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ABSTRACT

DATA ANALYSIS AND STUDY DESIGN IN THE
PRESENCE OF ERROR-PRONE

DIAGNOSTIC TESTS

SEPTEMBER 2014

XIANGDONG GU, B.Sc., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF

CHINA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Raji Balasubramanian

Interval censored time to event outcomes arise when a silent event of interest is

known to have occurred within a specific time period, determined by the times of the

last negative and first positive diagnostic tests. The four chapters comprising this

thesis are tied together by a common theme in that the outcome of interest is an

interval censored time to event random variable.

In Chapter 1, we describe a stratified Weibull model appropriate for interval cen-

sored outcomes and implement a new R package straweib. We compare the proposed

approach with the log-linear form of the Weibull regression model that is currently im-

plemented in the existing R package survival, and illustrate its use by analyzing data

from a longitudinal oral health study on the timing of the emergence of permanent

teeth in 4430 children.
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In Chapter 2, we present methods to estimate the association of one or more

covariates with an error-prone, self reported time to event outcome. We present

simulation studies to assess the effect of error in self reported outcomes with regard to

bias in the estimation of the regression parameter of interest. We apply the proposed

methods to the data from Women’s Health Initiative (WHI) to evaluate the effect of

statin use with respect to incident diabetes risk.

In Chapter 3, we develop tools to calculate power and sample size for studies in

which data from sequentially administered, error-prone, laboratory-based diagnostic

tests or self-reported questionnaires are collected to determine the occurrence of a

silent event. We evaluate the effects of the characteristics of the imperfect diagnos-

tic test on resulting power and sample size calculations. We compare the relative

efficiency of various study designs in the context of error-prone outcomes.

In Chapter 4, we propose a lasso and a Bayesian variable selection approach in

the context of error-prone self reported outcomes to address the problem of vari-

able selection in high dimensional data settings. We perform simulation studies to

compare prediction performance of proposed methods and naive methods that ignore

measurement error. We apply our proposed methods to the genome-wide association

study data from the WHI to select biomarkers associated with diabetes.
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CHAPTER 1

STRATIFIED WEIBULL REGRESSION MODEL FOR
INTERVAL-CENSORED DATA

1.1 Introduction

In many clinical studies, the time to a silent event is known only up to an interval

defined by the times of the last negative and first positive diagnostic test. Event times

arising from such studies are referred to as ’interval-censored’ data. For example, in

pediatric HIV clinical studies, the timing of HIV infection is known only up to the

interval from the last negative to the first positive HIV diagnostic test [10]. Examples

of interval-censored outcomes can also be found in many other medical studies [19].

A rich literature exists on the analysis of interval-censored outcomes. Non-parametric

approaches include the self-consistency algorithm for the estimation of the survival

function [53]. A semi-parametric approach based on the proportional hazards model

has been developed for interval-censored data [13, 18]. A variety of parametric models

can also be used to estimate the distribution of the time to the event of interest, in

the presence of interval-censoring [33]. An often used parametric approach for the

analysis of interval-censored data is based on the assumption of a Weibull distribution

for the event times [33]. The Weibull distribution is appropriate for modeling event

times when the hazard function can be reliably assumed to be monotone. Covariate

effects can be modeled through the assumption of proportional hazards (PH), which

assumes that the ratio of hazard functions when comparing individuals in different

strata defined by explanatory variables is time-invariant. The article by [19] presents

a comprehensive review of the state-of-the-art techniques available for the analysis of

interval-censored data.
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In this chapter, we implement a parametric approach for modeling covariates

applicable to interval-censored outcomes, but where the assumption of proportional

hazards may be questionable for a certain subset of explanatory variables. For this

setting, we implement a stratified Weibull model by relaxing the PH assumption

across levels of a subset of explanatory variables. We compare the proposed model

to an alternative stratified Weibull regression model that is currently implemented in

the R package survival [50]. We illustrate the difference between these two models

analytically and through simulation.

The chapter is organized as follows: In Section 1.2, we present and compare two

models for relaxing the PH assumption, based on the assumption of a Weibull distri-

bution for the time to event of interest. In this section, we discuss estimation of the

unknown parameters of interest, hazard ratios comparing different groups of subjects

based on specific values of explanatory covariates and tests of the PH assumption.

These methods are implemented in a new R package, straweib [21]. In Section 1.3, we

perform simulation studies to compare two stratified Weibull models implemented in

R packages straweib and survival. In Section 1.4, we illustrate the use of the R pack-

age straweib by analyzing data from a longitudinal oral health study on the timing of

the emergence of permanent teeth in 4430 children in Belgium [31, 19]. In Section 1.5,

we discuss the models implemented in this chapter and present concluding remarks.

1.2 Weibull regression models

Let T denote the continuous, non-negative random variable corresponding to the

time to event of interest, with corresponding probability distribution function (pdf)

and cumulative distribution function (cdf), denoted by f(t) and F (t), respectively.

We let S(t) = 1 − F (t) to denote the corresponding survival function and h(t) =

limδt→0
P (t≤T<t+δt|T≥t)

δt
to denote the hazard function. We let Z denote the p × 1

vector of explanatory variables or covariates.

2



We assume that the random variable T | Z = 0 is distributed according to a

Weibull distribution, with scale and shape parameters denoted by λ and γ, respec-

tively. The well known PH model to accommodate the effect of covariates on T is

expressed as:

h(t | Z) = h(t | Z = 0)× exp(β′Z),

where β denotes the p×1 vector of regression coefficients corresponding to the vector

of explanatory variables, Z.

Thus, under the Weibull PH model, the survival and hazard functions correspond-

ing to T can be expressed as

S(t | Z) = exp (−λ exp (β′Z) tγ) (1.1)

h(t | Z) = λ exp(β′Z)γtγ−1 (1.2)

where, λ > 0 and γ > 0 correspond to the scale and shape parameters corresponding

to T when Z = 0. The hazard ratio comparing two individuals with covariate vectors

Z and Z∗ is equal to exp(β′(Z −Z∗)).

1.2.1 Stratified Weibull regression model implemented in the R package

survival

In this section, we describe the stratified Weibull PH regression model imple-

mented in the the R package survival ([50]).

Consider the following log-linear model for the random variable T :

log(T | Z) = µ+ α1Z1 + · · ·αpZp + σε

where, α1, · · · , αp denote unknown regression coefficients corresponding to the p di-

mensional vector of explanatory variables, µ denotes the intercept and σ denotes the

scale parameter. The random variable ε captures the random deviation of event times

3



on the natural logarithm scale (i. e. log(T )) from the linear model as a function of the

covariate vector Z. In general, the log-linear form of the model for T can be shown

to be equivalent to the accelerated failure time (AFT) model ([5]).

The assumption of a standard Gumbel distribution with location and scale pa-

rameters equal to 0 and 1, respectively, implies that the random variable T follows a

Weibull distribution. Moreover, in this case, both the PH and AFT assumptions (or

equivalently, the log-linear model) lead to identical models with different parameter-

izations ([5]). The survival and hazard functions can be expressed as:

S(t | Z) = exp

[
− exp

(
log(t)− µ−α′Z

σ

)]
(1.3)

h(t | Z) = exp

[
−µ+α

′
Z

σ

]
1

σ
t
1
σ
−1 (1.4)

The coefficients for the explanatory variables (β) in the hazard function (h(t | Z)) are

equal to −α
σ

. Moreover, there is a one-to-one correspondence between the parameters

λ, γ,β in equations (1.1)-(1.2) and the parameters µ, σ,α in equations (1.3)-(1.4),

where λ = exp(−µ
σ
), γ = σ−1 and βj = −αj

σ
([5]).

