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ABSTRACT
VULNERABILITY OF LONGFIN INSHORE SQUID [OLIGO PEALEII) TO
PREDATION: THE INFLUENCE OF RELATIVE PREY SIZE AND BEHAVOR
FEBRUARY 2010
MICHELLE DANA STAUDINGER
B.S., BOSTON UNIVERSITY
M.S., STONY BROOK UNIVERSITY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Francis Juanes

Cephalopods provide forage to a wide range of predators in marine food-webs.
Despite their ecological importance, a basic understanding of the mechanisrolignt
predation risk and demand is lacking. This is true of one of the most common species of
squid found in the northwest Atlantic, the longfin inshore squitigo pealeii). In this
dissertation, | address this shortcoming by investigating the role thatrsizbehavior
play in influencing squid’s vulnerability to predation.

| used long-term food habits, population survey, and commercial landings data, to
guantify size-based patterns of predation respective to 25 species of predators.
Additionally, | estimated the amount of overlap between predatory consumption and the
fishery catch for squid by size. | found that finfish and elasmobranchsatigner
consumed juvenile and sub-adult squid, while marine mammals primarily targeted adul
Consequently, marine mammals had the highest overlap with the fishing industry f

squid size resources. Although large squid were not common in predator diets, predators

Vil



did not appear to be gape-limited when feeding on squid. This suggested that other
factors, including behavior, were important in shaping size-based patterndatiqure

| used a laboratory-based approach to quantify attack and capture behaviors
towards squid by two predators representing contrasting foraging ta&8iasfish
(Pomatomus saltatrix) and summer floundePéralichthys dentatus) were chosen as
cruising and ambush predators, respectively. Patterns in attack rateseslitjgpastize-
selection on squid was constrained by passive processes rather than active ¢loaice
predators. Size-dependent profitability functions were calculated by cmmlziapture
success rates, handling times, and relative prey mass, and determined tisat\whse
the more efficient predator of squid. Lastly, | evaluated the occurrencdfactiveness
of anti-predator responses used by squid in the presence of bluefish and flounder. Squid
behavior depended on the type of predator present, and the survival value of primary and
secondary defense behaviors differed during interactions with each predato

The results of this project are intended to improve the quality of management of
squid and their predators by providing a better understanding of predator-prey

interactions in the northwest Atlantic.
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PREFACE

In the northwest Atlantic, decades of overfishing have led to the decline of many
important commercial finfish populations. As the abundance of traditional stocks has
progressively declined, the response by the fishing industry has been to tarigst &pec
lower levels of the food chain (Pauly et al. 2002). Invertebrates such as sjuist ane
example of this emerging trend. Previous to the 1960’s, longfin inshaigq pealeii)
squid were considered bait and had little commercial value in U.S. Atlaatstat waters
(Brodziak 1998). In contrast, today squid are one of the most valued fisheries in the
region with commercial harvests increasing by several orders of magifitun just a
few decades ago (NMFS 2009). This reliance on smaller, faster growingssisec
representative of a global trend and has prompted concern as to whether suodspracti
are sustainable (Pauly et al. 1998).

Improving our understanding of trophic interactions is essential to predict
population responses to ecosystem changes that are precipitated by texplitiak
2002a, 2002b). Since predation can outweigh all other components of mortality (Buckel
et al. 1999a; Overholtz et al. 2000), the comprehension and quantification of predator-
prey interactions improves our ability to predict population abundance and behavior (Bax
1998). Furthermore, the recent progression towards developing more holistic,
ecosystem-based management plans requires increased knowledge of predator-prey
relationships to model population dynamics (Cury et al. 2005; Duplisea 2005; Kfwlista
et al. 2009).

