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Using Power Tables to Compute Statistical Power  
in Multilevel Experimental Designs 

Spyros Konstantopoulos, Boston College 
 

Power computations for one-level experimental designs that assume simple random samples are 
greatly facilitated by power tables such as those presented in Cohen’s book about statistical power 
analysis. However, in education and the social sciences experimental designs have naturally nested 
structures and multilevel models are needed to compute the power of the test of the treatment effect 
correctly. Such power computations may require some programming and special routines of statistical 
software. Alternatively, one can use the typical power tables to compute power in nested designs. This 
paper provides simple formulae that define expected effect sizes and sample sizes needed to compute 
power in nested designs using the typical power tables. Simple examples are presented to demonstrate 
the usefulness of the formulae.   

 
To compute statistical power in experimental studies that 
use simple random samples researchers typically use 
power tables for one- and two-sample t-tests such as 
those reported in Cohen’s book (1988). In one-level 
experimental designs that use simple random samples 
statistical power is a direct function of the sample size 
(number of individuals) and the effect size (the 
magnitude of the treatment effect). Larger sample sizes 
and effect sizes increase statistical power. However, 
many populations of interest in education and the social 
sciences have multilevel structure. In education for 
example, students are nested within classrooms, and 
classrooms are nested within schools. This nested 
structure produces an intraclass correlation structure that 
needs to be taken into account in study design.  

In experimental studies that involve nested 
population structures, one may assign treatment 
conditions either to individuals such as students or to 
entire groups (clusters) such as schools. Designs that 
assign intact groups to treatments are often called cluster 
or group randomized designs (Bloom, 2005; Donner & 
Klar, 2000; Kirk, 1995; Murray, 1998). When treatments 
are assigned to entire subgroups (subclusters) such as 
classrooms or to individuals within subgroups the 
designs are called block randomized designs. In nested 

designs statistical power computations should take into 
account the clustering of the design which is typically 
expressed via intraclass correlations and the sample sizes 
at each level of the hierarchy. Statistical theory for 
computing power in two- and three-level balanced 
designs has been documented (e.g., Hedges & Hedberg, 
2007; Konstantopoulos, 2008a, 2008b; Murray, 1998; 
Raudenbush, 1997; Raudenbush & Liu, 2000). In two- 
and three-level cluster or block randomized designs the 
power of the test of the treatment effect is affected 
heavily and positively by the number of clusters such as 
schools and to a lesser extent by the number of smaller 
units such as classrooms or students (Konstantopoulos, 
2008a, 2008b; Raudenbush & Liu, 2000). The covariates 
and the effect size also affect power positively and 
considerably. In contrast, clustering expressed via 
intraclass correlations affects the power estimates 
inversely, that is, larger intraclass correlations result in 
smaller power other things being equal.   

The computation of power in nested experimental 
designs typically requires the use of the noncentral F- or 
t-distribution. Some programming and the use of specific 
routines and functions of statistical software is typically 
required for such computations. Alternatively and 
equivalently, one can use the power tables for one- and 

1

Konstantopoulos: Using Power Tables to Compute Statistical Power in Multilevel Exp

Published by ScholarWorks@UMass Amherst, 2009



Practical Assessment, Research & Evaluation, Vol 14, No 10 Page 2 
Konstantopoulos, Power Tables 
 
two-sample t-tests presented in Cohen (1988) to 
compute the power of the test of the treatment effect in 
two- and three-level experimental designs (Barcikowski, 
1981; Hedges & Hedberg, 2007). Because power tables 
are easy to use, the power computations of the test of the 
treatment effect in nested designs are greatly simplified. 
To achieve this, one simply needs to select the 
appropriate sample size and effect size, because typically 
power values in power tables are provided on the basis of 
sample sizes and effect sizes. This paper provides ways of 
selecting sample sizes and effect sizes in two- and 
three-level cluster and block randomized designs that 
simplify power computations by making use of power 
tables. First, I discuss clustering in multilevel designs. 
Second, I define the effect size and sample size for a 
two-sample two-tailed t-test in two- and three-level 
cluster randomized designs. Then, I define the effect size 
and sample size for a one-sample two-tailed t-test in two- 
and three-level block randomized designs. For simplicity, 
I discuss balanced designs with one treatment and one 
control group. To illustrate the methods I use examples 
from education that involve students, classrooms, and 
schools.  