The log-linear form of the Weibull model can be generalized to allow arbitrary

baseline hazard functions within subgroups defined by a stratum indicator S =

1, · · · , s. Thus, the stratified Weibull regression model for an individual in the jth

stratum is expressed as:

log (T | Z, S = j) = µj + α1Z1 + · · ·αpZp + σjε

where µj and σj denote stratum specific intercept and scale parameters. This model is

implemented in the R package survival ([50]). In this model, the regression coefficients

α on the AFT scale are assumed to be stratum independent.
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However, the hazard ratio comparing two individuals with covariate vectors and

stratum indicators denoted by (Z, S = j) and (Z∗, S = k) is stratum specific and is

given by:

h (t | S = j,Z)

h (t | S = k,Z∗)
= t1/σj−1/σk

σk
σj

exp

(
µk
σk
− µj
σj

)
exp

(
α
′
(Z∗/σk −Z/σj)

)

For j 6= k, the hazard ratio varies with time t. However, when j = k, the hazard ratio

comparing two individuals within the same stratum S = j is invariant with respect

to time t but is stratum-dependent and reduces to:

h (t | S = j,Z)

h (t | S = j,Z∗)
= exp

(
α
′

σj
(Z∗ −Z)

)
(1.5)

1.2.2 Stratified Weibull regression model implemented in R package straweib

In this section, we describe the stratified Weibull regression model that is imple-

mented in the new R package, straweib ([21]).

To relax the proportional hazards assumption in the Weibull regression model, we

propose the following model for an individual in the stratum S = j:

h(t | Z, S = j) = λj exp (β′Z) γjt
γj−1 (1.6)

Equivalently, the model can be stated in terms of the survival function as:

S(t | Z, S = j) = exp (−λj exp (β′Z) tγj)

Here, we assume that the scale and shape parameters (λ, γ) are stratum specific

- however, the regression coefficients β are assumed to be constant across strata
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(S). The hazard ratio comparing two individuals with covariate vectors and stratum

indicators denoted by (Z, S = j) and (Z∗, S = k) is given by:

h(t | S = j,Z)

h(t | S = k,Z∗)
= tγj−γk exp

(
β
′
(Z −Z∗)

) λjγj
λkγk

For j 6= k, the hazard ratio varies with time t and thus relaxes the PH assumption.

However, for j = k, the hazard ratio comparing two individuals within the same

stratum S = j reduces to:

h(t | S = j,Z)

h(t | S = j,Z∗)
= exp

(
β
′
(Z −Z∗)

)
(1.7)

This hazard ratio is invariant with respect to time t and stratum S, as in the stratified

Cox model [5].

Estimation:

Let uj = log(λj) and vj = log(γj). Let nj denote the number of subjects in stratum

S = j. For the kth subject in stratum j, let Zjk denote the p dimensional vector of

covariates and let ajk and bjk denote the left and right endpoints of the censoring

interval. That is, ajk denotes the time of the last negative test and bjk denotes the

time of the first positive test for the event of interest. Then the log-likelihood function

can be expressed as:

l(v,u,β) =
∑s

j=1

∑nj
k=1 log{exp[− exp[uj + β′Zjk + exp(vj) log(ajk)]]

− exp[− exp[uj + β′Zjk + exp(vj) log(bjk)]]}

The unknown parameters to be estimated are v, u, and β. The log-likelihood function

can be optimized using the optim function in R. The shape and scale parameters can

be estimated from the estimates of v and u. The covariance matrix of the estimates of

these unknown parameters can be obtained by inverting the negative Hessian matrix

that is output from the optimization routine ([8]).
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Test of the PH assumption:

One can test whether or not the baseline hazard functions of each strata are

proportional to each other, by testing the equality of shape parameters across strata

S = 1, · · · , s. That is,

H0 : γ1 = γ2 = · · · = γs

or equivalently,

H0 : v1 = v2 = · · · = vs.

The null hypothesis H0 can be tested using a likelihood ratio test, by comparing a

reduced model that assumes that γ1 = γ2 == · · · = γs to the full model in (1.6)

assuming stratum specific shape parameters. We note that the reduced model is

equivalent to the Weibull PH model that includes the stratum indicator S as an

explanatory variable. Thus the reduced model has s − 1 fewer parameters than the

stratified model, or the full model. Let lF and lR denote the log-likelihoods of the full

and reduced models evaluated at their MLE. Then the test statistic T = −2(lR− lF )

follows a χ2
s−1 distribution under H0. In addition to the likelihood ratio test, one can

also use a Wald test to test the null hypothesis H0. The R package strawieb outputs

both the Wald and Likelihood Ratio test statistics.

Estimating hazard ratios:

The log hazard ratio comparing two individuals with covariate vectors and stratum

indicators denoted by (Z, S = j) and (Z∗, S = j∗) at time t can be expressed as:

rtjj∗ = log (Rtjj∗) = uj+vj+log (t) exp (vj)−uj∗−vj∗− log (t) exp (vj∗)+β
′
(Z −Z∗)

Let v̂, û and β̂ denote the maximum likelihood estimates for v, u and β, then rtjj∗

can be estimated by

r̂tjj∗ = ûj + v̂j + log (t) exp (v̂j)− ûj∗ − v̂j∗ − log (t) exp (v̂j∗) + β̂
′

(Z −Z∗)
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Let w = (v,u,β) = (v1, v2, · · · , vs, u1, u2, · · · , us, β1, · · · , βp). Let Σ̂ denote the

estimate of the covariance matrix of ŵ. Let J tjj∗ denote the Jacobian vector,

J tjj∗ =
∂rtjj∗

∂w
|w=ŵ. Thus, the estimate of the variance of r̂tjj∗ is obtained by:

V̂ ar(r̂tjj∗) = JTtjj∗Σ̂J tjj∗

We obtain a 95% confidence interval for rtjj∗ as

(
r̂tjj∗ − 1.96

√
V̂ ar(r̂tjj∗), r̂tjj∗ +

1.96

√
V̂ ar(r̂tjj∗)

)
. We exponentiate r̂tjj∗ and its corresponding 95% confidence in-

terval to obtain the estimate and the 95% confidence interval for the hazard ratio,

Rtjj∗ . We illustrate the use of the straweib R package for obtaining hazard ratios and

corresponding confidence intervals in Section 1.4.

1.3 Comparison of models implemented in the R packages

survival and straweib

In this section, we compare the stratified Weibull regression model implemented

in the survival package to that implemented in our package, straweib.

In the absence of stratification, both models are identical and reduce to the Weibull

PH model. However, in the presence of a stratification factor, the models imple-

mented by survival and straweib correspond to different models, resulting in different

likelihood functions and inference. As we discussed in Section 1.2, the hazard ratio

between two subjects with different covariate values within the same stratum depends

on their stratum in the model implemented in the R package survival (Equation (1.5)),

whereas the hazard ratio comparing two individuals within the same stratum is invari-

ant to stratum in the model implemented in the R package straweib (Equation (1.7)).