The consequences of overexploiting squid have potential ramifications that

radiate throughout the food-chain. In the northwest Atlantic, squid have been identifie



in food habits studies as a principal resource to many commercially and ealiogi
important predators. In a comprehensive survey conducted by Bowman et al. (2000), the
food habits of 170 predators in the northwest Atlantic were reviewed. Of these, squid
occurred in one-third of all species evaluated, the primary specieslmigg spp. In

17% of the predators evaluated, squid contributed 10% or greater by weight to #éheir tot
diets. Dodgfish, hake, billfish, flounder, and bluefish are just a few of the pretisteds

as relying heavily (> 10% by mass) on squid as a food resource (Bowman et al. 2000).
Many of the predators listed above have been overexploited and their populations are
either in an overfished or rebuilding status (NOAA 2009). Management efforts seeking
to recover and sustain predator stocks may be less effective if thegtothbeomass
available as forage declines as a result of increased fishing (Palil2@02).

Despite the apparent importance of squid as a prey resource, a basic
understanding of the mechanisms controlling predation risk and demand on their
populations is lacking. While much attention has been given to size-influenced predation
by piscivores (Juanes and Conover 1995; Mittelbach and Persson 1998; Manddrson et a
1999; Scharf et al. 2002; Dorner and Wagner 2003; Scharf et al. 2003), little to no
information exists on the size-dependent relationships between squid and théarpreda
Previous studies that evaluated the importance of squid as prey have focusetymmari
the weight contribution to predator diets. Mass-based descriptions of predatog feedi
habits determine the relative contributions of prey to predator diets and pgevielial
estimates of predatory demand; however, to determine the total impact of arpoadato
prey population, information on the sizes of prey consumed is also necessarlgas®de-

descriptions of predator diets help determine 1) the sizes of prey mostanigort



supporting predator growth, 2) the impacts of predation on different prey lifes stangk
3) whether predators are competing for similar portions of the prey reqauivogston
1993).

Relative prey size has a direct impact on capture success, retention, and handling
time. These factors are fundamental to modeling foraging behavior and predicting
predator diets (Juanes et al. 2002; Mittelbach 2002; Scharf et al. 2003). Morphological
constraints (i.e. gape width), detection limits (vision), and swimmingiabibire just a
few factors which may limit the range of sizes a predator can successiptlyre (Juanes
and Conover 1995; Nilsson and Bronmark 2000; Sih and Christensen 2001). Given that
squid have such a diverse number of defense and escape strategies as well as
morphological differences (Hanlon and Messenger 1996), it is unknown if squid are more
or less difficult to subdue in comparison to fish. We also do not know if predators attack
relatively larger squid than they would fish. In addition to size-based relapsnghe
behaviors of predators and prey may be equally important in affecting encateser r
selection, capture success, and ultimately prey vulnerability (Juane2@d2] Scharf et
al. 2003). Therefore, both quantitative and qualitative measures of prey responkes will
informative in understanding predator foraging habits.

Squid are a unique organism for evaluating the ethology of predation. Although
cephalopods are invertebrates, they have been likened to fish and other vertebrates in
possessing advanced sensory systems, brain function, and behaviors (Hanlon and
Messenger 1996). Packard (1972) describes cephalopods functionally as fish due to thei
similar habitats, range of body sizes, schooling behavior, and ontogenetic moypholog

Thus, squid’s vulnerability to predation may also be comparable to fish spdoats



they resemble ecologically (e.g., clupeids). Squid are soft bodied ancehatineety
compressed body depths. These characteristics may act to decrease harellhng

make them more frequently targeted by predators. Conversely, squid utiide a w
variety of defense mechanisms to avoid predation, the majority of which common prey
fish lack. For example, squid possess beaks, arms, and suckers that may be used to
retaliate against a predator (Hanlon and Messenger 1996). Crypsis (camduafthge
pattern changes) is utilized to avoid detection and may have inconsistent success
contingent on the predator’s visual capabilities. Ejecting ink is another respaigsie

to cephalopods which is employed to confuse a predator. Additionally, jet propulsion
gives squid the ability to move both forwards and backwards and may allow squid to
react in more directions than prey fish. All of these traits will infleesguid’s
vulnerability to predation although their effectiveness will vary depgnoimthe abilities

of different predators.