Defining Clustering Via Intraclass Correlations 

The clustering in multilevel designs is typically 
defined via intraclass correlations. In two-level designs, 
where for example students are nested within schools, 
the total variance in the outcome is decomposed into two 
parts: a between-level-2 units (schools) variance 

2
ω  and 

a between level-1 units (students) within-level-2 units 
variance 

2
eσ , so that the total variance is 

2 22
T eσ σ ω= + . 

Then,  
2 2/ Tρ ω σ=  

is the intraclass correlation and indicates the proportion 
of the variance in the outcome between level-2 units or 
how similar or homogeneous the level-1 units within 
each level-2 unit are (Cochran, 1977; Lohr, 1999; 
Raudenbush & Bryk, 2002). For example, suppose that 
the total variance in achievement is 1. If the between 
school variance is 0.2 then the intraclass correlation is 
0.2/1 = 0.2 and indicates that 20 percent of the variance 
in achievement is between schools and 80 percent of the 
variance is within schools between students. In 
education, a recent paper provided a comprehensive 
collection of intraclass correlations for achievement data 
based on national representative samples (Hedges & 
Hedberg, 2007). Specifically, the authors provided an 

array of plausible values of intraclass correlations for 
achievement outcomes using recent large-scale studies 
that surveyed national probability samples of elementary 
and secondary students in America. This compilation of 
intraclass correlations is useful for planning two-level 
designs. The values of intraclass correlations ranged 
from 0.1 to 0.25 for typical samples and were smaller 
than 0.1 for more homogeneous samples (low achieving 
schools)  

The clustering in three-level designs, where for 
example students are nested within classrooms, and 
classrooms are nested within schools, is defined via two 
intraclass correlations because nesting can occur at the 
classroom and at the school level. In this case the total 
variance in the outcome is decomposed into three 
components: the between level-1 units within level-2 
units variance, 2

eσ , the between level-2 and within 
level-3 units variance, 2τ , and the between level-3 units 
variance, 2ω . The total variance in the outcome is 
defined as 2 2

T e
2 2σ σ τ ω= + + . In this case there is a 

level-2 (classroom) intraclass correlation  
2 2

2 / Tρ τ σ=  

and a level-3 (school) intraclass correlation  
2 2

3 / Tρ ω σ= . 

For example, suppose again that the total variance in 
achievement is 1, that the between school variance is 0.2 
and that the between classroom variance within schools 
is 0.1. Then the intraclass correlation at the classroom 
level is 0.1/1 = 0.1 and the intraclass correlation at the 
school level is 0.2/1=0.2. This indicates that 20 percent 
of the variance in achievement is between schools, 10 
percent of the variance is between classrooms within 
schools, and 70 percent of the variance is within 
classrooms between students. A recent study by Nye, 
Konstantopoulos, and Hedges (2004) provided empirical 
estimates of intraclass correlations for achievement data 
that are useful for planning three-level designs. The 
values of the intraclass correlations ranged from 0.1 to 
0.2 and on average the level-2 intraclass correlations were 
about two-thirds as large as the level-3 intraclass 
correlations.  

MULTILEVEL EXPERIMENTAL DESIGNS 
Multilevel designs have nested structures and power 
analysis of such designs must take into account the 
clustering expressed frequently in intraclass correlations, 
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the effect size, and the sample sizes at each level. Hence, 
the methods discussed here provide formulae that 
incorporate intraclass correlations, effect sizes, and 
sample sizes. The researchers need to have some 
knowledge of the clustering effects and the treatment 
effects in order to determine the sample sizes that will 
result in high levels of power. 

Two-Level Cluster Randomized Designs 

First consider a two-level design where, for example, 
students are nested within schools and schools are 
randomly assigned to a treatment or a control group. The 
nesting structure of the design is illustrated graphically in 
the upper panel of Figure 1. Specifically, Figure 1a shows 
that students are nested within schools, and in turn 
schools are randomly assigned to treatment 1 (treatment) 
or treatment 2 (control).  

