citizen communication enable the development of a backlash effect to the #MeToo movement?

Data

To compare the public discourse on the #MeToo movement developed in different online platforms and the news media, we collected data from three different platforms: online news, Twitter, and the online comments to all news articles, from January 1, 2018, to March 31, 2018. We decided on this three-month time frame because the #MeToo movement in South Korea was initially sparked by Prosecutor Suh Ji-hyun’s appearance on the JTBC news broadcast on January 29, 2018. The movement reached its most dramatic moments in March, when actor Jo Min-ki took his own life and the rising political star Ahn Hee-jung stepped down from his governor position, respectively, after sexual assault allegations were made against them. Table 1 summarizes the data set, indicating the total number of news articles, online comments to news articles, and number of tweets, along with the number of unique number of users and news sources. The median number of posts per user was four on Twitter, which was twice the median number of comments posted by an individual user to news articles online. This suggests that though the total number of comments to online news was much larger, each user on Twitter more actively expressed opinions on the #MeToo movement.

<table>
<thead>
<tr>
<th>Type</th>
<th>Total posts</th>
<th>Unique users/sources</th>
<th>Median posts per user/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>News</td>
<td>23,663</td>
<td>113</td>
<td>107.0</td>
</tr>
<tr>
<td>Tweets</td>
<td>585,911</td>
<td>32,355</td>
<td>4.0</td>
</tr>
<tr>
<td>Comments</td>
<td>1,584,407</td>
<td>389,855</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Our data set came from two sources, Sysomos and Naver. Sysomos is a third-party data provider with global access to online news stories and social media data, and Naver is the largest online portal site in South Korea that functions both as a news aggregator and a search engine. Through Sysomos and Naver, we collected a total of 23,663 online news articles from 113 different South Korean news outlets, ranging from the largest national newspapers (e.g., Chosun Ilbo, JoongAng Ilbo, Dong-a Ilbo, Hankyoreh), to Internet-only news companies (e.g., E-daily, Pressian, Nocut News). The Sysomos news data included 25,388 online news articles from 103 different South Korea news outlets, and Naver news data a total of 21,401 online news articles from 89 news media outlets. All news articles were written in Korean, and all duplicate articles were removed after they were combined into one data set. Date for each news article included the title, body text, and information on the issue time, URL, media, date, and day of the week.

For the purpose of our analysis, we decided to make adjustments to the news articles’ data set. Studies have shown that, on average, one news article in South Korea has 931.68 characters, a sentence has 59.79 characters, and one paragraph consists of 1.91 sentences (G. Lee et al., 2007). Furthermore, the headline of a news article has an average number of 33.1 characters (Heo & Sohn, 2016). Given the inverted pyramid structure of news articles, the first paragraph of a news article would contain the most essential content, with the headline implying the topic of the article’s focus. Thus, we chose to keep the headline and the first paragraph of each news article and combined them as the “news” data for this research. Each first paragraph in our news data set contained on average 119.58 characters. This news data set was now more comparable to the two other user-generated data sets: Twitter, which has a maximum of 140 characters, and news comments, which has a maximum of 300 characters.

Through Naver, we also collected users’ comments to news articles. Naver provides access to public comments made on news articles, with the number of likes and dislikes for each article as well as for each comment made on the article. Our data contain 1,584,407 comments written by 389,855 users (median: two comments/user). Each comment received an average of 24.31 likes and 4.14 dislikes. Our social media data were collected through Sysomos, which has access to the full archive of tweets through its firehose. We used variations of keywords pertaining to the #MeToo movement using Boolean search terms (e.g., "MeToo," "#MeToo," "MeToo movement," "#MeToo movement"), both in Korean and English. We limited the search results to tweets made in the Korean language only, which resulted in 585,911 tweets from 11,459 different users.

Figure 1 shows the normalized volume of our data over time, from the wake of the #MeToo conversations beginning in January 2018 to the end of March 2018 in South Korea. The gray dotted vertical lines indicate peaks when the frequency of the three media reached the highest points at the same time. The nine peaks in Figure 1 correspond with significant events relevant to the #MeToo movement in South Korea, such as the accusation against governor Ahn Hee-jung and the suicide of actor Jo Min-ki. A few of the peaks differ slightly in their time points, with tweets and news preceding or following each other. While the #MeToo movement was globally widespread since October 2017 after Harvey Weinstein’s case, it was only after a case had happened in South Korea that the hashtag caught national attention.
Figure 1. Timeline of #MeToo in South Korea—Normalized volume of news articles, comments to news articles, and tweets.

