1-2015

2015 Update Mtg: Nitrogen Movement in Cranberry Floodwaters

Carolyn J. DeMoranville
UMass Amherst, carolynd@umass.edu

Rachel Jakuba
Buzzards Bay Coalition, jakuba@savebuzzardsbay.org

Christopher Neill
Marine Biological Laboratory, cneill@mbl.edu

Casey Kennedy
USDA ARS, Casey.Kennedy@ARS.USDA.GOV

Nick Alverson
nalverson@eco.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension

Part of the Agriculture Commons, and the Horticulture Commons

Recommended Citation
Retrieved from https://scholarworks.umass.edu/cranberry_extension/198

This Article is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Station Extension meetings by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Nitrogen Movement in Cranberry Water

Carolyn DeMoranville, UMass Cranberry Station
Rachel Jakuba, Buzzards Bay Coalition
Chris Neill, Marine Biological Laboratory
Casey Kennedy, USDA-ARS
Nick Alverson, UMass Environmental Conservation
Outline of today’s panel

- Carolyn: Setting the stage – the issues and the partnership.
- Rachel: Study design for our first work.
- Chris: First study results.
- Casey: The evolution to continuous data collection.
- Nick: A case study of floods and ‘big rain events’.
- Carolyn: The next steps.
- Questions and discussion.
Environmental considerations

- Biggest concern is movement of N in surface water

- Leaching potential is limited
 - layered soil and barrier layers (why the bog can hold a flood)
 - ammonium N forms

- Groundwater pathway – total extent unknown
Flooding practices

Potential export pathway

N study partnership
Why environmental nitrogen matters

- N that moves into surface waterways becomes a pollutant in the estuaries

- All land uses potentially contribute to N in the water – Mass Estuaries Project models this

- Septic/sewer are biggest contributors in most watersheds

- Some SE Mass watersheds are cranberry dominated
Distribution of N sources

- Examples of models from the Mass Estuaries Project reports

Agawam River subwatershed

Wankinko River subwatershed

Data from Mass Estuaries Project (Howes et al. 2013)
How are the cranberry numbers generated?

- One detailed study of a flow-through bog (Howes and Teal, 1995)
 - Net output (outgoing water load minus incoming water load) = 20.6 lb/acre N

- Values were different in a less rigorous study that focused primarily on floods
 - 4 to 14 lb/acre N
CES/SMAST Field Study
Cranberry Bog NET Nitrogen Loss

<table>
<thead>
<tr>
<th>Bog ID --></th>
<th>EH</th>
<th>PV</th>
<th>BEN</th>
<th>WS</th>
<th>M-K</th>
<th>ASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation</td>
<td>0.4</td>
<td>1.5</td>
<td>0.6</td>
<td>0.2</td>
<td>1.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Frost Protection</td>
<td>0.8</td>
<td>1.8</td>
<td>1.4</td>
<td>0.5</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Pest Management</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Harvest</td>
<td>1.3</td>
<td>3.4</td>
<td>4.5</td>
<td>1.2</td>
<td>4.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Winter Protection</td>
<td>3.0</td>
<td>3.7</td>
<td>5.2</td>
<td>1.4</td>
<td>4.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Total IN</td>
<td>5.5</td>
<td>10.5</td>
<td>12.8</td>
<td>3.6</td>
<td>12.4</td>
<td>11.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nitrogen Outflow from Bog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage/Infiltration</td>
</tr>
<tr>
<td>Harvest</td>
</tr>
<tr>
<td>Winter</td>
</tr>
<tr>
<td>Total OUT</td>
</tr>
</tbody>
</table>

| **Net Nitrogen Loss (lb/a/yr)** | 6.2 | 6.0 | 13.5 | 5.2 | 3.7 | 3.8 |

Nitrogen Output to Downgradient Systems (lb N/acre/yr)

- Pine-Oak Forest | 0.4 |
- Cranberry Bog Nitrogen Output | 6.4 |
- Residential (density 1 per 2.5 acres) | 5.7 |
- Direct Precipitation on Bay | 9.8 |

(Flow Through Bog = 20.6)
So the N numbers are uncertain – so what?

- Uncertainty can lead to finger pointing and bad decisions
- If the models are wrong and are used to decide on actions, the outcomes will not be as expected
- Informed choices are always better than uninformed ones
- Bad or inadequate data can divert attention from important problems facing the estuaries
How to reconcile the differences from the studies

- More studies!
- Partnership to find funding and conduct research – the Wareham Nitrogen Consensus group
- The groups represented on this panel
 - Cranberry Station
 - Buzzard Bay Coalition
 - Marine Biological Laboratory
 - USDA-ARS (since Casey Kennedy arrived at the Station)
- Not here on stage
 - CCCGA
 - Town of Carver
Rachel Jakuba - Study Design

N study partnership
First study

- Look at 6 non-flow-through bogs
- Collect data for ~14 months (two harvests, two winter floods)
- Collect samples every ~2 months and more frequently during water movement
- Funded by DEP and BBNEP
Basic study design

- Look at 3 examples of two bog configurations
- Closed loop – where water enters and exits to the same water body
- Long tail – where water exits through a vegetated channel

Closed Loop

Long Tail Pathway
Basic Study Design

- Measure N & P in water before and after it is on the bog
 - Groundwater up and down gradient
 - Surface water in and out
- Measure surface water levels to estimate flow
- Combine N & P concentration data with water flow estimates to calculate mass of N & P leaving the bogs
Measuring inputs and outputs

Inputs
- Flood water pumped in (conc. by grab sample, vol. by logger)
- Precipitation (conc. by NADP, vol. by Cran. Station)
- Groundwater?