In particular, the Weibull model implemented in the straweib shares similarities with

the semi-parametric, stratified Cox model for right censored data.
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To illustrate the difference between the models implemented in the R packages

survival and straweib, we conducted a simulation study in which 1000 datasets were

simulated under the model assumed in the straweib package (Equation (1.6)). For

each simulated dataset, since both models have the same number of unknown param-

eters, we compare the values of the log-likelihood evaluated at the MLEs. Datasets

were simulated based on the assumptions that there are 3 strata, each with a 100

subjects; the shape parameters (γ) in the three strata were set to 1.5, 2, and 1,

respectively; the baseline scale parameters in the three strata (λ) were set to 0.01,

0.015, and 0.02, respectively. We assumed that there are two independent explanatory

variables available for each subject, randomly drawn from N(0, 1) random variables.

The coefficients corresponding to each of the two covariates were set to 0.5 and 1, re-

spectively. To simulate interval censored outcomes, we first simulated the true event

time for each subject by sampling from a Weibull distribution with the appropriate

parameters. We assumed that each subject has 20 equally spaced diagnostic tests,

at which the true event status is observed. Each test has a 70% probability being

missing. To obtain the maximum likelihood estimates under each model, we used the

survreg function in the R package survival and the icweib function in the straweib

package.

Figure 1.1 compares the maximized value of the log-likelihoods under both models,

when the data are generated using a simulation mechanism that corresponds to the

model implemented in the R package straweib. The maximized value of the log-

likelihood from the R package survival is lower than that from the R package straweib

for 93.1% of simulated datasets. This is expected as in this simulation study the

data generating mechanism is identical to the model implemented in the R package

straweib. In applications where the proportional hazards assumption is questionable,

we recommend fitting both models and comparing the resulting maximized values of

the log likelihood. Whether one model is better than another depends on the data.
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1.4 Example

We illustrate the R package straweib with data from a study on the timing of

emergence of permanent teeth in Flemish children in Belgium [31]. The data analyzed

were from the Signal-Tandmobiel project [54], a longitudinal oral health study in a

sample of 4430 children conducted between 1996 and 2001. Dental examinations were

conducted annually for a period of 6 years and tooth emergence was recorded based

on visual inspection. As in [19], we will illustrate our R package by analyzing the

timing of emergence of the permanent upper left first premolars. As dental exams

were conducted annually, for each child, the timing of tooth emergence is known up

to the interval from the last negative to the first positive dental examination.

data(tooth24)

head(tooth24)

id left right sex dmf

1 1 2.7 3.5 1 1

2 2 2.4 3.4 0 1

3 3 4.5 5.5 1 0

4 4 5.9 Inf 1 0

5 5 4.1 5.0 1 1

6 6 3.7 4.5 0 1

The dataset is formatted to include 1 row per child. The variable denoted id

corresponds to the ID of the child, left and right correspond to the left and right

endpoints of the censoring interval in years, sex denotes the gender of the child (0 =

boy, and 1 = girl), and dmf denotes the status of primary predecessor of the tooth

(0 = sound, and 1 = decayed or missing due to caries or filled). Right censored

observations are denoted by setting the variable right to ”Inf”.

In our analysis below, we use the function icweib in the package straweib to fit a

stratified Weibull regression model, where the variable dmf is the stratum indicator

(S) and the variable sex is an explanatory variable (Z).

fit <- icweib(L = left, R = right, data = tooth24, strata = dmf,

covariates = ~sex)
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fit

Total observations used: 4386. Model Convergence: TRUE

Coefficients:

coefficient SE z p.value

sex 0.331 0.0387 8.55 0

Weibull parameters - gamma(shape), lambda(scale):

straname strata gamma lambda

dmf 0 5.99 1.63e-05

dmf 1 4.85 1.76e-04

Test of proportional hazards for strata

(H0: all strata’s shape parameters are equal):

test TestStat df p.value

Wald 44.2 1 2.96e-11

Likelihood Ratio 44.2 1 3.00e-11

Loglik(model)= -5501.781 Loglik(reduced)= -5523.87

Loglik(null)= -5538.309 Chisq= 73.05611 df= 1 p.value= 0

The likelihood ratio test of the PH assumption results in a p value of 3.00e-11,

indicating that the PH model is not appropriate for this dataset. Or in other words,

the data suggest that the hazard functions corresponding to the strata defined by

dmf = 0 and dmf = 1 are not proportional. From the stratified Weibull regression

model, the estimated regression coefficient for sex is 0.331, corresponding to a hazard

ratio of 1.39 (95% CI: 1.29 - 1.50). In the output above, the maximized value of the

log likelihood of the null model corresponds to the model stratified by covariate dmf

but excluding the explanatory variable sex.

The p value from the Wald test of the null hypothesis of no effect of gender results

in a p value of approximately 0 (p < 10−16), which indicates that the timing of

emergence of teeth is significantly different between girls and boys.
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To test the global null hypothesis that both covariates sex and dmf are not

associated with the outcome (time to teeth emergence), we obtain the log-likelihood

for global null model, as shown below.

fit0 <- icweib(L = left, R = right, data = tooth24)

fit0

Total observations used: 4386. Model Convergence: TRUE

Weibull parameters - gamma(shape), lambda(scale):

straname strata gamma lambda

strata ALL 5.3 7.78e-05

Loglik(model)= -5596.986

Loglik(null)= -5596.986

The likelihood ratio test testing the global null hypothesis results in a test statis-

tic T = −2(lR − lF ) = −2(−5596.986 + 5501.781) = 190.41, which follows a χ2
3

distribution under H0, resulting in a p value of approximately 0 (p < 10−16).

We illustrate the HRatio function in the straweib package to estimate the hazard

ratio and corresponding 95% confidence intervals for comparing boys without tooth

decay (dmf = 0) to boys with evidence of tooth decay (dmf = 1), where the hazard

ratio is evaluated at various time points from 1 through 7 years.

HRatio(fit, times = 1:7, NumStra = 0, NumZ = 0, DemStra = 1, DemZ = 0)

time NumStra DemStra beta*(Z1-Z2) HR low95 high95

1 1 0 1 0 0.1143698 0.06596383 0.1982972

2 2 0 1 0 0.2520248 0.18308361 0.3469262

3 3 0 1 0 0.4000946 0.33112219 0.4834339

4 4 0 1 0 0.5553610 0.49863912 0.6185351

5 5 0 1 0 0.7162080 0.66319999 0.7734529

6 6 0 1 0 0.8816470 0.79879884 0.9730878

7 7 0 1 0 1.0510048 0.91593721 1.2059899

The output indicates that the hazard ratio for boys comparing the stratum dmf =

0 to stratum dmf = 1 is small initially (e.g. 0.11 at 1 year) but tends to 1 in later
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years (e.g. 0.88 at 6 years and 1.05 at 7 years). Prior to 6 years, the hazard ratio

is significantly less than 1, indicating that the timing of teeth emergence is delayed

in children with tooth decay (dmf = 1) when compared to children without tooth

decay (dmf = 0).