The overall shift in volume in news articles, tweets, and comments to news appear to be similar. As shown in Figure 2, the volume of news articles was most strongly correlated with the amount of the news comments (Pearson’s $\rho = .92$), and the volume of news comments and tweets ($\rho = .87$), and news articles and tweets ($\rho = .80$) were also highly correlated.

Figure 2. Correlation coefficients—News articles, online comments, and tweet volume.
Method

Defining Key Frames

In this section, we describe how we arrived at the key frames examined in this study. Though news articles consist of full sentences that can convey meaning with accuracy, short expressions in tweets or comments to news articles may complicate the search for meaning or a frame. Thus, we relied on grounded theory (Glaser & Strauss, 1967) and conducted an initial round of manual topic tagging processes. First, we manually tagged 3,000 sample words that were extracted bigrams and unigrams from the tweets and news articles, respectively. We identified themes that emerged from the sample of 3,000 words from each data set and merged them into topical frames, until a handful of categories emerged. Three of the four authors conducted this manual tagging process, and all four authors collaboratively extracted the themes from the tags to decide on the frame criteria.

In the first round of the tagging process, each word was examined and received a detailed tag. These tags were subsequently merged into a frame. For instance, expressing intentions to participate in the #MeToo movement or expressing respect toward #MeToo participants, were merged as the “support” frame. Words that contain political meaning, names of political parties, and political slang that sarcastically characterizes opposing parties were classified as “politics.” Words intending to degrade and mock the victims, and words indicating conspiracy theories or witch hunts toward the victims were merged into the “disparagement” frame. After several rounds, we arrived at four topical frames—support, politics, disparagement, and punishment. The four frames and their descriptions are summarized in Table 2, with examples.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Examples</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Topic frames</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support</td>
<td>Words representing support or solidarity for #MeToo</td>
<td>sympathy, cheer, participation</td>
<td>105</td>
</tr>
<tr>
<td>Politics</td>
<td>Words containing political terms, sarcasm toward the opposite party</td>
<td>democratic party, right wing</td>
<td>137</td>
</tr>
<tr>
<td>Disparagement</td>
<td>Words intending to degrade #MeToo</td>
<td>gold digger, conspiracy, cosplay</td>
<td>93</td>
</tr>
<tr>
<td>Punishment</td>
<td>Words calling for punishment of the perpetrators</td>
<td>imprisonment, withdrawal, castrate, prosecution</td>
<td>76</td>
</tr>
<tr>
<td>Victims</td>
<td>Person revealed their experience of sexual harassment or assault</td>
<td>Suh Ji-hyun, Kim Ji-eun</td>
<td>43</td>
</tr>
<tr>
<td><strong>Individual types</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perpetrators</td>
<td>Person accused of sexual harassment or assault</td>
<td>Lee Yun-taek, Cho Jae-hyun</td>
<td>49</td>
</tr>
<tr>
<td>Supporters</td>
<td>Person publicly expressed support for #MeToo and the victims</td>
<td>President Moon, Lee Soon-jae</td>
<td>75</td>
</tr>
<tr>
<td>Opponents</td>
<td>Person publicly expressed opposition to #MeToo and the victims</td>
<td>Kim Eo-jun, Tak Hyun-min</td>
<td>12</td>
</tr>
<tr>
<td>Occupations</td>
<td>Occupational category mentioned in #MeToo</td>
<td>entertainment, academia</td>
<td>22</td>
</tr>
<tr>
<td>Gap (dominant)</td>
<td>Dominant position at work</td>
<td>executives, congressman</td>
<td>11</td>
</tr>
<tr>
<td>Eur (subordinate)</td>
<td>Subordinate position at work</td>
<td>student, secretary, actress</td>
<td>15</td>
</tr>
</tbody>
</table>
Given how the #MeToo movement focuses on stories of sexual assault experiences of individuals that could be classified into either the victim or the perpetrator, we decided to further investigate the presence of different types of individuals in the discourse around the movement. Toward this end, we designed a second task to label the individual types involved in the #MeToo movement in our data set. Before this labeling task, we conducted a preliminary analysis of identifying the individual types in a sample consisting of 500 news articles and 500 tweets, randomly extracted from our data set. Through this analysis, we arrived at a topology with seven categories—victims, perpetrators, supporters of #MeToo, opponents of #MeToo, gap (the dominant and powerful), eur (the subjugated and powerless), and the occupations (field). We used these seven categories to label each data entry in the sample. For instance, the names of individuals were examined and were labeled as victims, perpetrators, supporters, and opponents. When occupations or positions were mentioned to refer to individuals working in a particular field (e.g., entertainer, lawmaker, businessperson), these individuals were labeled into the occupation (field) category. Taking into account the tension between gap versus eur, we also classified individuals into these categories. Details of these individual types are also summarized in Table 2.