Outputs
- Surface water released (conc. by grab sample, vol. by logger)
- Seepage to groundwater (vol. estimated from previous work)
Example Site: State Bog
Chris Neill – Preliminary Study Results
Groundwater

Ammonium

mg N/L

Bog

WS RO PV ST LI BE

Upgradient
Downgradient

N study partnership
Groundwater

Nitrate

mg N/L

Bog

WS RO PV ST LI BE

Upgradient
Downgradient
Groundwater

Total Dissolved Nitrogen

mg N/L

Upgradient
Downgradient

Bog

WS
RO
PV
ST
LI
BE

N study partnership
Findings—groundwater

• No consistent pattern indicating major source or sink
• Connectivity of bogs with groundwater variable and complicated
• High ammonium in one bog but unlikely to travel in groundwater
• High nitrate in one bog, source not clear
• Concentrations of nitrate low compared with groundwater in locations with denser housing
Surface Water

Ammonium

mg N/L

Bog

WS RO PV ST LI BE

Inflowing
Outflowing

N study partnership
Surface Water

Nitrate

mg N/L

Inflowing
Outflowing

Bog

WS RO PV ST LI BE

N study partnership
Surface Water

Total Nitrogen

mg N/L

<table>
<thead>
<tr>
<th>Bog</th>
<th>Inflowing</th>
<th>Outflowing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N study partnership
Findings—surface water

- Inflow concentrations relatively similar to outflow concentrations
- No consistent pattern indicating major source or sink
- Dissolved and particulate N are collectively greater than ammonium and nitrate
- Do not account for dynamics and large amounts of water moving during floods
Preliminary Findings—flood N inputs vs outputs

- Individual floods can be sources or sinks of nitrogen to surface water
- Depends primarily on relative concentrations of dissolved (and to a lesser extent particulate) nitrogen in inflowing and outflowing water
- Annual budget for a bog depends on the sum of nitrogen balances in all floods
- Some bogs likely net sources, some net sinks
- Not an easy matter to scale to watershed based on total bog area
- This approach has limitations because nitrogen concentrations vary during flooding and release
Questions remaining after this study

- Is our methodology capturing all the data needed for a good budget model for cranberry?
- Should we look at changes to monitoring methods?
- Should we monitor more than floods?
Casey Kennedy - Other approaches to data gathering
Continuous Monitoring
Measurement of Volumetric Flow
Nitrogen Concentration – Seasonal Variation

![Graph showing nitrogen concentration over months]

- Total N
- Ammonium
- Nitrate

Month (2014)
Nitrogen Concentration – Event Variation
Six Core Study Sites – 2 illustrated here

Site A

Site B

These 2 sites, State Bog and Rocky are common to the partnership study.
Site F – “Wisconsin Style” Bog

- Cranberry Bed
- Drainage Ditch
- Sampling site
- Discharge Flume
- Input Flume
- Flow Direction of ditch
- Drainage tile

TD4 → TD3

TD2

TD1

FLUME

Flow Direction of ditch
Case study – the work of graduate student Nick Alverson
N study partnership

Cubic feet

In Progress

Total Output

Total Input

July November

August

September

October

November

December

January

February

March

April

May

June
Hydrologic Inputs

- 6.50: Flood input
- 4.10: Precip
- 1.48: Input from adjacent bed
- 1.17: Irrigation
Surface Water Discharge: Storms Vs. Harvest Flood

Feet (normalized to 5 acre bed)

August Storm Event - Flow

1.6 inches of Rain

N study partnership
August Storm Event – Nitrogen Concentrations

- **TDN (mg N/L)**
- **NH4 (mg N/L)**
- **DON (mg N/L)**
- **NO3+NO2 (mg N/L)**
August Storm Event - Dissolved Nitrogen Export

- **TDN**: 0.454 kg
- **NH4**: 0.433 kg
- **NO3+NO2**: -0.065 kg
- **DON**: 0.086 kg

Net Export (kg)
2013 Harvest Flood Discharge

Cubic feet per second

10/23/2013 0:00
10/23/2013 12:00
10/24/2013 0:00
10/24/2013 12:00
10/25/2013 0:00
10/25/2013 12:00
10/26/2013 0:00
10/26/2013 12:00

N study partnership
2013 Harvest Flood Nitrogen Export

- TDN: 2.93 kg
- NH4: 0.02 kg
- NO3+NO2: 0.16 kg
- DON: 2.75 kg

N study partnership
Net Export of Storms and Flood

- **TDN (kg)**
 - Total Storms: 2.414
 - Harvest Flood: 2.932

- **DON (kg)**
 - Total Storms: 0.985
 - Harvest Flood: 2.750

- **NH4 (kg)**
 - Total Storms: 1.945
 - Harvest Flood: 0.024

- **NO3+NO2 (kg)**
 - Total Storms: -0.524
 - Harvest Flood: 0.160

Note: The values represent the net export of various nitrogen forms during storms and floods.
Next steps

- Partner group
 - Will continue study of 6 sites, funding from the EPA via Coastal Zone Management
 - Methods modified to more continuous approach
 - Focus on floods AND big rain events
 - Develop better numbers for the Mass Estuaries model

- ARS
 - Annual nutrient budgets

- Cranberry Station
 - Refine BMP recommendations based on research outcomes
Questions and discussion