We illustrate estimation of the survival function in Figure 1.2 by plotting the

survival functions and corresponding 95% point wise confidence intervals for girls

(Z = 1), with and without tooth decay.

plot(fit, Z = 1, tRange = c(1, 7), xlab = "Time (years)",

ylab = "Survival Function",

main = "Estimated survival function for girls")

We compare our results from the straweib package to that obtained from the

survival package.

library(survival)

tooth24.survreg <- tooth24

tooth24.survreg$right <- with(tooth24, ifelse(is.finite(right), right, NA))

fit1 <- survreg(Surv(left, right, type="interval2") ~ sex + strata(dmf) +

factor(dmf), data = tooth24.survreg)

fit1

Call:

survreg(formula = Surv(left, right, type = "interval2") ~ sex +

strata(dmf) + factor(dmf), data = tooth24.survreg)

Coefficients:

(Intercept) sex factor(dmf)1

1.84389938 -0.06254599 -0.06491729

Scale:

dmf=Sound1 dmf=Sound2

0.1659477 0.2072465

Loglik(model)= -5499.3 Loglik(intercept only)= -5576.2

Chisq= 153.8 on 2 degrees of freedom, p= 0

n= 4386
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The maximized value of the log-likelihood from the R package survival is −5499.3

(shown below), as compared to the maximized value of the log-likelihood of −5501.8

from the R package straweib.

To clarify the specific assumptions made by the models implemented in the survival

and straweib packages, we carried out subgroup analyses in which we fit a Weibull PH

model separately to each of the strata dmf = 0 and dmf = 1. The results from the

Weibull PH model fit to the subgroup of children in the dmf = 0 stratum is shown

below:

fit20 <- icweib(L= left, R=right, data=tooth24[tooth24$dmf==0, ],

covariates = ~sex)

fit20 ### Partial results shown below

Coefficients:

coefficient SE z p.value

sex 0.448 0.0543 8.25 2.22e-16

The results from the Weibull PH model fit to the subgroup dmf = 1 is shown

below:

fit21 <- icweib(L= left, R=right, data=tooth24[tooth24$dmf==1, ],

covariates = ~sex)

fit21 ### Partial results shown below

Coefficients:

coefficient SE z p.value

sex 0.208 0.0554 3.76 0.000169

The model using the PH scale (implemented by straweib package) replaces the

stratum specific hazard ratios for sex of e0.448 = 1.57 for the subgroup dmf = 0 and

e0.208 = 1.23 for the subgroup dmf = 1 with a common value, e0.331 = 1.39.

Since the Weibull distribution has both the PH and accelerated failure time (AFT)

property ([5]), the identical set of subgroup analyses can be fit using the survival

package. Results from the fit using the survival package for the subgroup dmf = 0

are shown below:
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fit20.survreg <- survreg(Surv(left, right, type="interval2") ~ sex,

data = tooth24.survreg[tooth24.survreg$dmf==0, ])

fit20.survreg ### Partial results shown below

Coefficients:

(Intercept) sex

1.85029150 -0.07453785

Similar results using the survival package for the subgroup dmf = 1 are shown

below:

fit21.survreg <- survreg(Surv(left, right, type="interval2") ~ sex,

data = tooth24.survreg[tooth24.survreg$dmf==1, ])

fit21.survreg ### Partial results shown below

Coefficients:

(Intercept) sex

1.76931556 -0.04303767

In particular, the model assuming a common sex coefficient in the AFT scale

(implemented by survival package) replaces the value of sex coefficient −0.075 for the

subgroup with dmf = 0 and sex coefficient of −0.043 for the subgroup dmf = 1 with

a shared common value, −0.063.

To assess the goodness of fit of the stratified Weibull model implemented by

straweib, we created a multiple probability plot, as described in chapter 19 of [39].

This diagnostic plot was created by splitting the dataset into 4 subgroups based on the

values of sex and dmf. Within each group, we estimated the cumulative incidence

at each visit time using a non-parametric procedure for interval censored data ([53]).

The non-parametric estimates of cumulative incidence within each subgroup were

compared to that obtained from the stratified Weibull model implemented by straweib

package. We use the R package interval ([12]) to obtain Turnbull’s NPMLE estimates

and the R package straweib for the estimates from the stratified Weibull model (code

available upon request). Figure 1.3 shows the diagnostic plot.

Table 1.1 presents the estimates of hazard ratio for sex, within each of the strata

defined by dmf = 0 and dmf = 1, comparing three different analyses - (1) Using the
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survival package to stratify on the variable dmf and including sex as an explanatory

variable; (2) Using the straweib package to stratify on the variable dmf and including

sex as an explanatory variable; (3) Fitting a Weibull PH model with sex as an

explanatory variable, separately within each of the two subgroups defined by dmf = 0

and dmf = 1.

HR.straweib <- exp(fit$coef[1, 1])

HR.survreg <- exp(-fit1$coefficients[’sex’]/fit1$scale)

HR.subgroup <- exp(c(fit20$coef[1, 1], fit21$coef[1, 1]))

Table 1.1. Hazard ratio estimates for gender, comparing the models implemented
in the R packages survival, straweib and subgroup analyses

R package
stratum survival straweib Stratum specific subgroup analyses
dmf = 0 1.46 1.39 1.56
dmf = 1 1.35 1.39 1.23

1.5 Concluding remarks

We have developed and illustrated an R package straweib for the analysis of

interval-censored outcomes, based on a stratified Weibull regression model. The pro-

posed model shares similarities with the semi-parametric stratified Cox model. We

illustrated the R package straweib using data from a prospective study on the timing

of emergence of permanent teeth in Flemish children in Belgium [31].

Although the models and R package are illustrated for the analysis of interval-

censored time-to-event outcomes, the methods proposed here are equally applicable

for the analysis of right-censored outcomes. The syntax for the analysis of right-

censored observations is explained in the manual accompanying the straweib package

available on CRAN ([21]).
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Figure 1.1. Comparing the maximized values of the log-likelihood obtained from the
models implemented in the R package survival (X axis) to that from the R package
straweib (Y axis), when the data is simulated under the model implemented in the R
package straweib
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CHAPTER 2

SEMI-PARAMETRIC REGRESSION MODELS IN THE
PRESENCE OF ERROR-PRONE, SELF-REPORTED

OUTCOMES

2.1 Introduction

The onset of several chronic diseases such as diabetes are asymptomatic and can

be detected only through diagnostic tests. For example, diabetes can be detected by

measuring levels of fasting blood glucose or glycosylated hemoglobin levels (HbA1c).

However, the costs of such gold standard diagnostic tests can be prohibitive in large-

scale epidemiological studies such as the Women’s Health Initiative (WHI) that enroll

and follow over a hundred thousand subjects. Disease prevalence and incidence in

large observational cohorts are often ascertained through error-prone, self-reported

questionnaires. In this chapter, we propose a semi-parametric regression model to

assess the association of specific covariates of interest with a silent time to event

outcome that is assessed through periodic self-reports subject to error.