This dissertation provides a comprehensive evaluation of how body length and
behavior influence longfin inshore squid’s vulnerability to predation. Chapter 1 provides
an overview of size-based patterns in predation on longfin inshore squid in theesirt
Atlantic ecosystem. A size-based perspective is also used to evaludtenvtatural
predators and the commercial fishing industry are competing for sqoigrces and the
implications of these practices are discussed. Chapters 2 — 4 are basedioreatgler
work completed at the Marine Biological Laboratory in Woods Hole, Massathuset
These three chapters examine predator-prey interactions between Inslyfirei squid
and two model predators, bluefidPofmatomus saltatrix) and summer flounder

(Paralichthys dentatus). Chapters 2 and 3 evaluate interactions between squid and fish



from a predator perspective while Chapter 4 shifts primarily to the poin¢wfof the

prey. In comparison to bluefish, much less is known about the feeding tactics of summer
flounder; consequently, Chapter 2 presents a detailed look at how summer flounder adapt
their behavior in response to different types of prey, including squid and prey fish

Chapter 3 examines how selection, survival, capture success, handling timeyand pre
profitability vary as a function of relative prey (squid) size in bluefishsamdmer

flounder. The fourth and final chapter investigates whether squid use different anti
predator responses in the presence of bluefish and summer flounder and assesses the

effectiveness of key defense behaviors.



CHAPTER 1
A SIZE-BASED APPROACH TO QUANTIFYING PREDATION ON LONGFIN

INSHORE SQUID (LOLIGO PEALEII) IN THE NORTHWEST ATLANTIC

Abstract

Cephalopods are primary prey to a wide range of predators in global marine
ecosystems. Despite their apparent ecological importance, little infomexists on
size-based predation for this taxon. Using long-term food habits, population survey and
commercial landings data, | quantified size-based patterns of predatibih $pecies of
finfish, elasmobranchs, and marine mammals over ontogenetic time scatesalGe
trends of size-selective and seasonal foraging behavior are also prese@teddecies
of predators from the northwest Atlantic Ocean. The functional role of squid was
evaluated by contrasting patterns in size-based predation between squit @nelyfis
types. Measurements of predator gape morphology and prey body depths ascértained i
predators were physically limited when feeding on squid. Additionally, the ambunt
overlap between natural predators and the commercial fishing industry fdrsszpii
resources was estimated. Predation by finfish and elasmobranchsneaallyg focused
on juvenile and sub-adult squid, while marine mammals primarily targeted adults.
Consequently, marine mammals had the highest overlap with the commenong) fis
industry for squid size resources. All predators exhibited size-selead@debehavior
and trends persisted across seasons. Predators fed on a wider rangéani Ssfuid
prey sizes and did not appear to be gape-limited when feeding on squid; however large

squid were not common in predator diets. Results suggest squid behavior, avaiability



the environment, and encounter rates are paramount in shaping size-basedqgfatterns

predation.

I ntroduction

Predators are opportunistic, switching between prey species based on their
absolute and relative availabilities in the environment; however, to some ektent al
predators are selective (Bax 1998). In marine piscivores, the relationshigibetwe
predator and prey body size directly influences foraging success and istbadest
indicators of the physical constraints on an individual (Peters 1983; ClaesscP02).
Other morphological features that change in proportion to a predator’s body sizes such a
mouth gape, are informative and define the upper size limits of prey consumexitizoth |
and inter-specifically (Juanes 1994; Nilsson and Bronmark 2000; Juanes et al. 2002). As
predators grow, the maximum size of prey consumed generally increasestdatelie
often concentrated on, or continue to include, small prey (Juanes and Conover 1995;
Scharf et al. 2000). Few marine predators feed exclusively on the large sty
possibly can because (1) it is energetically costly to pursue largéSmiegrf et al.
2003), and (2) smaller individuals are exponentially more abundant in marine food-webs
in comparison to larger ones (Brooks and Dodson 1965; Rice and Gislason 1996).
Accordingly, the total range of prey sizes consumed by a predator depenbsdarge
what it can physically manipulate, what is available in its immediate envaot@ind
how energetically profitable it is to pursue increasingly larger prey.