 

Following Barcikowski (1981) and Hedges and 
Hedberg (2007) the expected effect size to look up in 
power tables for two-sample two-tailed t-tests at the .05 
level assuming no covariates at any level is  

( ) ( )
1

2 1 1 1 1
mn n
N n n

δ δ
ρ ρ

Δ = =
+ − + −

 (1)

where , m is the number of level-2 units 
(schools) in the treatment or the control group, 

2N m /=
n  is the 

number of level-1 units within each level-2 unit, δ  is the 
effect size parameter, and ρ  is the intraclass correlation 
at the second level. The degrees of freedom of the t-test 

assuming simple random samples are 2t cN N+ −  and 

t c t cN N N / N N= + , where N indicates sample size and 
the subscripts t and c represent treatment and control 
groups respectively (Cohen, 1988). In two-level cluster 
randomized designs the degrees of freedom of the t-test 
are mt + mc – 2 (Hedges & Hedberg, 2007; Raudenbush, 
1997). When the sample sizes in the treatment and 
control groups are equal, mt = mc = m, the natural choice 
for Nt or Nc is m, and as a result . In this case 
the expected sample size is m. 

2/N m=

When covariates are included in the model the 
expected effect size to look up in power tables is 

( ) ( )*
1 2 1

1 (
2 2 )
mn m
N q

δ δ
1 2 1

2 )
(

q n
mn nη η η ρ η η ρ

Δ = =
+ − + −

)

η
−
−

/(2q m q

(2)

 where N m* 2( )m= − − , and 1 2,η η  
indicate the proportions of the level-1 and level-2 
residual variances to the total variances at the 
corresponding levels, q is the number of level-2 
covariates (school characteristics), and the other terms 
were defined previously (Hedges & Hedberg, 2007; 
Murray, 1998). For example, if the covariates at the first 
and second level explain 30 percent of the variance at the 
corresponding level then 1 2 0 70.η η

( ) /(2 )mq m q

= = . The degrees of 
freedom of the t-test are mt + mc – 2 – q, and if Nt = mt – q, 
Nc = mc, and mt = mc = m, then it follows that 

* 2N m= − − . In this case, the expected 
sample size is m – q/2.  

In order to compute the expected effect size one 
needs to have some knowledge of the intraclass 
correlation and the treatment effect (effect size). 
Plausible values of intraclass correlations for 
achievement data in two-level designs are reported in a 
recent study by Hedges and Hedberg (2007). Plausible 
estimates of the treatment effect can be obtained from 
previous empirical of meta-analytic work. To illustrate 
the simplicity of the computations suppose that 20 
schools are randomly assigned to two conditions (m = 10 
in each condition) and that 40 students ( n = 40) are 
sampled within each school for a total sample size of 800 
students. Assume that there are no covariates at any level, 
that the effect size is δ  = 0.5 standard deviations, and 
that the intraclass correlation at the second level is ρ = 
0.2. Then for a two-sample two-tailed t-test at the .05 
level the expected effect size using equation 1 is 

Figure 1: Nesting Structure in Two- and Three-Level 
Cluster Randomized Designs  
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400.5 1.07
(1 (40 1)0.2)

Δ = =
+ −

. 

This effect size estimate is represented in Cohen’s 
(1988) Table 2.3.5 by d (the x axis). The number of 
schools in each condition is m = 10 and is represented in 
Cohen’s Table 2.3.5 by n (the y axis). Table 1 essentially 
replicates Cohen’s Table 2.3.5. The expected effect size is 
very close to 1.1 and according to Table 1 the power is 
0.64 when the effect size d = 1.1 and the number of 
schools per condition is n = 10. This indicates that there 

is roughly a 64 percent chance of detecting an effect size 
of 1.1 standard deviations when there are 10 schools per 
condition. 

Suppose now that one covariate is included at each 
level of the hierarchy and each covariate explains 0.25 
percent of the variance at the corresponding level. This 
indicates that 2 1 0 75.η η= =  and q = 1. Suppose that all 
other values remain unchanged. Now, using equation 2 
the expected effect size is 

(2*10 1) 400.5 1.27
2(10 1) (0.75 (40*0.75 0.75)0.2)

−
Δ = =

− + −
. 