The motivating application in this chapter is the evaluation of the hypothesis that

the use of cholesterol lowering medications (statins) can result in an increased risk

of diabetes, using data from postmenopausal women enrolled in the WHI. The WHI

recruited women (N=161,808) aged 50-79 at 40 clinical centers across the U.S. from

1993-1998 with ongoing follow-up ([1]). Prevalent and incident diabetes during the

course of follow up was ascertained by self-report obtained at each annual visit. In

a recent paper, [9] presented an analysis of the effects of statin use on the risk of

incident diabetes in the WHI using Cox proportional hazards models. The analyses

were conducted based on the assumption that self-reported outcomes of prevalent and
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incident diabetes are error-free. The validity of self-reports of incident and prevalent

diabetes have been evaluated by [34] using data from a substudy nested within the

WHI - when compared to fasting glucose levels (treated as the gold standard), diabetes

self-reports had a positive predictive value of 74% and negative predictive value of

97%. Other studies such as the Nurses’ Health Study and Physicians’ Health Study

also commonly use self-reported outcomes ([24, 25]).

When a perfect diagnostic test is given sequentially at different points in time to

the same individual, the time until the event of interest can be determined to lie in

the interval between the last negative test and the first positive test - that is, the

time until the event is interval censored. In this context, methods for estimating

the survival distribution and assessing the effect of covariates have been developed

([53, 13]). However, when error-prone diagnostic procedures such as self-reports are

used, standard methods for interval censored outcomes are rendered invalid. Previous

work in this area includes methods for error-prone outcomes with application to

studies in HIV, HPV and STD ([2, 3, 36, 40]). [3] developed a formal likelihood

framework to estimate the distribution of the time to event of interest in the presence

of error-prone laboratory-based diagnostic tests, in the context of data obtained from

pediatric HIV clinical trials. [40] extended the discrete proportional hazard model

to incorporate mismeasured outcomes and also covariates. In related work, [47, 6, 7]

considered generalized Cox models in settings involving time to event outcomes with

incomplete event adjudication. Other related work includes that proposed by [36]

in the context of HPV studies, where the authors accommodate misclassification by

incorporating ideas of binary generalized linear models with outcomes subject to

misclassification ([42]). The problem of error-prone time to event outcome can also

be handled through Hidden Markov Model (HMM) framework. Previous applications

of HMM based methods include in the areas of breast cancer ([4]), HIV ([43, 23]),

lung transplantation ([26]) and cervical smear tests ([29]). [27] present a general
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framework for staged Markov models to handle misclassification due to error prone

screening tests.

In this chapter, we present a likelihood based approach to incorporate time-varying

covariate effects specific to the setting in which the prevalence and incidence of a

chronic condition such as diabetes is ascertained through error-prone self-reports. We

incorporate the situation where an unknown proportion of subjects who have already

experienced the event of interest at baseline are mistakenly included into the study,

due to the use of error-prone self-reports at study entry. We also provide a freely

available R software package ([20]) and illustrate its use. In Section 2.2, we present

notation, form of the likelihood function, address issues related to estimation and

extensions to incorporate misclassification of subjects at study entry. In Section 2.3,

we perform simulation studies to evaluate the effects of various degrees of error in self-

reports. We investigate the effects of erroneous inclusion of subjects who have already

experienced the event of interest due to less than perfect negative predictive values

associated with self-reports. In Section 2.4, we evaluate the association between statin

use with the risk of incident diabetes in a subset of 152,830 women enrolled in the

WHI. Lastly, in Section 2.5 we discuss the findings of this study and highlight future

directions.

2.2 Methods

In this section, we first present the notation, likelihood, and estimation then we

extend our model to incorporate the possibility of misclassification at study entry.

2.2.1 Notation, likelihood, estimation

Let X refer to the random variable denoting the unobserved time to event for

an individual, with associated survival, density and hazard functions denoted by

S(x), f(x) and λ(x), for x ≥ 0 respectively. The time origin is set to 0, corresponding
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to the baseline visit at which all subjects enrolled in the study are event-free. In other

words, Pr(X > 0) = 1. Without loss of generality, we set X = ∞ when the event

of interest does not occur. Let N denote the number of subjects and ni denote the

number of pre-scheduled visits for the ith subject. At each visit, we assume that each

subject would self report their disease status. For example, in the Women’s Health

Initiative, information on incident diabetes was collected at periodicallly scheduled

visits using self-reported questionnaires. For the ith subject, we let Ri and ti denote

the 1 × ni vectors of binary self-reported, binary outcomes and corresponding visit

times, respectively. In particular, Rij is equal to 1 if the jth self-report for the ith

subject is positive (indicating occurrence of the event of interest such as diabetes)

and 0 otherwise. Let τ1, · · · , τJ denote the distinct, ordered visit times in the dataset

among N subjects, where 0 = τ0 < τ1 < ... < τJ < τJ+1 = ∞ - thus, the time axis

can be divided into J + 1 disjoint intervals, [τ0, τ1), [τ1, τ2), · · · , [τJ ,∞).

In general, the likelihood contribution for the ith subject can be expressed as:

L(Ri | ti) =
J+1∑
j=1

Pr(τj−1 < X ≤ τj)Pr(Ri | τj−1 < X ≤ τj, ti)

=
J+1∑
j=1

θjPr(Ri | τj−1 < X ≤ τj, ti)

where θj = Pr(τj−1 < X ≤ τj), τ0 = 0 and τJ+1 =∞.

To simplify the form of the likelihood above, we make the assumption that the

probability of a positive self-report at the kth visit at tk conditional on all previous

self reported outcomes and the true time of the event can be simplified as:

Pr(rik = 1 | ri1, · · · ri,k−1, τj−1 < X ≤ τj, tk) = Pr(rik = 1 | ri,k−1, τj−1 < X ≤ τj, tk)

Thus, the likelihood for the ith subject can be simplified as:
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L(Ri | ti) =
J+1∑
j=1

θj

[
Pr(ri1 | τj−1 < X ≤ τj, t1)

ni∏
k=2

Pr(rik | ri,k−1, τj−1 < X ≤ τj, tk)

]

=
J+1∑
j=1

θjCij

(2.1)

where Cij = [Pr(ri1 | τj−1 < X ≤ τj, t1)
∏ni

k=2 Pr(rik | ri,k−1, τj−1 < X ≤ τj, tk)]. We

first assume that once a subject has self-reported the occurrence of the event of

interest, then all subsequent self-reports will be positive for the event of interest. In

other words, Pr(rik = 1 | ri,k−1 = 1) = 1 for all j. Moreover, we assume that for a

subject whose last self-report was negative for the event of interest (i.e. ri,k−1 = 0),

the probability of a positive self report at the next visit (rik = 1) conditional on the

interval containing the true time of the event of interest is independent of visit time

and can be expressed as:

Pr(rik = 1|ri,k−1 = 0, τj−1 ≤ X < τj, tk) =

 ϕ1, tk ≥ τj

1− ϕ0, tk < τj−1

Thus the terms Cij, for j = 1, · · · , J + 1 in equation (1) can be expressed as a

product involving the constants ϕ1, 1−ϕ1, ϕ0, or 1−ϕ0. We note that an equivalent

expression for the form of the likelihood can be obtained by assuming independence

of self-reported results conditional on true event time ([3]). Thus, in the absence of

covariates, the likelihood for a random sample of N subjects can be expressed as:

l(θ) = log(L(θ)) =
N∑
i=1

log(
J+1∑
j=1

Cijθj) (2.2)

In most settings, including the WHI, it is of interest to evaluate the association

of a vector of covariates with respect to the time to the event of interst. Let Z

denote the P × 1 vector of explanatory variables with corresponding P × 1 vector
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of regression coefficients denoted by β. To incorporate the effect of covariates, we

assume the proportional hazards model, λ(t|Z = z) = λ0(t)e
z′β, or equivalently,

S(t|Z = z) = S0(t)
ez
′β

.