The range of absolute prey sizes consumed by many marine predators will

increase by orders of magnitude as their diets shift from planktivory durindiéarly



stages to piscivory as adults. For this reason, an individual’s trophic position Mgt
community is more accurately described by body size rather than speriasfs and
Reynolds 2007). Alternatively, the range of relative prey sizes consumed oniagne
by a predator, known as its size or ratio-based trophic niche breadth, oftensremai
constant with predator ontogeny (Pearre 1986; Scharf et al. 2000). Size-bphed tr
niche breadths are useful for identifying physical limitations on a predéedang
patterns, provide equivalent measures of resource use among species, ppbprage
for assessing competition for prey size resources (Bethea et al. 2608;HAmp et al.
2007).

While much attention has been given to size-based predation by piscivores
(Juanes 1994; Mittelbach and Persson 1998; Manderson et al. 1999; Dorner and Wagner
2003), little to no information exists on the size-dependent relationships between
cephalopods and their predators. Many top predators that are primarily piscivorous also
include cephalopods in their diets over different seasonal, spatial, and ontogeaiesic s
(Smale 1996; Dawe and Brodziak 1998; Chase 2002; Staudinger 2006). For example,
while cephalopods are virtually absent from predator diets in estuarine environments,
there is a transition towards cephalopods in shelf, slope and open ocean habitats (Smale
1996). Previous studies have focused primarily on the weight contribution of
cephalopods to predator diets and neglected to detail size-based patterdinineied
behavioral interactions. In food habits studies where squid body sizes have been
reported, large squid are often prevalent in predator diets (Kohler 1987; Smale 1996;
Gannon et al. 1997; Chase 2002; Staudinger 2006). Small squid are rarely reported in

diet analyses; consequently, natural mortality rates for paralarval sguitbaght to be



relatively low in comparison to fish (Pierce and Guerra 1994). If predatisaypeeis
concentrated during the later stages of life, this would suggest that predagion m
primarily act as a control on population structure and individual life historyrréthe
recruitment success as is common in many species of fish (Claesk&2082aDorner
and Wagner 2003).

Squid have been described as functionally similar to fish in many aspects of their
ecology; they have analogous habitat distributions, schooling behaviors, badgrsize
shapes as many fishes (Packard 1972; Hanlon and Messenger 1996; Pauly 1998; Pauly
al. 1998). For these reasons, size-based predation on squid may be comparable to fish
that occupy analogous trophic roles (e.g., cluepids) (Packard 1972). Conversdly, squi
possess traits that could make them more susceptible to predation than prey fidh. Squi
lack hard defensive structures such as spines and bony plates. Squid also have soft,
cylindrical body forms that may make larger individuals easier to enguylfddators.

Optimal diet theory states that predators should select prey that providesatiestgre
energetic return for the least amount of effort to retain (Stephens absl K986; Sih and
Christensen 2001). Additionally, when a higher quality food source becomes more
abundant it should become more important in a predator’s diet. The high nutritional
value of cephalopods offers predators an added incentive of approximately 20% more
digestible protein per unit body mass in comparison to fish (Lee 1994). The revaard of
higher quality meal may motivate predators to pursue larger sized squid than fis
Currently, we do not know enough about size-dependent relationships between squid and
their predators to predict how size, morphology, quality, and availability, ibterac

influence predator selection for squid in comparison to prey fish resources.



Overfishing has altered the trophic structure of marine food webs by
systematically removing the largest individuals and depleting predator popsleo
fractions of their former abundance levels (Baum et al. 2003; Myers and Worm 2003).

To replace yields lost by the collapse of more traditional fish stocks, caiairfesheries

have increasingly targeted squid and other forage fish (Pauly et al. 2002 00X).