The expected sample size is m – q/2 = 10 – 0.5 = 9.5. 
An effect size of 1.27 is very close to 1.3 and hence 
according to Table 1 when d = 1.3 and n = 9 the power is 
0.74 and when d = 1.3 and n = 10 the power is 0.78. 
Since the expected sample size is 9.5 which is halfway 
between 9 and 10 the power would be 0.76 (halfway 
between 0.74 and 0.78). 

Table 1 Power of two-sample two-tailed t-test at .05 level
n d

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50
2 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.10 0.11 0.13 0.14 0.15
3 0.05 0.05 0.06 0.07 0.08 0.09 0.10 0.12 0.14 0.16 0.18 0.21 0.23 0.26 0.29
4 0.05 0.06 0.07 0.08 0.09 0.11 0.13 0.16 0.19 0.22 0.26 0.30 0.34 0.38 0.43
5 0.05 0.06 0.07 0.09 0.11 0.13 0.16 0.20 0.24 0.29 0.33 0.39 0.44 0.49 0.55
6 0.05 0.06 0.08 0.10 0.12 0.16 0.20 0.24 0.29 0.35 0.41 0.47 0.53 0.59 0.65
7 0.05 0.06 0.08 0.11 0.14 0.18 0.23 0.28 0.34 0.41 0.47 0.54 0.61 0.67 0.73
8 0.05 0.07 0.09 0.12 0.15 0.20 0.26 0.32 0.39 0.46 0.54 0.61 0.68 0.74 0.80
9 0.05 0.07 0.09 0.13 0.17 0.22 0.29 0.36 0.43 0.51 0.59 0.67 0.74 0.80 0.85

10 0.06 0.07 0.10 0.14 0.19 0.25 0.32 0.40 0.48 0.56 0.64 0.72 0.78 0.84 0.89
11 0.06 0.07 0.10 0.15 0.20 0.27 0.35 0.43 0.52 0.61 0.69 0.76 0.83 0.88 0.92
12 0.06 0.08 0.11 0.16 0.22 0.29 0.37 0.47 0.56 0.65 0.73 0.80 0.86 0.91 0.94
13 0.06 0.08 0.11 0.16 0.23 0.31 0.40 0.50 0.60 0.69 0.77 0.84 0.89 0.93 0.96
14 0.06 0.08 0.12 0.17 0.25 0.33 0.43 0.53 0.63 0.72 0.80 0.86 0.91 0.95 0.97
15 0.06 0.08 0.12 0.18 0.26 0.35 0.46 0.56 0.66 0.75 0.83 0.89 0.93 0.96 0.98
16 0.06 0.09 0.13 0.19 0.28 0.38 0.48 0.59 0.69 0.78 0.85 0.91 0.94 0.97 0.98
17 0.06 0.09 0.14 0.20 0.29 0.40 0.51 0.62 0.72 0.81 0.87 0.92 0.96 0.98 0.99
18 0.06 0.09 0.14 0.21 0.31 0.42 0.53 0.65 0.75 0.83 0.89 0.94 0.97 0.98 0.99
19 0.06 0.09 0.15 0.22 0.32 0.44 0.56 0.67 0.77 0.85 0.91 0.95 0.97 0.99 0.99
20 0.06 0.09 0.15 0.23 0.34 0.46 0.58 0.69 0.79 0.87 0.92 0.96 0.98 0.99 1.00
21 0.06 0.10 0.16 0.24 0.35 0.48 0.60 0.72 0.81 0.89 0.94 0.97 0.98 0.99 1.00
22 0.06 0.10 0.16 0.25 0.37 0.49 0.62 0.74 0.83 0.90 0.95 0.97 0.99 0.99 1.00
23 0.06 0.10 0.17 0.26 0.38 0.51 0.64 0.76 0.85 0.91 0.95 0.98 0.99 1.00 1.00
24 0.06 0.10 0.17 0.27 0.40 0.53 0.66 0.77 0.86 0.92 0.96 0.98 0.99 1.00 1.00
25 0.06 0.11 0.18 0.28 0.41 0.55 0.68 0.79 0.88 0.93 0.97 0.99 0.99 1.00 1.00
26 0.06 0.11 0.19 0.29 0.42 0.56 0.70 0.81 0.89 0.94 0.97 0.99 1.00 1.00 1.00
27 0.07 0.11 0.19 0.30 0.44 0.58 0.71 0.82 0.90 0.95 0.98 0.99 1.00 1.00 1.00
28 0.07 0.11 0.20 0.31 0.45 0.60 0.73 0.84 0.91 0.96 0.98 0.99 1.00 1.00 1.00
29 0.07 0.12 0.20 0.32 0.46 0.61 0.75 0.85 0.92 0.96 0.98 0.99 1.00 1.00 1.00
30 0.07 0.12 0.21 0.33 0.48 0.63 0.76 0.86 0.93 0.97 0.99 1.00 1.00 1.00 1.00