**Applying the Word-Embedding Technique**

This study relied on a language model to analyze large-scale textual data that contained news articles, tweets, and comments, spanning a three-month period. Considering that frames consist of groups of words, we used the word-embedding technique to analyze the large-scale textual data. The word-embedding technique represents a word in the form of a vector that contains semantic and syntactic information (Ganguly, Roy, Mitra, & Jones, 2015; Lai, Liu, He, & Zhao, 2016). The relationship among words can be studied using vector arithmetic, such that a pair of words used in a similar context appear to be in close approximation between the corresponding vectors. This allows for an elaborate quantitative analysis of a target corpus based on word vectors and can reveal the characteristics of the corpus.

To measure the differences of frames among media, we built a bag of words that represent the topical frames and individual types toward the #MeToo movement. Then, we computed the Word2Vec word-embedding model, which transformed the words into the vectorized representations (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). We used three different embeddings, built from each data set, and calculated the average cosine distance between the words in the topic frame and individual types in each platform.

Additionally, we employed the dynamic word-embedding method, which allows measuring the change over time in language usage by including time information in the model training. Though a typical word-embedding method considers each word vector as fixed, the dynamic word-embedding method allows the vectors to shift over time. Using this time information, changes in distance or semantic relations among words can be quantified. We used this time-aware dynamic word-embedding model to detect the change in frames before and after a specific incident (Hamilton, Leskovec, & Jurafsky, 2016).

**Results**

The central motivation of this study was to explore the framing dynamics in the online public spheres and traditional news and find out the conditions under which alternative discourse can become more
prevalent. Toward this end, we tested whether the different frames of the #MeToo movement we identified through our qualitative approach through grounded theory manifested differently in the three platforms: traditional news, Twitter, and online comments to news.

**Key Frames and Individual Types**

We first analyzed the frames used in traditional news media, Twitter, and comments to online news to discuss the #MeToo movement. To semantically quantify the prominence of a frame that emerged in each media, we constructed a bag of words for each topic—support, politics, disparagement, and punishment—and calculated their fraction in each data set, respectively. The results in Table 3 show the proportion of frames in each media. We conducted chi-squared tests across the media types to test whether the volume differences are statistically significant. As shown in the top panel, significant differences exist across media for each of the four topical frames. Three topic frames, including support, politics, and punishment, accounted for the highest fraction in news articles, in comparison with tweets or comments. The disparagement frame, which includes expressions of degrading, mocking, conspiracy, and witch hunts, was the highest in tweets followed by the comments to news. This finding suggests that though the doubts and mistrust against the movement may not be reflected in traditional news, the public used alternative venues to share these alternative views. The difference across media was statistically significant, although the differences were relatively small.

The bottom panel in Table 3 shows how the discussion of #MeToo revolved around what types of individuals in each media. Our results show that traditional news media involved the most diverse set of individuals. Interestingly, the discussion of #MeToo revolved the most around its supporters on Twitter, but not in the traditional news media or the comments to the news. These differences across media types are again significant for all individual types, as shown with the p values.

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>News</th>
<th>Comments</th>
<th>Tweets</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic frames</td>
<td>Support</td>
<td>0.2905</td>
<td>0.1060</td>
<td>0.2895</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Politics</td>
<td>0.4528</td>
<td>0.1757</td>
<td>0.2546</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Disparagement</td>
<td>0.0722</td>
<td>0.0748</td>
<td>0.0947</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Punishment</td>
<td>0.2391</td>
<td>0.0780</td>
<td>0.0983</td>
<td>***</td>
</tr>
<tr>
<td>Individual types</td>
<td>Victims</td>
<td>0.3035</td>
<td>0.0444</td>
<td>0.1059</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Perpetrators</td>
<td>0.3001</td>
<td>0.0354</td>
<td>0.1341</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Supporters</td>
<td>0.0215</td>
<td>0.0176</td>
<td>0.0499</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Opponents</td>
<td>0.1091</td>
<td>0.0284</td>
<td>0.0775</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Occupations</td>
<td>0.2691</td>
<td>0.0619</td>
<td>0.1597</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Gap (dominant)</td>
<td>0.0742</td>
<td>0.0078</td>
<td>0.0626</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>Eur (subordinate)</td>
<td>0.3012</td>
<td>0.0781</td>
<td>0.1304</td>
<td>***</td>
</tr>
</tbody>
</table>

*p < .05. **p < .01. ***p < .001.