Despite the overfished status of many teuthophagous species, predatory demand on squid
populations has been estimated to exceed commercial landings by orders of magnitude
and be equal to or greater than maximum sustainable yield (Buckel et al. 1999a;

Overholtz et al. 2000). It has been suggested that the short life-cycles ancbhitih g

rates inherent to cephalopod populations have allowed them to rapidly increase
productivity in response to reduced predation pressure (Caddy and Rodhouse 1998; Dawe
and Brodziak 1998); however, it is uncertain if squid populations can endure the demands
imposed by a community of predators as well as a growing fishing industrynanage

both cephalopods and their predators sustainably, a holistic approach that considers
multispecies trophic-interactions is crucial. Natural and anthropogenicesarfrc

mortality may inflict opposing or cumulative forces of size-selection ordsqui

populations therefore, it is also important to evaluate how predation is concentrated
relative to fishing pressure (Livingston 1993; Duplisea 2005).

The overall objective of this paper is to provide baseline information on size-
dependent relationships between one of the most ecologically and commercialyleral
species of cephalopod in the northwest Atlantic ecosystem, longfin inshorelsgligd (
pealeii), and its predators. Using long-term food habits data, population survey data, and

commercial landings information, I (1) quantify how size-based patteqmedétion on
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squid vary among predator species, over ontogenetic scales, and during seasenal t
periods, (2) contrast the functional role of squid in comparison to other forage fish, (3)
evaluate morphological characteristics in squid and teuthophagous predators that
constrain size-dependent relationships, and (4) estimate the amount of overlap betwee

natural predators and the commercial fishing industry for squid size resource

Methods
Diet data

Predator and prey body size data were obtained from several sources. The larges
dataset was collected as part of the long-term fishery-independenttpopalavey
conducted by the Northeast Fisheries Science Center (NEFSC). Surveyson@ucted
during the winter, spring, and fall seasons and spanned the region from Cape Lookout,
North Carolina northward to waters off Nova Scotia, Canada. Survey details can be
found in (Azarovitz 1981; NEFC [Northeast Fisheries Center] 1988). Datasetsambllec
by several independent authors on finfish and marine mammal diets were kaidednc
(Gannon et al. 1997; Staudinger 2006; Ampefgublished data). Predator names,
sample sizes, dates of food habits collection, and geographic rangetedrin[i&able
1.1.

The majority of squid mantle lengths were measured directly using intact
specimens found in predator stomachs. If prey remains were highly digested, the
chitinous gladius (or pen) was used as an equivalent for mantle length. In several
datasets, squid beaks were recovered during diet analyses and original bedyssiz

reconstructed using predictive equations relating the lower rostral lendyi lofter
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beak to mantle length (Clarke 1986a; Staudinger et al. 2009). Greliabahgerus

grypus) diets were collected from haul out sites on Muskeget and Monomoy Islands. The
majority of seals at these sites were sub-adults and adults of mixed segrand w

estimated to be in the range of 90 — 275 cm total length (Anpeeknal

communication). Because squid remains were collected from scat, body lengths could
not be confirmed for individual seals; therefore only prey length data weddargtis

predator species.

Size-based patterns of predation

To identify the sizes of squid most recurrent in predator diets and to determine at
which stage of each squid’s life-cycle size specific predation was moesiqme
absolute body size relationships between squid and their predators werecevadirag
least squares and quantile regression techniques. Individual predator speeies w
evaluated by graphing predator-prey length data as scatter-plots. @uagtdssion was
used to estimate the rate of change in the lower and upper bounds of predator-prey body
size distributions respective to each predator species and over a widefraregator
body sizes (Scharf et al. 1998a; Scharf et al. 2000). Estimated lower andoppes
were represented either b{/85", 10"90", or 28"75" quantiles depending on sample
size restrictions as suggested in (Scharf et al. 1998a). Lastly, meekatqp-prey body
size relationships were estimated using ordinary least-squaressiegres

Relative predator-prey body size relationships were used to quantify se@-ba
trophic niche breadths of individual predator species and evaluate interspecific

competition for squid size resources. Relative body sizes were calcufatediding the
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total length of each squid (length of squid mantle and arms, tentacles excluded
(Staudinger et al. 2009)) by its corresponding predator length. Resultingoprecat
size ratios were examined as relative and cumulative frequency disinbti determine
the percentages of relatively small (< 20% relative body size), mediurnteamediate
(20%> and < 50% relative body size), and largé0% relative body size) squid in each
predator’s overall diet.