To derive the form of the log-likelihood based on the assumption of the propor-

tional hazards model, we first re-parameterize the log likelihood in (2) in terms of

the of the survival function, S = (1 = S1, S2, · · · , SJ+1)
T , where Sj = Pr(X > τj−1).

Since Sj =
∑J+1

l=j θl, the vector of interval probabilities can be expressed as θ = TrS,

where Tr is the (J + 1) × (J + 1) transformation matrix. Let C = [Cij] denote the

N × (J + 1) matrix of the coefficients, Cij, and let the N × (J + 1) matrix D be

defined as DN×(J+1) = C × Tr. Then, the log-likelihood function for the one-sample

setting in (2) can be expressed as

l(S) =
N∑
i=1

log(
J+1∑
j=1

DijSj), (2.3)

where S1 = 1 and S2, S3, · · · , SJ+1 are the unknown parameters of interest.

Let 1 = S1 > S2 > ... > SJ+1 denote the baseline survival functions (i.e. corre-

sponding to Z = 0), evaluated at the left boundaries of the intervals [0, τ1), [τ1, τ2),

· · · , [τJ ,+∞). Then, for subject i with corresponding covariate vector zi, S
(i)
j =

(Sj)
ez
′
iβ . Thus, the log-likehood function for a random sample of N subjects can be

expressed as

l(S,β) =
N∑
i=1

log(
J+1∑
j=1

Dij(Sj)
ez
′
iβ). (2.4)

The elements of the D matrix are functions of the observed data including the

visit times and corresponding self-reported results, as well as the constants ϕ0, ϕ1.

Assuming that ϕ0, ϕ1 are known constants, the maximum likelihood estimates of the

unknown parameters β1, · · · , βP , S2, · · · , SJ+1 can be obtained by numerical maxi-

mization of the log-likelihood function, subject to the constraints that 1 > S2 >

S3 > · · · > SJ+1 > 0. Statistical inference regarding the parameters of interest
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(β1, · · · , βP , S2, · · · , SJ+1) can be made by using asymptotic properties of the maxi-

mum likelihood estimators ([8]). The estimated covariance matrix of the maximum

likelihood estimates can be obtained by inverting the Hessian matrix. Hypothesis

tests regarding the unknown parameters can be carried out using the likelihood ratio

or Wald test.

2.2.2 Misclassification at study entry

In this section, we incorporate the setting in which a self-report of being event

(disease) free at baseline or study entry is used as the inclusion criterion. The evalu-

ation of the association between statin use and risk of incident diabetes in the WHI

was based on all women who self-reported to be diabetes free at baseline ([9]). How-

ever, diabetes self reports at study entry in the WHI have been found to be less than

perfect - the study by [34] found that the negative predictive value of prevalent di-

abetes at baseline was approximately 97% - that is, 3% of women who self-reported

as being diabetes free were in fact diabetic. In this situation, the assumption in the

model developed in Section 2.2.1 that S(0) = 1 is invalid.

For the ith subject, let Gi denote the baseline binary self-report, where Gi = 1

denotes a self report indicating that the event of interest has already occurred and

Gi = 0 denotes otherwise. Similarly, let Bi denote the true event status at baseline.

In other words, Bi = 1
def
= Xi ≤ 0 and Bi = 0

def
= Xi > 0. Consider a subject who

has a negative self-report result at baseline (i.e. Gi = 0) and is thus, included in the

dataset. As before, let the observed self-report results for the ith subject be denoted by

Ri. Let the negative predictive value of the self-report at baseline Pr(Bi = 0|Gi = 0)

be denoted by η, which we assume to be constant for all subjects. Then the likelihood

function for the ith subject can be expressed as:
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Li = Pr(Ri|Gi = 0, ti)

= ηPr(Ri|Bi = 0, Gi = 0, ti) + (1− η)Pr(Ri|Bi = 1, Gi = 0, ti)

(2.5)

We assume that for those who are true negative at baseline, the self report result at

baseline is non-informative. That is, those who self report negative and are also truly

negative for at baseline are a random sample from all subjects who are true negative

at baseline. Then we have Pr(Ri|Bi = 0, Gi = 0, ti) = Pr(Ri|Bi = 0, ti), which cor-

responds to the likelihood function derived in Section 2.2.1, based on the assumption

that all subjects included in the analysis have not experienced the event of interest

at baseline (i.e. X > 0). Thus, Pr(Ri|Bi = 0, Gi = 0, ti) =
∑J+1

j=1 Dij(Sj)
ez
′
iβ . Since

the probability of self report result conditional on X ≤ 0 is equal to the probability

of self report result conditional on τ0 < X ≤ τ1, Pr(Ri|Bi = 1, Gi = 0, ti) = Ci1 =

Di1 = Di1(S1)
ez
′
iβ .

The likelihood function for the ith subject has the form,

Li(β,S) = η
J+1∑
j=1

Dij(Sj)
ez
′
iβ + (1− η)Di1(S1)

ez
′
iβ

=
J+1∑
j=1

D′ij(Sj)
ez
′
iβ (2.6)

where D′i1 = Di1 and D′ij = ηDij for j > 1. Thus, the likelihood function incorpo-

rating baseline misclassification has the same general form as in equation (2.4). The

likelihood function in equation (2.4) can be obtained as a special case when η = 1 in

equation (2.6).

2.2.3 Time varying covariates

We consider the situation where covariate values can change with time and are

collected at each visit. Let zij denote the p×1 vector of covariate values for subject i at
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time τj. In extending the likelihood function (Equation (2.4)) to handle time-varying

covariates, we make the additional assumption that the values of the covariates zij

remains constant during the interval [τj, τj+1). Let Λj denote the cumulative hazard

function during the period of [τj, τj+1) for the subjects in the reference group (i.e.

Z = 0). Under the model λzi(t) = λ0(t)eβzi , the corresponding cumulative hazard

function during the period [τj, τj+1) for subject i is equal to Λj exp(z′ijβ). The survival

function at τj−1 can then be expressed as,

S
(i)
j = exp

(
−

j−2∑
j′=0

Λj′ exp
(
z′ij′β

))

where j = 2, · · · , J + 1, where S
(i)
1 = 1. The likelihood function can be expressed as

function of the derived S
(i)
j ,

l(S,β) =
N∑
i=1

log

(
J+1∑
j=1

DijS
(i)
j

)

The log-likelihood function can be optimized with respect to the parameters Λ0, · · · ,ΛJ−1

and β1, · · · , βP subject to constrains Λj ≥ 0. In practice, if a subject has missing visits

or missing covariate values at some visits, one can carry forward the last observation

as one approach to impute missing covariate values.