An interesting finding is that though the topical frame on support of #MeToo was found to occupy the highest fraction in traditional news, the mention of individual supporters was the highest in tweets. Though one might expect the support frame to be more prevalent on social media, given that it is through
the use of social media and the hashtag that this movement became so widely popular, the support frame was more dominant in traditional news media.

**How Did Frames Develop Over Time?**

The next set of analyses show how the four topical frames developed over time. Figure 3 represents the cumulative statistics graph for the four topic frame types. The x-axis represents the two-month period plotted in the graph, and the y-axis represents the percentage of each topic. From the stack plot, we can observe the volume of each topic frame, how they stack up, as well as their development over time. In comparison with the stack plot for comments, the results for news and tweets illustrate clearly different patterns. As shown in the top panel of Figure 3, there was little room for the disparagement frame in traditional news media. The greatest increase in frames in the news media was found in the politics frame, which occupied more than 40% of #MeToo frames toward the end of March. This suggests that mainstream news media increasingly associated the movement to its political impact, with very little room for any discourse that degraded the victims or the movement itself.

The bottom plot in Figure 3, however, illustrates that public discourse around #MeToo developed with a different emphasis on Twitter. The greatest increase in frame over time was the support frame; therefore, though the results in our previous analysis indicated that support frames are the most dominant in the news, the rate of increase of the support frame over time was the greatest on Twitter. In addition, our results indicate that there was an increase of the disparagement frame over time in both Twitter and the comments to the news articles. This finding suggests that these viewpoints, though they may not be reported in mainstream news, did find their way to spread in these online venues.
Figure 3. Cumulative statistic graphs for the four topic frames by media type.
**Can Alternative Frames Gain Momentum Online?**

The next set of analyses expanded the question of backlash to examining whether alternative frames of the #MeToo movements can develop in social media and even gain momentum in public discourse. This potential is explored through a two-step analysis. We first conducted a Granger causality test between traditional news and Twitter to understand whether one could significantly predict the other. Then, we conducted a network analysis of hashtags on Twitter to visualize the structure of frames via hashtags and gauge its relationship to the traditional news media frames.

First, we used Granger causality to test the temporal precedence of frames on Twitter and traditional news media. Granger causality is a statistical method that can be used to establish the temporal order between two variables based on time-series data. Our results in Table 4 show that the emergence of the #MeToo discourse on Twitter significantly Granger-causes the frames in mainstream news reports ($\rho = .0026$), based on a one-day lag. The Granger test analysis with each topical frame showed that the topical frames in tweets Granger-cause frames in the news, with the exception of the punishment frame.

<table>
<thead>
<tr>
<th>Topic</th>
<th>News GC tweets</th>
<th>Tweets GC news</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
<td>.1655</td>
<td>.0001***</td>
</tr>
<tr>
<td>Politics</td>
<td>.1715</td>
<td>.0000***</td>
</tr>
<tr>
<td>Disparagement</td>
<td>.2742</td>
<td>.0017**</td>
</tr>
<tr>
<td>Punishment</td>
<td>.0878</td>
<td>.26</td>
</tr>
</tbody>
</table>

*Note. GC = Granger cause. *$p < .05$. **$p < .01$. ***$p < .001$.*

Next, we analyzed the hashtag network on Twitter to detect the alternative discourse developed and organized through the use of hashtags, and to test whether this alternative discourse could create momentum to influence the framing of #MeToo in traditional news media. Of particular interest were hashtags organized with nonmainstream perspectives on the #MeToo movement.