Size-based trophic niche breadths were determined by graphing relativat®iz
as the dependent variable against predator size (independent variable) anddisplay
scatter-plots (Scharf et al. 2000; Juanes 2003). Quantile regression wa®thtn us
estimate the lower and upper bounds of these scatter-diagrams. "Téred193'
guantiles were chosen to evaluate all predator species because theyedyldgaatibed
the shapes of relative body-size distributions while remaining consereagmewhen
sample size restrictions (Scharf et al. 1998a) were not strictly adher€éhdiso.
methodology ensured that estimates of size-based trophic niche breadths were
standardized and comparable across predator specids:te&hwas used to detect
differences between the lower and upper bound slopes and determine if size-based
trophic niche breadths were parallel, converging, or diverging (Scharfa&Cdl; Juanes
2003). No difference between lower and upper bound slopes indicated parallel size-
based trophic niche breadths and hence a constant range of relative squid sizescconsum
with predator ontogeny. Significant differences between slopes indigtdted e
diverging and expanding, or converging and contracting size-based trophic niche

breadths.
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The mean size-based trophic niche breadth (TNB) respective to each predator was

calculated using the equation:

[(mgo)(PLi ) + (bgo)] - [(mlo)(PLi ) + (b.I.O )]

TNB = -

n Eqn. 1.1
Wherei = an observation of predator lengBL], n = the total number of observed
species-specific predator-prey lengths combinations;the slope, antd = the intercept
calculated for the Tband 98' quantiles of relative predator-prey size ratios regressed on
predator size in each predator dataset. Size-based trophic niche breadthsnwere the
plotted as box and whisker plots and ordered from smallest to largest.

To determine if predators were feeding opportunistically or exhibitireg siz
selection on squid, size distributions of longfin inshore squid populations available in the
environment were compared to squid lengths recovered from predator diets. If arpredat
was feeding opportunistically, the distribution of squid lengths in its diet wagistm
the distribution of lengths in the environment. Negative size-selection ocdurred i
predators had greater frequencies of relatively smaller squid lengthsridiétei
compared to lengths available in the environment. Conversely, positive siztiesele
was supported if a greater proportion of a predator’s diet was comprised ioEhglat
larger squid lengths than were most abundant in the environment.

Squid population data were collected as part of the NEFSC bottom-trawl survey
and subset to correspond to the same time period (1991 - 2004) as when the majority of
diet data were collected. Squid lengths were grouped into one centimeter lexagith
increments to generate frequency distributions. All population and diet length

14



distributions were positively skewed and in violation of normality therefore, the
Kolmogorov-Smirnov test was chosen to contrast differences (Zar 1984; Soldhind
1995) and performed using the NPAR1IWAY command in SAS (SAS 2003). When
significant differences between predator diets and squid population data vestediet
visual inspections of length frequency distributions were conducted to ascertain if
negative or positive size-selection was occurring. Seasonal trends selgigton were

also evaluated for winter, spring, and fall; population data were not availablenfores.

Functional roles of squid and foragefish

Predator diets in the northwest Atlantic contain a greater diversity pfiphe
species than cephalopod species; however this does not necessarily mearettat a gr
range of fish prey sizes will be consumed. Size-based trophic niche bremsgibstive
to squid and forage fish were compared to evaluate if predators were explutimgt
prey types similarly. Body size data on prey fish were collectpara®f the food-web
dynamics program (NEFSC) and correspond to the same predators and time patiods t
were used for calculations of squid size-based trophic niche breadths.