2.3 Simulation

In this section, we present results from simulation studies to illustrate the effects

of (1) error-prone self reported outcomes; and (2) misclassification at study entry

(baseline). We present the effects of the factors noted above with regard to the bias

associated with the estimated regression parameter of interest.
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2.3.1 Effects of error-prone self-reported outcomes

The simulation studies are based on 1000 subjects randomly assigned to two ex-

posure groups with equal proportion, where all subjects are event-free at baseline

(i.e. Xi > 0 for all i). We assume that there is a single binary covariate of interest

Zi, corresponding to the exposure status of the ith subject. The associated regres-

sion parameter in the likelihood (Equation 2.4) is set to β = 1. For each subject,

self reported questionnaires were collected at 8 scheduled visits over a duration of 8

years, each with random missing probability of 30%. All self reports following the

first positive report were assumed to be positive with probability 1. The simulation

mechanism assumed that the time to the event of interest X followed an exponential

distribution. The hazard rate λ governing the time to the event of interest in the

reference group (Zi = 0) is set to equal 0.0132 or 0.0866, corresponding to cumulative

incidence by study end (1−SJ+1) of 0.10 or 0.50, respectively. As shown in Table 2.1,

we compare results across several sets of values for the parameters (ϕ1, ϕ0) governing

the characteristics of self-reports.

Table 2.1 presents the results from the simulation study, averaged over 1000

datasets. For each parameter setting, we present estimates of bias, associated stan-

dard error, root mean square error (RMSE), and coverage probability associated with

the estimation of the regression parameter of interest, β. Coverage probability is cal-

culated as the proportion of datasets in which the 95% confidence interval for β

contains its true value. We compare results from two sets of analyses for estimating

β - (a) maximizing the likelihood presented in Equation (2.4), assuming that the true

values of ϕ1, ϕ0 are known; and (b) maximizing the likelihood presented in Equation

(2.4) assuming that self-reports are perfect (that is, ϕ1 = ϕ0 = 1). In general, when

the true values of ϕ0, ϕ1 are incorporated into the analysis, the estimates of β are

nearly unbiased. Similarly, the true coverage probability corresponding to a 95% con-

fidence interval is close to its nominal value. On the other hand, when self-reports
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are incorrectly assumed to be perfect, the estimates of β may be significantly biased,

especially in settings where ϕ0 is low. When ϕ0 << 1, early false positive results

result in significant loss of information due to premature cessation of data collection.

In this case, coverage probabilities deviated significantly from 95% especially in set-

tings where ϕ0 << 1. Lastly, incorporating the uncertainty in error-prone self-reports

increases the standard error of the maximum likelihood estimates of β.

2.3.2 Effects of misclassification at study entry

In this simulation, we incorporate the setting in which an error-prone, self-report

of being event (disease) free at study entry is used as the inclusion criterion. As

before, let η denote the negative predictive value of the baseline self-report. That

is, each subject included in the study has a probability of 1 − η of having already

experienced the event of interest prior to study entry. We assumed that 1000 subjects

are enrolled in the study, of whom 1000× (1− η) have already experienced the event

of interest prior to entry into the study (i.e. X < 0). The data are simulated as

described in Section 2.3.1 , where ϕ1 = 0.61 and ϕ0 = 0.995. We compare results for

various settings by varying the cumulative incidence of the event of interest (1−SJ+1)

to equal 0.10 or 0.50, and by varying the value of η to equal 0.99, 0.96 or 0.93.

Table 2.2 presents the simulation results, averaged over 1000 datasets. We present

results from an “adjusted” model that properly accounts for misclassification at base-

line based on the likelihood presented in Equation (2.6) compared to the model that

incorrectly assumes that η = 1 (denoted “Unadjusted”). As expected, the adjusted

model is nearly unbiased and has uniformly lower bias when compared to the unad-

justed model. The bias of the unadjusted model increases with decreasing values of

negative predictive value (η), and it is more pronounced when the cumulative inci-

dence is low (1−SJ+1 = 0.10). In general, the inclusion of subjects who have already

experienced the event of interest at study entry results in the exposure groups becom-
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ing less distinguishable. Thus, ignoring this issue in data analysis results in estimates

of exposure effects (β) that are biased towards the null. In contrast, incorporating

the effect of baseline misclassification increases the standard error of β̂. The effects

on the bias and the standard error of β̂ are reflected in the RMSE values - the ad-

justed model has smaller RMSE than the unadjusted model in all settings except

when SJ+1 = 0.9 and η = 0.99. The coverage probability of the adjusted model is

approximately 95% in all settings considered in this study. However, the coverage

probability of the unadjusted model decreases with decreasing negative predictive

value (η) due to increased bias.

2.4 Application: Risk of diabetes mellitus with statin use in

the Women’s Health Initiative

Background: We analyze data collected on 152,830 women from the Women’s

Health Initiative (WHI) to evaluate the effects of statin use on the risk of incident

diabetes mellitus (DM). [9] reported an increased risk of incident DM with baseline

statin use (multivariate-adjusted HR, 1.48; 95% CI, 1.38-1.59). These results were

based on Cox PH models where the time to event variable was calculated as the

interval between enrollment date and the earliest of the following: 1) date of annual

medical history update when new diabetes is self-reported (positive outcome); 2)

date of last annual medical update during which diabetes status can be ascertained

(censorship); or 3) date of death (censorship). The methods used in [9] were based

on the assumptions that: (1) all subjects who self-reported as being diabetes free at

baseline were truly not diabetic (that is, η = 1); and (2) the self-reports of incident

diabetes at each follow up visit were error-free (i.e. ϕ1 = ϕ0 = 1). We compare

the results from [9] to results based on application of the likelihood based methods

described in this chapter.
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Diabetes self-reports: Prevalent diabetes at baseline and incident diabetes

were assessed through self reported questionnaires in the WHI. At baseline and at

each annual visit, participants were asked whether she has ever received a physician

diagnosis of and/or treatment for diabetes when not pregnant since the time of the

last self-report/visit. Using data from a WHI substudy ([34]), estimates of sensitivity,

specificity, and baseline negative predictive value of self reported diabetes outcomes

were obtained by comparing self reported outcomes to fasting glucose levels and

medication data. A woman was considered to be truly diabetic if she had either

taken anti-diabetic medication and/or had a fasting glucose level ≥ 126mg/dL. By

using a subset of 5485 women, with information at baseline on diabetes self reports,

fasting glucose levels and medication inventory, we estimated that self reports have a

sensitivity of 0.61, the specificity of 0.995, and a negative predictive value of 0.96 at

baseline. These estimated parameter values are used in our analysis.

Methods: The analysis dataset included 152,830 women out of a total of 161,808

women enrolled in the WHI. Women with self reported diabetes at baseline or miss-

ing diabetes status or medication inventory at baseline were excluded. In addition,

women who ever took cerivastatin were excluded from our analysis ([9]). The results

presented here are based on follow up until 2010. The median follow up time was 12.1

years, including 1,688,967 person-years of total follow up. During the course of follow

up, 10.4% of women self reported being diagnosed with diabetes. Information on

statin use was obtained from medical inventory information, which was available for

selected follow-up years. Information on statin use was available for 59,505, 128,507,

55,043 and 12,039 subjects at years 1, 3, 6, and 9. Models included either baseline

statin use or statin use as a time varying covariate - in the latter case, missing med-

ication information data was imputed by carrying forward the last observation. In

multivariable models, other covariates included race, smoking status, alcohol intake,

age, education, WHI study, BMI, recreational physical activity, dietary energy intake,
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family history of diabetes, and hormone therapy use. We assumed that self reports

following the first report of incident diabetes are non-informative. Annual visit times

were rounded to the nearest year in order to limit the number of parameters estimated

to describe the baseline survival function (S2, · · · , SJ+1).