Three-Level Cluster Randomized Designs 

Now consider a three-level design where for example 
students are nested within classrooms, classrooms are 
nested within schools, and schools are randomly 
assigned to a treatment or a control group. The nesting 
structure of the design is illustrated graphically in the 
lower panel of Figure 1. Specifically, Figure 1b shows 
that students are nested within classrooms, classrooms 
are nested within schools, and in turn schools are 
randomly assigned to treatment 1 (treatment) or 
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treatment 2 (control). In this case and assuming no 
covariates, the expected effect size to look up in power 
tables is 

( ) ( )2 31 1 1
pn

n pn
δ

ρ ρ
Δ =

+ − + −
 (3)

where p is the number of level-2 units within level-3 
units, n is the number of level-1 units within each level-2 
unit, 3ρ  is the intraclass correlation at the third level, 2ρ  
is the intraclass correlation at the second level, and all 
other terms have been defined previously. The expected 
sample size is m as in the two-level case. When covariates 
are included in the model the expected effect size to look 
up in power tables is 

( ) ( ) ( )1 2 1 2 3 1

2
2

m q pn
m q n pn

δ
3η η η ρ η η ρ

−
Δ =

− + − + −
 (4)

where 3η  is the proportion of the residual variance 
to the total variance at the third level, and all other terms 
have been already defined. The expected sample size is m 
– q/2 as in the two-level case.  

To illustrate the computations suppose that 20 
schools are randomly assigned to two conditions (m = 
10), that 2 classrooms are sampled per school (p = 2), and 
20 students are sampled within each classroom (n = 20) 
for a total sample size of 800 students. Assume that there 
are no covariates, that the effect size is δ  = 0.5 standard 
deviations, and that the intraclass correlations at the 
second level and third level are 2ρ = 0.1 and 3ρ = 0.2 
respectively. The expected effect size using equation 3 is  

2*200.5 0.97
(1 (20 1)0.1 (2*20 1)0.2)

Δ = =
+ − + −

 

and the expected sample size is 10. The value of the 
effect size is very close to 1 and hence according to Table 
1 when d = 1 and n = 10 the power is 0.56.  

Suppose now that one covariate is included at each 
level of the hierarchy and each covariate explains 0.25 
percent of the variance at the corresponding level. This 
indicates that 3 2 1 0 75.η η η= = =  and q = 1. Suppose 
also that all other values remain unchanged. Using 
equation 4 the expected effect size is 

(2*10 1) 2*200.5 1.15
2(10 1) (0.75 (20*0.75 0.75)0.1 (2*20*0.75 0.75)0.2)

−
Δ = =

− + − + −

 

The expected sample size is m – q/2 = 10 – 0.5 = 9.5. 
An effect size of 1.15 is halfway between 1.1 and 1.2. 
According to Table 1 when d = 1.1 and n = 9 the power 
is 0.59 and when d = 1.2 and n = 9 the power is 0.67. 
Also, according to Table 1 when d = 1.1 and n = 10 the 
power is 0.64 and when d = 1.2 and n = 10 the power is 
0.72. The power is essentially the average of all 4 power 
values and is roughly 0.66.  