To determine how squid ranked on the spectrum of potential body shapes
available to predators, measurements of squid body depth and width were compared with
several common prey fish found throughout the northwest Atlantic. Longfin squid were
collected from coastal waters off of Massachusetts by otter-trawl didvtlBemma
between May and August in 2007. Measurements of squid body depth and width were
made at the maximum points on the mantle with digital calipers to the nearest 0.01

millimeter. The resulting relationship between squid body depth and total length was
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Figure 4.2: Classification trees including all behavioral and contextuables used in
response to bluefish; A) all variables listed in Table 4.1 and B) flightvedio
Observations that are “true” for each splitting variable go to the left réorchll other
responses go to the right branch. “=yes” indicates that behavior was presweit, “=
indicates the behavior was not present. Values located at the base of eachdspbrdr
to the response variables (0 = escape, 1 = mortality, 2 = abandoned attacks), the
proportion of observations that were classified as the dominant response in £atidlea

the total number of observations in each leaf. All abbreviations are listed indThble
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Figure 4.3: Classification trees including all behavioral and contexttriables used in
response to flounder; A) all variables listed in Table 4.1 and B) flight removed.
Observations that are “true” for each splitting variable go to the left réorchll other
responses go to the right branch. “=yes” indicates that behavior was presweit, “=
indicates the behavior was not present. Values located at the base of eachdspbrdr

to the response variable (0 = escape, 1 = mortality, 2 = abandoned attacks), theoproporti
of observations that were classified as the dominant response in each leaf, amd the tot
number of observations in each leaf. Group = prey group size, Tactic = predation tactic,
Location = location of attack, Reaction = indicates whether squid reacted to topreda

approach prior to an attack. All other abbreviations are listed in Table 4.1.
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Figure 4.4: Classification tree describing the influence of deimabtéegam, and shoaling
behaviors on squid survival when displayed towards A) bluefish and B) flounder.
Observations that are “true” for each splitting variable go to the left réorchll other
responses go to the right branch. “=yes” indicates that behavior was presweit, “=
indicates the behavior was not present. Values located at the base of eachdspbrdr

to the response variable (0 = escape, 1 = mortality, 2 = abandoned attacks), theoproporti
of observations that were classified as the dominant response in each leaf, amd the tot

number of observations in each leaf. All abbreviations are listed in Table 4.1.
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Figure 4.5: Classification tree describing the influence of attackidocahoaling, and
predation tactic on squid survival by A) bluefish and B) flounder. Observations that are
“true” for each splitting variable go to the left branch; for all othgp@ases go to the

right branch. “=yes” indicates that behavior was present, “= no” indicatéetiz&ior

was not present. Values located at the base of each leaf correspond to the response
variable (0, 1, 2), the proportion of observations that were classified as the dominant
response in each leaf, and the total number of observations in each leaf. Group = prey
group size, Tactic = predation tactic, and Location = location of attack. All other

abbreviations are listed in Table 4.1.
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CONCLUDING REMARKS

This dissertation presents an overview of size-based predation on longfin inshore
squid (oligo pealei). In Chapter 1 predator-prey body size data were used to construct a
community view of size-based predation on longfin squid populations in the northwest
Atlantic Ocean. Chapter 2 described feeding tactics used by summer floucdpture
squid and evaluated predator preference for squid and fish prey. Chapter 3 guantifie
behavioral factors influencing size-based predation on squid. Attack and capture
behaviors were compared between bluefish and summer flounder and the influence of
different foraging tactics were discussed. Chapter 4 evaluated whkgtheé modified
anti-predator behaviors in response to bluefish and flounder and measured the
effectiveness of these defenses in ensuring squid survival. Together, thesecsttlicie
how predators use squid as prey, identified behavioral and morphological limitations on
predator selection, and evaluated how anti-predator defenses used by squideinfluenc
their vulnerability to predation.

Squid play a vital role in the northwest Atlantic ecosystem, serving ps@qee
wide range of species, and also as predators on larval fish, conspecifics;@mdasy
consumers (Link et al. 2006). Knowledge of predator-squid relationships have been
limited to quantifications of the amounts of squid consumed, while size-based
consumption rates have largely been overlooked. This information is crucial to
understanding what portion of the prey resource is being utilized by predators and to
assess whether humans are competing directly or indirectly foassquiid resources
through commercial exploitation (Livingston 1993). This dissertation providest a fir

