Jun 27th, 4:25 PM - 4:45 PM

Session A3- culvert Design for aquatic organism passage

Rodger Kilgore
KGM

Bart Bergendahl
(Presenter), FHWA

Rollin Hotchkiss
BYU

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

Kilgore, Rodger; Bergendahl, Bart; and Hotchkiss, Rollin, 'Session A3- culvert Design for aquatic organism passage' (2011).
International Conference on Engineering and Ecohydrology for Fish Passage. 47.
http://scholarworks.umass.edu/fishpassage_conference/2011/June27/47

This Event is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Culvert Design for Aquatic Organism Passage (HEC 26)

By: Roger Kilgore, Kilgore Consulting and Management
Bart Bergendahl, Federal Highway Administration
Rollin Hotchkiss, Brigham Young University

National Conference on Engineering & Ecohydrolgoy for Fish Passage
June 27 – 29, 2011
University of Massachusetts, Amherst
Project Advisories

- **Technical Advisory Committee (7)**
 - US Forest Service (3)
 - National Marine Fisheries Service
 - California Department of Fish and Game
 - Maryland State Highway Administration
 - Maine Department of Transportation

- **FHWA Review Panel (10)**
 - Ecologist, Biologist, Environmental Specialists (4)
Presentation Outline

- Brief Background
- 13–Step Design Procedure Summary
 - Focus on Steps 6-9
- Case History Comparisons
- Conclusions
Background

- “Kudos” to the Resource Agencies
- Innumerable Aquatic Organisms
- Diverse/Unknown AO swimming capabilities and behaviors require use of surrogate parameters to drive design
- Current methods use channel dimensional characteristics as surrogates
 - Bankfull Width most common
Difficulties with dimensional characteristics (Bankfull Width)

- Difficult to identify
- Variable in space and time
- Assumes dynamic equilibrium
- Selection subjective, necessarily conservative
- No direct relationship to AOP migration cues or passage demand
Goals for HEC 26

- Culvert designs providing successful aquatic organism passage via stream simulation approach
- Culvert designs satisfying peak hydraulic standards/criteria for protecting traveling public
- Objective procedure yielding reproducible results
- Universal applicability, use anywhere
- Efficient procedure, easy to apply
- Defensible results for justifying expenditures
- Interdisciplinary acceptance
HEC 26 Approach

- **Premise:** Stream bed materials experience same forces as aquatic organisms. If bed behavior in a culvert is similar to the channel during passage flows, organisms that pass stream can pass culvert.

- **Objective:** Create sediment mobility conditions within the culvert that *simulate* those in the natural channel in both structure and function for the range of passage flows.
HEC 26 Approach (cont.)

- Use ‘fixed, easy to identify’ surrogate parameters to drive design:
 - Low passage, high passage, and peak discharges
 - Permissible shear of bed material

- Use embedded, closed-bottom structures whenever possible
 - Preserve natural bed roughness and stream processes
 - Provide grade-control safety net
 - Eliminate custom foundations
Tools Required / Available

- **Culvert hydraulics**
 - HEC-RAS
 - HY8/Normal depth computations

- **Channel hydraulics**
 - HEC-RAS
 - Normal depth computations

- **HEC 26 spreadsheet** (iterative computations, gradation plotting, and data management)
Procedure Summary

- **Step 1**: Determine Discharges Q_L, Q_H, Q_P
- **Step 2**: Define Project Reach and Determine Channel Characteristics
 - Bed material
- **Step 3 and 4**: Evaluate Channel Stability
- **Step 5**: Identify initial trial culvert
 - Determine embedment depth
Step 6.
Is Culvert Bed Stable at Q_H?

- **Compute permissible** shear stress/unit discharge
 - Modified Shields equation (function of D_{84} and D_{50})
 - Bathurst critical unit discharge equation
 - USDA equation for cohesive materials

- **Compute maximum applied** shear stress at:
 - Inlet, outlet of culvert and normal depth
 - Upstream and downstream cross-sections

\[
\tau = \gamma y S_e
\]
Step 6 (cont).
Is Culvert Bed Stable at Q_H?

