Winter 1-2014

2014 Update Mtg: Recommendations for Reducing Phosphorus Loss in Cranberry Floodwaters

Casey Kennedy
USDA ARS, Casey.Kennedy@ARS.USDA.GOV

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension
Part of the Agriculture Commons, and the Horticulture Commons

Recommended Citation
Retrieved from https://scholarworks.umass.edu/cranberry_extension/184
Casey Kennedy
USDA-ARS

Recommendations For Reducing Phosphorus Loss in Cranberry Floodwaters
Who Cares?

- The State (Mass DEP)
 - Total Maximum Daily Load (TMDL) established on White Island Pond
 - TMDL for Monponsett Pond in development
- The Industry
 - Perception matters
 - Cascading effect – you may not be the problem, but may suffer the consequences
- The Research Community
 - Multiple groups, academic and advocacy, are pursuing this research
What Do We Know?

- Not a whole lot, but some
- Two studies on cranberry P loss
 - “Most rigorous” of nutrient loss studies
 - Concentration-discharge approach
 - Daily measurements, assumed negligible groundwater loss
 - Cranberry bog P loss of 9.9 kg ha\(^{-1}\) yr\(^{-1}\)
 - DeMoranville and Howes
 - Assumed steady state to calculate discharge, measured P in grab samples
 - Cranberry bog P loss of 3.5 kg ha\(^{-1}\) yr\(^{-1}\) for organic non-flow through bog
Howes and Teal
Howes and Teal

Outlet Flows

10^3 m3/day

m3/s

PO4

μM

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Cranberry Bog P loss = 9.9 kg P ha$^{-1}$ yr$^{-1}$
White Island Pond

Final Total Maximum Daily Load of Total Phosphorus for
White Island Pond, Plymouth/Wareham, MA

Assuming these same bogs are acting as flow-through bogs, the high land use export coefficient of 9.9 kg/ha/yr from Howes and Teal (1995) is applied to the bog areas listed above. This results in a total phosphorus load of X kg/yr.
Monponsett Pond

TABLE 2. Summary Phosphorus Coefficients used in Nutrient Loading Model of Brockton Water Supply System

<table>
<thead>
<tr>
<th>LU/LC Type</th>
<th>kg/ha/yr</th>
<th>LU/LC Type</th>
<th>kg/ha/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brushland/Succesional</td>
<td>0.17</td>
<td>Non-forested wetland</td>
<td>0.00</td>
</tr>
<tr>
<td>Cemetery</td>
<td>1.83</td>
<td>Nursery</td>
<td>2.31</td>
</tr>
<tr>
<td>Commercial</td>
<td>0.78</td>
<td>Open Land</td>
<td>0.44</td>
</tr>
<tr>
<td>Cranberry Bog</td>
<td>9.90</td>
<td>Orchard</td>
<td>0.55</td>
</tr>
<tr>
<td>Cropland</td>
<td>3.07</td>
<td>Participation Recreation</td>
<td>0.91</td>
</tr>
<tr>
<td>Forest</td>
<td>0.17</td>
<td>Pasture</td>
<td>1.08</td>
</tr>
<tr>
<td>Forested Wetland</td>
<td>0.00</td>
<td>Powerline/Utility</td>
<td>0.62</td>
</tr>
<tr>
<td>Golf Course</td>
<td>1.57</td>
<td>Saltwater Sandy Beach</td>
<td>0.00</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>1.02</td>
<td>Saltwater Wetland</td>
<td>0.00</td>
</tr>
<tr>
<td>Industrial</td>
<td>1.90</td>
<td>Transitional</td>
<td>0.77</td>
</tr>
<tr>
<td>Junkyard</td>
<td>1.90</td>
<td>Transportation</td>
<td>1.10</td>
</tr>
<tr>
<td>Low Density Residential</td>
<td>0.82</td>
<td>Urban/Public Institution</td>
<td>0.90</td>
</tr>
<tr>
<td>Medium Density</td>
<td>0.90</td>
<td>Very Low Density Residential</td>
<td>0.30</td>
</tr>
<tr>
<td>Mining</td>
<td>2.14</td>
<td>Water</td>
<td>0.00</td>
</tr>
<tr>
<td>Multifamily Residential</td>
<td>0.97</td>
<td>Water-Based Recreation</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Managing P in Floodwaters
Enhance Particulate Settling

![Bar chart showing phosphorus concentration for total P, dissolved P, and particulate P during harvest and winter periods.](chart.png)
Peak TP in Harvest Release Water
Depth Effect
Depth AND Velocity Effect

![Graph showing the relationship between depth, flood height, and TP concentration over time.](image)
Recommendation 1: Emphasis on Harvest Flood

- All floods are NOT created equal
- Mean harvest TP concentration is 7 times higher than that in the winter flood
- P mass loss needs to be more fully explored for winter flood, but initial results suggest greater P loss during the harvest flood
Recommendation 2: Increase Settling of Particulate P

- Most of the P loss is in the particulate fraction, between 70-90% of total P
- Increased holding times is NOT enough, need to slow the releases, too
- Secondary holding structure may facilitate slow release of P laden water
Recommendation 3: Target High P Floodwaters

- Moments of high P occur during the later part of the release
- If feasible, use lower pump rate to discharge these floodwaters
- Alternatively, route these high P water to secondary holding ponds
- Amendments may be available to immobilize P in floodwaters
Recommendation 4: Identify High P Sites

- Working on developing environmental threshold test for identifying high P sites
- These sites should receive highest priority in terms of reducing P loss
Recommendation 5: Grower Cooperation

- I am here to help... No, REALLY!
- Excellent relationships with many growers
 - Gary Weston and Curt Young (Federal Furnace)
 - George Rogers, Niki D’Azortino, and others (ADM)
 - Matt Rhodes and Dan Bruffee (Edgewood Farms)
 - Jim Moores and Davie Townes/Boom Boom (Cranberry Station)
- More will be needed for future success
Acknowledgements

- Technical assistance from Cassie Rogers (UMass/ARS) and Peter Kleinman (ARS, University Park, PA)
- Support from Carolyn DeMoranville and the Cranberry Station
- Several grower participants
Questions (for me, not Frank)