Two-Level Block Randomized Designs 

First consider a two-level design where for example 
students are nested within schools and students are 
randomly assigned to a treatment or a control group 
within schools. The schools in this design serve as 
blocks. The nesting structure of the design is illustrated 
graphically in the upper panel of Figure 2. Specifically, 
Figure 2a shows that students are randomly assigned to 
treatment 1 (treatment) or treatment 2 (control) within 
each school. Again, following Barcikowski (1981) and 
Hedges and Hedberg (2007) the expected effect size to 
look up in power tables for one-sample two-tailed t-tests 
at the .05 level assuming no covariates at any level is  

( )2

2
1 1

*

*

n /
n

δ
ϑ ρ

Δ =
+ −

 (5)

where  is the number of level-1 units within each 
condition within each level-2 unit, and 

*n
2ϑ  is the 

proportion of the between-level-2 units variance of the 
treatment effect to the total between level-2 units 
variance (Konstantopoulos, 2008b). The degrees of 
freedom of the one-sample t-test assuming simple 
random samples and no nesting are N – 1, where N is the 
total sample size. In two-level designs where level-1 units 
are randomly assigned to conditions within level-2 units 
the degrees of freedom of the t-test are m* - 1 where  
is the total number of level-2 units (schools). In this case 
the expected sample size is m*. When covariates are 
included in the model the expected effect size to look up 
in the power tables is  

*m

( )
* *

* *
1 2 2 12( ) R

m n
m q n

δ
η ϑ η η ρ

Δ =
− + −

 (6)

where 2Rϑ  is the proportion of the between-level-2 
units residual variance of the treatment effect to the total 
between level-2 units residual variance and all other 
terms have been defined already (Konstantopoulos, 
2008b). The expected sample size in this case is m* – q.  
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To illustrate the computations consider a two-level 
design where level-1 units are randomly assigned to 
conditions within level-2 units. Suppose that there are 20 
schools overall (m* = 20) and 20 students per condition 
per school (n* = 20) for a total sample size of 800 
students. Suppose that no covariates are included at any 
level, that the effect size is δ  = 0.25 standard deviations, 
that 2ϑ  = 1/9, and that the intraclass correlation at the 

school level is ρ  = 0.20. Using equation 5 the expected 
effect size is 

( )
200.25 0.71

2(1 20(1/ 9) 1 0.2)
Δ = =

+ −
, 

and the expected sample size is 20. The expected 
effect size 0.71 is very close to 0.7 and according to Table 
2 when d = 0.7 and n = 20 the power is 0.84. Suppose 
now that one covariate is included at each level of the 
hierarchy and that each covariate explains 0.25 percent of 
the variance at the corresponding level and everything 

else remains the same. This indicates that 2 1 0 75.η η= =  
and q = 1. Then, using equation 6 the expected effect size 
is 

Figure 2: Nesting Structure in Two- and Three-Level 
Block Randomized Designs   

20 200.25 0.84
2(20 1) (0.75 (20*0.75*(1/ 9) 0.75)0.2)

Δ = =
− + −

and the expected sample size is 20 – 1 = 19. The expected 
effect size is roughly halfway between 0.8 and 0.9. 
According to Table 2 when d = 0.8 and n = 19 the power 
is 0.91 and when d = 0.9 and n = 19 the power is 0.96. 
Then, the power estimate is halfway between 0.91 and 
0.96 and hence it is roughly 0.94.    

Three-Level Block Randomized Designs 

Now consider a three-level model where for example 
students are nested within classrooms and classrooms are 
nested within schools and classrooms within schools are 
randomly assigned to conditions. The nesting structure 
of the design is illustrated graphically in the middle panel 
of Figure 2. Specifically, Figure 2b shows that students 
are nested within classrooms and classrooms are 
randomly assigned to treatment 1 (treatment) or 
treatment 2 (control) within each school. In this case the 
expected effect size to look up in power tables is   

( ) ( )2 3

2
1 1 1

*

*

p n /
n p n

δ
3ρ ϑ ρ

Δ =
+ − + −

 (7)

where p* is the number of classrooms randomly 
assigned to conditions within schools, n is the number of 
level-1 units within level-2 units, and 3ϑ  is the 
proportion of the between level-3 units variance of the 
treatment effect to the total variance at the third level. 
The expected sample size is m* as in the two-level case. 
When covariates are included at each level the expected 
effect size to look up in power tables is  