- **Accuracy of applied shear computations**
 - Accurate depth and energy slope
 - Accurate Manning’s roughness

- **Manning’s roughness**
 - *Comptue* Manning’s ‘n’ for bed D_{84} *(Iterative Procedure)*
 - HEC 26 Spreadsheet
 - Select Manning’s n for culvert walls
 - *Comptue* composite Manning’s n for culvert
Step 7. Check Channel Bed Mobility at Q_H

- If maximum shear stress in any channel XS is less than permissible, culvert shear must be equal or less than permissible.
 - If not, redesign culvert

- If maximum shear stresses in all channel XS are greater than permissible, bed is considered mobile (common for sand beds).
 - Culvert shear must be within channel range. If exceeds range, redesign culvert
Step 8. Check Culvert Bed Stability at Q_p

- Few sites will exhibit natural bed stability at Q_p due to high shear of contracted flow.

- Compute applied shear for Q_p and compare to permissible shear for natural bed material.
 - Repeat iterative procedure for Manning’s ‘n’

- If bed not stable, design a stable sublayer.
Step 9.
Design Stable Bed for Q_p

- Provide well-graded, oversized sublayer to resist shear at Q_p, provide grade control and a rough surface to aid replenishment of native materials.

- Minimum Thickness Criteria for sublayer
 - Identify maximum oversize gradation that will fit thickness criteria for culvert
Step 9 (cont.).
Design Stable Bed for Qp

- Repeat permissible shear computations for sublayer
- Compute applied shear for Qp and compare to permissible shear for oversize sublayer
 - Repeat iterative procedure for Manning’s ‘n’
- If oversize layer not stable, redesign culvert.
Step 10 Check: Compare Culvert and Channel Velocities for Q_H
- If culvert \leq channel, Ok. If not, redesign.

Step 11 Check: Compare Culvert and Channel Depths for Q_L
- If culvert \geq channel, Ok. If not, go to Step 12.

Step 12: Design a low-flow channel.
Step 13. Review Design (HEC Example)

- Original 36” CMP
- 8.5 ft CMP
- 2.6 ft Embedment
 - 1.0’ Natural layer
 - 1.6’ Oversize layer
- Constructability
- Service life
- Other shapes or materials?
Case History Comparisons

<table>
<thead>
<tr>
<th></th>
<th>North Thompson Creek, Colorado</th>
<th>Tributary to Bear Creek, Alaska</th>
<th>Sickle Creek, Michigan</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOP barrier/Existing</td>
<td>3-ft CMP</td>
<td>5-ft CMP</td>
<td>Twin 3-ft CMPs</td>
</tr>
<tr>
<td>As-built</td>
<td>12’x ? squash pipe</td>
<td>9.75’x 6.6’ pipe arch</td>
<td>16’x 6’ concrete arch bridge</td>
</tr>
<tr>
<td>HEC-26 procedure</td>
<td>8.5’ CMP</td>
<td>12’ CMP</td>
<td>10’ CMP</td>
</tr>
<tr>
<td>Difference in span</td>
<td>-3.5 ft</td>
<td>+2.25 ft</td>
<td>-6 ft</td>
</tr>
<tr>
<td>Bankfull Width</td>
<td>8 - 17</td>
<td>7 - 11</td>
<td>not available</td>
</tr>
<tr>
<td>Estimate (ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- FLH project photo: HEC 26 yields 26’ span vs. USFS 30’ span
Conclusions

- HEC 26 stream simulation procedure results in larger openings than “hydraulic” design procedures.
- Some culverts larger, some smaller, compared to alternative AOP design procedures, e.g. USFS Stream Simulation.
- Monitoring needed to determine ultimate success of any AOP culvert design.