Figure 4 illustrates the co-occurrence network of hashtags within the Twitter data set. The top figure (A) is a network of hashtags that were comentioned at least 20 times, and the bottom panel figures (B) represent hashtag networks comentioned at least 500 times. Figure 4 (A) shows that #WithYou was at the center of the #MeToo hashtag network. The #WithYou movement was a follow-up movement developed in South Korea to support victims of sexual assault. While #MeToo brought to light the personal experiences of sexual assault victims, #WithYou focused explicitly on advocating the victims, raising awareness against sexual violence, and acknowledging the limitations of the hierarchical social structure in South Korea (Im, 2018).
Figure 4. Co-occurrence network of hashtags within the Tweet data set (A) minimum co-occurrence: 20, (B) minimum co-occurrence: 500.
The bottom figures (B) shed light on #MeToo cases that were discussed on Twitter, but not reported in mainstream news media. Several hashtag networks clustered around the largest South Korean Web cartoon company (#LezhinComics_MeToo), a group of universities (#Ewha_Univ_MeToo), a music director (#ByunghoonLee), and several cosmetic brands (#Apieu). These cases were not covered frequently in mainstream news media, yet some of them were influential enough to create an online boycott movement toward the cosmetic brands (e.g., #Boycott_Apieu, #BoycottMissha). These results indicate that though Twitter was used to draw attention to particular cases and was influential enough to create a boycott movement, these were not successful in drawing attention in traditional news media.

**The Disparagement of #MeToo**

To further examine the backlash to the #MeToo movement, we focused on the development of alternative perspectives and disruptive narratives. Going beyond the volume of disparagement present in each platform or the time order between citizen discourse and traditional news media, we examined how this disparagement developed by testing the association of the disparagement frame with different individual types. Using cosine similarity tests, we examined whether the disparagement frame was more closely associated with the perpetrators or the victims of the #MeToo movement. The cosine similarity measure, which is comparable to other similarity measures, such as the Euclidean distance, quantifies the distance between two word vectors to represent their similarity (Huang, 2008). A higher cosine similarity value would indicate that the group words disparaging the #MeToo movements were semantically closer to the group of individuals.

The left panel in Figure 5 shows the cosine similarity outcomes between the vector of disparagement words and each type of individuals (i.e., perpetrators or victims). Our results show that the disparagement frame was positively associated more with the victims rather than the perpetrators, in both online comments to news and tweets. This suggests that the vector with words used to disparage the #MeToo movement was closer in distance to the vector of victims rather than to the perpetrators. Though the difference in tweets was marginal, citizens’ discourse in online news comments showed a stronger association between the disparagement frame and victims of the #MeToo movement. Users were more likely to discuss the victims in disparaging ways than the perpetrators of the #MeToo movement, and this tendency was more prevalent in the comments where their usernames could remain anonymous.
This result becomes more intriguing when put in context with the cosine similarity analysis of the support frame. In both online comments and tweets, the support frame was associated more with the victims than the perpetrators. On Twitter, we found a negative coefficient between the support frame and perpetrators, suggesting that the words used to support the #MeToo movements were semantically distant from the perpetrators. On the other hand, we found a positive similarity coefficient between the support frame and the preparators in the comments to news. This positive association between the support frame and the perpetrators, rather than the victims, suggests that the affordances provided in the comments section to online news are distinct from those of social media platforms.

Testing the Backlash Effect—The Impact of Jo Min-ki’s Case

Finally, we examined the shift in frames in response to an external incident, or a focusing event. Focusing events are sudden, dramatic, and harmful events that may be seized by interest groups to mobilize
or to change the framing social movements (Birkland, 1998). The South Korean actor Jo Min-ki committed suicide after a series of accusations had been made by his former students at a university where he taught acting as an assistant professor. This analysis tested whether this extreme action of a perpetrator in the #MeToo movement changed the tone of public discourse. Toward this end, we examined the change in frames using time-aware embedding technique, with each frame represented by a bag of words on politics, support, disparagement, and punishment, respectively. The bags of words were treated as vectors, and the distance between each frame and Jo Min-ki were calculated before and after his suicide. Of particular interest was the change in the disparagement and punishment frames.

We found an increase in support frames after Jo Min-ki’s suicide, except for tweets where we found a decrease in support frame. The framing of politics dropped in all media outlets, but most significantly in the news media. Findings reveal that the change in the disparagement frame and punishment frame are less consistent across media platforms. We found a dramatic increase of the disparagement frame after Jo Min-ki’s suicide. On the other hand, the punishment frame has decreased only slightly in news media, whereas it dropped dramatically in tweets. The suicide of the famous actor had a stifling effect on the discussion of punishment on tweets, while it ignited disparaging discussion of the movement in online comments. These findings suggest that the response to an external incident manifests in different ways, depending on the platform for citizen communication.