( ) ( )
* *

* *
2 1 2 3 3 1 32( ) e R

m p n
m q n p n

δ
η η η ρ ϑ η η ρ

Δ =
− + − + −

 (8)

where m* is the total number of level-3 units, 3Rϑ  is 
the proportion of the between level-3 units residual 
variance of the treatment effect to the total residual 
variance at the third level, and all other terms have been 
defined already. The expected sample size is m* – q as in 
the two-level case.  
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Table 2 Power of one-sample two-tailed t-test at .05 level

n d
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50

2 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.09 0.10 0.11 0.12 0.13 0.13
3 0.05 0.06 0.06 0.07 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.23 0.26 0.29 0.32
4 0.05 0.06 0.07 0.09 0.11 0.14 0.17 0.21 0.25 0.29 0.34 0.38 0.43 0.48 0.53
5 0.05 0.06 0.08 0.11 0.14 0.18 0.23 0.28 0.34 0.40 0.47 0.53 0.59 0.65 0.71
6 0.06 0.07 0.09 0.13 0.17 0.22 0.29 0.36 0.43 0.51 0.58 0.66 0.72 0.78 0.83
7 0.06 0.07 0.10 0.15 0.20 0.27 0.35 0.43 0.52 0.60 0.68 0.75 0.82 0.87 0.91
8 0.06 0.08 0.11 0.17 0.23 0.31 0.40 0.50 0.59 0.68 0.76 0.83 0.88 0.92 0.95
9 0.06 0.08 0.13 0.19 0.26 0.35 0.46 0.56 0.66 0.75 0.82 0.88 0.93 0.96 0.98
10 0.06 0.09 0.14 0.21 0.29 0.40 0.51 0.62 0.72 0.80 0.87 0.92 0.95 0.98 0.99
11 0.06 0.09 0.15 0.23 0.32 0.44 0.55 0.67 0.77 0.85 0.91 0.95 0.97 0.99 0.99
12 0.06 0.10 0.16 0.25 0.35 0.48 0.60 0.71 0.81 0.88 0.93 0.97 0.98 0.99 1.00
13 0.06 0.10 0.17 0.26 0.38 0.51 0.64 0.75 0.85 0.91 0.95 0.98 0.99 1.00 1.00
14 0.06 0.11 0.18 0.28 0.41 0.55 0.68 0.79 0.88 0.93 0.97 0.99 0.99 1.00 1.00
15 0.07 0.11 0.19 0.30 0.44 0.58 0.71 0.82 0.90 0.95 0.98 0.99 1.00 1.00 1.00
16 0.07 0.12 0.20 0.32 0.47 0.61 0.75 0.85 0.92 0.96 0.98 0.99 1.00 1.00 1.00
17 0.07 0.12 0.21 0.34 0.49 0.64 0.77 0.87 0.94 0.97 0.99 1.00 1.00 1.00 1.00
18 0.07 0.13 0.23 0.36 0.52 0.67 0.80 0.89 0.95 0.98 0.99 1.00 1.00 1.00 1.00
19 0.07 0.13 0.24 0.38 0.54 0.70 0.82 0.91 0.96 0.98 1.00 1.00 1.00 1.00 1.00
20 0.07 0.14 0.25 0.40 0.57 0.72 0.84 0.92 0.97 0.99 1.00 1.00 1.00 1.00 1.00
21 0.07 0.14 0.26 0.42 0.59 0.74 0.86 0.94 0.98 0.99 1.00 1.00 1.00 1.00 1.00
22 0.07 0.15 0.27 0.43 0.61 0.77 0.88 0.95 0.98 0.99 1.00 1.00 1.00 1.00 1.00
23 0.07 0.15 0.28 0.45 0.63 0.79 0.89 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
24 0.08 0.16 0.29 0.47 0.65 0.80 0.91 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
25 0.08 0.16 0.30 0.48 0.67 0.82 0.92 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
26 0.08 0.17 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
27 0.08 0.17 0.32 0.52 0.71 0.85 0.94 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00
28 0.08 0.18 0.33 0.53 0.72 0.86 0.95 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
29 0.08 0.18 0.35 0.55 0.74 0.88 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 0.08 0.19 0.36 0.56 0.75 0.89 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 
To illustrate the computations consider a three-level 

design where for example classrooms within schools are 
randomly assigned to conditions, there are 20 schools (m* 
= 20), one classroom per condition per school (p*  = 1), 
and 20 students per classroom (n = 20) for a total sample 
size of 800 students. Suppose that no covariates are 
included at any level, that the effect size is δ  = 0.25 
standard deviations, that 3Rϑ  = 1/9, and that the 
intraclass correlations at the classroom and school level 
are 2ρ = 0.10 and 3ρ  = 0.20 respectively. Using 
equation 7 the expected effect size is  