step to resolving these shortcomings.
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The original aim of Chapter 1 was to provide a review of size-based redati
longfin inshore squid as well as other ecologically and commercmapigitant
cephalopod species in the northwest Atlantic, particularly the northernistsouid
(INex illecebrosus); however, data on this species were scarce. Shortfin squid inhabit
pelagic waters of the outer continental shelf and slope (Hendrickson 2004) and have
been reported in the diets of large pelagic predators including tunas (Bayy t@gks
(Kohler 1987), and billfishes (Stillwell and Kohler 1985). Knowledge of the trophic
ecology of pelagic species is surprisingly poor. Ongoing efforts to toksc diet data
from large pelagic predators are providing needed information on predetgmig
habits and natural mortality rates on key prey species including shortfth squi
Preliminary data suggest that predators are consuming signii¢angér shortfin squid
than longfin squid (Staudingampublished data) and size-based patterns of predation
among cephalopod prey differ within predator species diets.

In Chapters 2 and 3, | demonstrated that there was a strong relationship between
relative prey size and feeding success when squid were targeted as preyer Summ
flounder were also found to show strong preferences for demersal prey types in
comparison to pelagic species. Although the factors limiting each preda@different
(capture success in bluefish and handling times in flounder), the results prowgti insi
into why and how consumption patterns on squid and other forage species fluctuate with
predator behavior and prey population abundance.

Chapter 4 provided the first evaluations of the survival values of anti-predator
defense behaviors in longfin squid. Results add to mounting evidence that although squid

are invertebrates, they are capable of complex behaviors and have thecabdiyt
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their behavior to different predators. Deimatic and protean defense behaviers wer
successful in deterring a proportion of bluefish and flounder attacks and indicated t
squid are capable of intimidating dangerous predators; however, squid mortasty rat
were generally high in the presence of bluefish and summer flounder. Qtrera#sults

of Chapters 2, 3, and 4 suggest that squid survival and vulnerability were largely shaped
by predator behavior and seemingly less so by the behavior of prey. Bluefish and
summer flounder are particularly voracious and dangerous predators, therefdre squi
defenses may be more effective against other, less aggressive predatbrhei

encounter in the northwest Atlantic, including cannibalistic conspecifics.

Previous studies have shown squid defense behaviors also function as alarm cues
and antagonistic displays towards conspecifics (Hanlon et al. 1999; Wood et al. 2008). It
is possible that behaviors observed in the present study could have a dual function when
roles are reversed and squid become the predators (Vovk 1985; Rodhouse and
Nigmatullin 1996). The limits of predation on squid were explored in this dissertati
but to fully comprehend squid’s trophic role in the northwest Atlantic, addititundies
are needed to determine the relative size window when predator-prey rolersyvit
occurs between squid and fish. This dissertation may provide a framework for future
studies seeking to evaluate predator-prey relationships between additiored spec
predators and cephalopods, as well as in other marine systems.

Harvesting marine populations that occupy lower trophic levels may have
unintended consequences and result in trade-offs between ecological and ecoatsmic g
(Pauly et al. 1998). Further, recovery of top predators may be hindered if food-web

structure has been degraded by overexploitation (Okey and Wright 2004). Therefore
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perhaps the greatest challenge currently facing fishery managenrgimtigsd answer
the questions: are there enough resources to go around and how will human exploitation
affect what is available in the future? The first step towards resolvinguhesgainties
is to have a firm understanding of basic underlying processes mediating naictedity
due to predation.

The results of this dissertation can be used to improve the quality of management
of squid and their predators by providing information on the interspecific relaigpsns
that ultimately regulate population dynamics in the ecosystems whicimthedyit. The
scope of the present study shifts from the broad perspective of ecosisteway
down to organismal level. Taken as a whole or in parts this information can be
incorporated into single-species or more holistic models. Examples of appropriate
applications include investigating how a highly successful year-clas¥ishf(e.g.,
bluefish) would impact squid populations as it progressed ontogenetically. How do
natural cycles (seasonal, decadal) in squid abundance impact the timetaleles#nbity
of management goals to rebuild predator biomass in a specific age grosprabkzge?
Lastly, improved data on natural mortality rates may be useful in exjusblogical

reference points to maintain sustainable yields of squid (Moustahfid et al. 2009).
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