Figure 6. Cosine similarity comparisons of topic frames—Before and after Jo Min-ki’s suicide.

Discussion

Understanding the development of a backlash to a social movement is significant, as repeated exposure to alternative frames attempting to undermine the movement can impact the public’s perceptions on the legitimacy of the movement. The complex and multifaceted role of communication platforms in the process of the backlash should thus be explicated with more nuance. Our study highlights the applicability of computational methods in communication research and adds insight about the role of online platforms in the
development of public opinion around a social movement. In an effort to investigate the positions of different online platforms in the current communication ecology, we analyzed three different types of corpus, traditional news, online news comments, and tweets. The news media represent the traditional mainstream view of society, reflecting the dominant ideologies as established through institutions. Twitter, as a social networking platform, allows citizens to be both the producers and distributors of information. Comments to news enable citizens not only to interact with the news but also with other citizens, uniquely positioned at the confluence of traditional news and user interaction. Exploring the development of public opinion in these platforms thus provides a more nuanced understanding of how citizens use the affordances provided through them.

Perhaps it is unsurprising that user-driven online platforms function as a channel for people who challenge the dominant views on any given social issue. Our findings show that the proportion of disparagement toward the #MeToo movement was greater on Twitter and in online comments than it was in traditional news media. Traditional news media focused on various aspects of the movement, but adhered to the mainstream narrative established through institutionalized gatekeeping and news values. In contrast, the absence of such establishments in online platforms enabled networked citizens to build disparaging frames around the #MeToo movement. As a result, public discourse that disparaged the #MeToo movement was not only significantly more present in online public discourse, but its volume also increased over time. Such discourse mocked the victims as gold diggers or as performing victim cosplay. As the combination of the words costume and play, cosplay is the act of dressing up as a character of a comic book or film. Thus, victim cosplay suggests that the victims are pretending to have been sexually assaulted. The use derogatory terms to frame victims increases doubt about the legitimacy of the movement and facilitates the spread of backlash.

What is more interesting than the difference or the rate of increase in volume of the disparagement is the disparate ways in which this discourse unfolded in the two online spheres. Our analyses testing the association between the topic frames (support or disparagement) and individual types (victim or perpetrator) by computing the statistical distance of word vectors provided us with a unique opportunity to understand how the disparagement discourse among citizens developed. Though experimental research has established that the framing of an issue can significantly shape the attribution of responsibility to individuals or society (Iyengar, 1990), the association between the frame and the individuals involved as manifested in online public discourse has not been empirically examined before. From a normative perspective, the discussion of #MeToo would revolve around supporting the victims, and if any disparagement would be present, it would be more closely associated with the perpetrators. Nevertheless, our results contradict this normative view. We found a stronger association between the support frame and the perpetrators (rather than the victims), and a stronger association between the disparagement frame and the victims (rather than the perpetrators). These findings were more pronounced in online comments in comparison with the tweets. The close association between the disparagement frame and the victims, and between the support frame and the perpetrator, leaves us with the question of how citizens attribute responsibility and blame in sexual assault accusations. Though each case merits its own interpretation, emphasis on the individuals’ responsibility can obstruct the societal and cultural change that a social movement aims to ultimately accomplish. In fact, though the South Korean government responded to the #MeToo movement by establishing victim support centers and by instituting committees for sexual harassment preventions, critics point out that citizens’ public involvement in the movement has dissipated relatively quickly (Kwon, 2019).
Public opinion polls have shown that concerns about a backlash toward women are real, which could affect the efficacy of institutional efforts for social change.

Capturing the impact of an external event, the findings of our study reveal the varying levels of sensitivity of public opinion developed in social media and online comments. Our findings suggest that despite the shared features of online platforms, the dynamics in social networking sites and online comments differ significantly. The late actor Jo Min-ki had been rebuked intensely online, particularly because the sexual accusations against him involved young college students. His suicide, however, left the South Korean public in shock, and it quickly changed the tone of public discourse. Notably, the disparagement of #MeToo flared up immediately in online comments. The punishment frame, which called for stronger punitive action toward sexual assault perpetrators, dropped substantially on Twitter. Support for the movement decreased on Twitter, but increased in online comments. The findings of our study indicate that though public discourse in both Twitter and online comments are responsive to external events, the development of public discourse the two online platforms is not uniform.