1*200.25 0.45
2(1 (20 1)0.1 (1*20*(1/ 9) 1)0.2)

Δ = =
+ − + −

, 

and the expected sample size is 20. When d = 0.45 
and n = 20 according to Table 2 the power is halfway 
between 0.40 (d = 0.4) and 0.57 (d = 0.5), that is, it is 
roughly 0.49. The effects of covariates in power can also 
be incorporated in the expected effect size using 
equation 8.  

Finally, consider a three-level design where level-1 
units are randomly assigned to conditions within level-2 
units within level-3 units. The nesting structure of the 
design is illustrated graphically in the lower panel of 
Figure 2. Specifically, Figure 2c shows that students are 
randomly assigned to treatment 1 (treatment) and 
treatment 2 (control) within each classroom, and 
classrooms are nested within schools. Assuming no 
covariates at any level the expected effect size to look up 
in the power tables is  

( ) ( )2 2 3

2
1 1 1

*

* *

pn /
n pn

δ
3ϑ ρ ϑ

Δ =
+ − + − ρ

 (9)

where 2ϑ , 3ϑ  are the proportions of the between 
level-2 and between level-3 unit variance of the treatment 
effect to the total variance at the second and third level 
respectively. The expected sample size in this case is m*. 

When covariates are included the effect size to look 
up in the power tables is 
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( ) ( )
* *

* * *
1 2 2 1 2 3 3 12( ) R R

m pn
m q n pn

δ
3η ϑ η η ρ ϑ η η ρ

Δ =
− + − + −

(10)

where 2Rϑ , 3Rϑ  are the proportions of the between 
level-2 and between level-3 unit residual variance of the 
treatment effect to the residual variance at the second 
and third level respectively. The expected sample size in 
this case is m* - q. 

To illustrate the computations consider a three-level 
design where for example students within classrooms are 
randomly assigned to conditions, there are 20 schools 
(m* = 20), two classrooms per school (p = 2), and 10 
students per condition per classroom (n* = 10) for a total 
sample size of 800 students. Suppose that no covariates 
are included at any level, that the effect size is δ  = 0.25 
standard deviations, that 3ϑ  = 2ϑ  = 1/9, and that the 
intraclass correlations at the classroom and school level 
are 2ρ = 0.1 and 3ρ  = 0.2 respectively. Using equation 9 
the expected effect size is  

2*100.25 0.71
2(1 (10*(1/ 9) 1)0.1 (2*10*(1/ 9) 1)0.2)

Δ = =
+ − + −

, 

and the expected sample size is 20. The effect size 
value of 0.71 is very close to 0.7 and according to Table 2 
when d = 0.7 and n = 20 the power is 0.84. The effects of 
covariates in power can also be incorporated in the 
expected effect size using equation 10. 

CONCLUSION 
This paper showed how conventional power tables 

such as those reported in Cohen (1988) can be used to 
compute statistical power in two- and three-level cluster 
and block randomized designs. Once the expected effect 
size and the expected sample size are derived, the 
computation of statistical power using power tables is 
straightforward. Such computations provide an easier 
alternative to computing power in nested designs using 
complicated formulae of the non-central F- or 
t-distribution. All computations can be easily performed 
using a calculator or excel.  

It should be noted that methods for a priori power 
computations during the design phase of an 
experimental study as those provided here are intended 
to serve simply as useful guides for study design. That is, 
a priori power estimates although informative should be 

treated as approximate and not exact (Kraemer & 
Thieman, 1987). The reason is that the power estimates 
are as accurate as the estimates of effect sizes and 
intraclass correlations, which are typically educated 
guesses.  
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Note 

The author is indebted to Chen Ann for creating the figures used in this report. 
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