One explanation for these different outcomes is the varying level of anonymity provided by the platforms. Though the technical interface may differ depending on the medium, the comments section of online news commonly allows the users to remain anonymous. This was the case of our comments data collected through Naver as well, which displays only the first four letters and uses asterisks for the rest to anonymize usernames (e.g., username -> user****). This enhanced level of anonymity can disinhibit the users to express viewpoints that disrupt the normative and socially acceptable views on the social movement. Research has shown that perceived anonymity can increase individuals’ willingness to express opinions, especially on sensitive issues (Hollenbaugh & Everett, 2013; Wu & Atkin, 2018). The fear of isolation, which can limit the scope of discourse, as suggested by the spiral of silence (Noelle-Neumann, 1993), would naturally differ in a nonanonymous context. The users’ activities in online comments sections can easily be separated from their off-line identities, allowing them to engage in discourse that may be unacceptable from the normative perspective of a social movement. On the other hand, social networking sites such as Twitter reveal the identity of users by making visible the usernames or profiles within the social network, which can affect users’ engagement in disruptive discourse. The risk of social isolation can be greater on Twitter than in the comments sections of online news, affecting the ways in which a disparaging narrative or backlash manifests in the platform.

Another difference lies in the network-based structure of social media, which is built on interpersonal connections. The absence of a social network in the online comments feature may release the users from social desirability expectations, which has been found to influence citizens’ engagement in the deliberation process. The potential mobilizing power also remains relatively unclear in comparison to the discourse developed in a social networking site. Thus, though online platforms share similar technological features, the social element can significantly shape their influence on the development of public discourse. Future studies examining the impact of structural features of communication platforms on user engagement can help establish a more nuanced understanding of affordances that can help build a deliberative environment.

Though the use of computational methods to analyze the large-scale data collected through social media allows for a complete picture of the online public sphere, it also presents us with limitations that
should be addressed. Computational methods hold an inherent limitation when it comes to interpreting meaning. Before our analyses, we ran several rounds of manual tagging to avoid the distortion of keywords and to more accurately reflect the contexts in which they are used. Yet extant computational methods are still limited in their ability to capture the nuance and tone of text, particularly when it contains a satirical or sarcastic intent. For instance, our initial analysis revealed that "witch hunt" was frequently associated with the #MeToo movement. Through several rounds of manual tagging before applying the computational techniques used to analyze the large data set, we established that the expression was used more to defend the perpetrators of sexual misconduct by characterizing the allegations as a "witch hunt." The presence of this expression in association with #MeToo was thus assumed to denigrate the #MeToo movement and was therefore included as one keyword expression in the disparagement frame. Given the amount of data to be analyzed, such application of rule is inevitable for the sake of efficiency. The following examples in our data, however, illustrate that the same expression can still be used in drastically different ways.

1. Don’t drive them as gold diggers. This is a witch hunt and a second assault on the victim.

2. When women say something without any pieces of evidence, men are treated as an assailant. I feel the “me too” movement has degenerated into a witch hunt.

The first sentence attempts to defend the victims, while the second sentence criticizes the #MeToo movement as being a witch hunt against men. Both sentences include the same expression, yet contain completely contradicting intentions. Although the majority of cases in our study were in accordance with our rule, we find that a more refined text analysis method is necessary to identify the nuance and tone of the text.

Given its global magnitude, the #MeToo movement also provides an opportunity for cross-cultural research to explore the use of online platforms in the development of a backlash movement. The status of women at work as well as the adoption of new technology in everyday life vary substantially across nations, and whether such cultural contexts influence the spread of counternarratives in alternative public fora remains to be explored. South Korea ranks among the lowest countries in terms of gender equality (108 of 153, according to the World Economic Forum, 2019), while ranking among the top countries in terms of social media penetration around the world (“OECD Broadband,” 2019). Comparative studies would thus allow for a deeper understanding of the forces that shape the adoption of new venues for the development of public opinion, including the backlash.

References


Heo, S. W., & Sohn, K. A. (2016). Feature extraction to detect hoax articles. *Journal of KIIE, 43*(11), 1210–1215. doi:10.5626/JOK.2016.43.11.1210


Wu, T. Y., & Atkin, D. J. (2018). To comment or not to comment: Examining the influences of anonymity and social support on one’s willingness to express in online news discussions. *New Media & Society, 20*(12), 4512–4532. doi:10.25384/SAGE.c.4116641.v1