Results: Table 2.3 presents the estimated hazard ratio (95% confidence interval)

for statin use by modeling statin use at baseline or as a time-varying covariate. For

each, we present results from univariable models as well as multivariable models

incorporating potential confounders. In each setting, the results from the methods

proposed in this chapter are compared to results from Cox models. In all models, by

incorporating self-report measurement error and potential misclassification at study

entry, the hazard ratio of statin use is consistently increased when comparing to the

corresponding Cox models. Using the proposed methods, the hazard ratio for baseline

statin use from univariate analysis was 2.33(95% CI: 2.12-2.56). In the multivariable

model, the hazard ratio of baseline statin use was 1.81(95% CI: 1.65-1.99) , suggesting

a relatively strong confounding effect. When statin use was modeled as a time-varying

covariate, the hazard ratios of statin use from univariate and multivariate models were

2.49(95% CI: 2.31 -2.68) and 1.88 (95% CI: 1.75-2.02), respectively.

The goodness of fit of the multivariable model incorporating statin use as a time-

varying covariate was assessed in an augmented model that included 2 additional

terms corresponding to the interactions of time periods (in years) (3,6] and (6,16]

with statin use. This model allows the effect of statin use to vary between the time

periods (0,3], (3,6] and (6,16] years. The Wald test p values corresponding to the

interactions of statin use with the time periods (3,6] and (6,16] were 0.89 and 0.11,

respectively - these results indicate that there are no significant time-varying effects

of statin use on incident diabetes risk.

To evaluate how the results depend on the choice of parameters such as sen-

sitivity, specificity and baseline negative predictive value of self-reported diabetes,
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we performed a sensitivity analysis by varying each of these parameters. Table 2.4

presents how the estimated hazard ratio of statin use changes with different combi-

nations of the parameters. Statin use was modeled as a time-varying covariate while

simultaneously adjusting for potential confounders. We observed that the estimated

hazard ratio of statin use is most sensitive to change in specificity. This is largely due

to the fact that the cumulative incidence of diabetes was low (10.4%), and thus false

positive test results due to imperfect specificity have a big influence on estimated pa-

rameters. In general, the hazard ratio of statin use decreases as specificity increases.

Changes in sensitivity and negative predictive value at baseline have modest effects

on the resulting model fit.

The models presented here can be implemented using our freely available R soft-

ware package icensmis ([20]).

2.5 Discussion

Due to cost considerations, the use of self reported outcomes is common to di-

agnose prevalent and incident disease in large scale epidemiologic investigations such

as the Women’s Health Initiative and the Nurses Health Study. In this chapter, we

present a likelihood based framework to model the association of a time varying co-

variate with a time to event outcome, that is observed through periodically collected,

error-prone, self reported data. We incorporate the possibility of erroneous inclusion

of subjects who have already experienced the event of interest prior to study entry

as a result of the use of self reported outcomes at baseline in determining the study

population.

We presented results from simulation studies to assess the impact of ignoring error

in self reported outcomes - in all cases considered, the use of statistical models that

correctly accomodate the error inherent in self reports resulted in nearly unbiased

estimates of regression parameter of interest. The largest bias as a result of ignoring
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error in self reported outcomes was found in settings where the cumulative incidence

was low and specificity was less than perfect. Models that correctly accomodate

error in self reports also resulted in increased variance of the estimated regression

parameters. However, in most settings, the RMSE values that combine the impact of

bias and variance of the estimated regression parameter favored the use of methods

that appropriately account for error in self reported outcomes.

The methods proposed in this chapter were applied to prospective data from

152,830 women enrolled in the WHI to evaluate the effect of statin use and risk of

incident diabetes. By accounting for the imperfect sensitivity, specificity and negative

predictive value at baseline for diabetes self reports, we observed that the hazard

ratio for statin use was significantly larger than that estimated in naive analysis that

ignored the error in self reported outcomes. In particular, the hazard ratio of statin

use in a multivariable model adjusted for potential confounders was 1.88 (95% CI:

1.75-2.02) as compared to the multivariable hazard ratio estimate from Cox model

1.48(95% CI: 1.42-1.54).

In the methods developed here, we assumed that the sensitivity and specificity

of self reported outcomes are invariant with respect to time and independent of co-

variates. In many real world settings, this assumption may result in over-simplified

models. In addition, the methods developed here assumed that the parameters gov-

erning the characteristics of self reported outcomes are known. However, in many

cases these are estimated values - in this context, it would be useful to extend the

methods proposed here to allow joint estimation of the sensitivity and specificity of

self reported outcomes together with the parameters governing the distribution of the

time to event of interest and associated regression parameters. Lastly, our models

assumed that the probability of a positive self report conditional on a preceding neg-

ative self report is independent of the time duration between the self reports - while

this assumption may be plausible for laboratory based diagnostic tests, it may be un-
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duly strong for self reported outcomes in settings where the the visits are unequally

spaced. However, in the WHI data, visits were equally spaced and we observed a low

rate of missingness.

36



Table 2.1. Comparing estimates of the regression parameter β from an “adjusted”
analysis that accounts for the error in self-reported outcomes to an “unadjusted’
analysis that incorrectly assumes that self-reports are perfect.

ϕ1 ϕ0 SJ+1 Analysis type Bias(%) Std Err RMSE Coverage(%)
0.75 1.00 0.90 Adjusted 0.3% 0.17 0.17 96.8%
0.75 1.00 0.90 Unadjusted 0.1% 0.17 0.17 97.0%

1.00 0.75 0.90 Adjusted -6.7% 0.82 0.82 93.8%
1.00 0.75 0.90 Unadjusted -90.2% 0.07 0.90 0.0%

0.61 0.995 0.90 Adjusted 1.4% 0.21 0.22 94.9%
0.61 0.995 0.90 Unadjusted -16.4% 0.17 0.23 82.9%

0.75 1.00 0.50 Adjusted 0.1% 0.09 0.09 95.1%
0.75 1.00 0.50 Unadjusted -1.9% 0.09 0.09 93.5%

1.00 0.75 0.50 Adjusted 0.2% 0.19 0.19 94.4%
1.00 0.75 0.50 Unadjusted -59.2% 0.07 0.60 0.0%

0.61 0.995 0.50 Adjusted 0.5% 0.09 0.09 94.2%
0.61 0.995 0.50 Unadjusted -6.9% 0.08 0.11 86.7%
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Table 2.2. Comparing estimates of the regression parameter β from an “adjusted”
analysis that incorporates the possibility of misclassification at baseline to an “un-
adjusted’ analysis that incorrectly assumes that all subjects are event-free at study
entry or that η = 1. We assume that ϕ1 = 0.61 and ϕ0 = 0.995.

SJ+1 η Analysis type Bias(%) Std Err RMSE Coverage(%)
0.90 0.99 Adjusted 2.6% 0.22 0.23 95.0%
0.90 0.99 Unadjusted -4.5% 0.20 0.21 94.1%

0.90 0.96 Adjusted 1.2% 0.24 0.24 95.8%
0.90 0.96 Unadjusted -22.9% 0.17 0.29 72.7%

0.90 0.93 Adjusted 0.1% 0.25 0.25 95.2%
0.90 0.93 Unadjusted -36.4% 0.15 0.40 36.3%

0.50 0.99 Adjusted 0.0% 0.09 0.09 95.2%
0.50 0.99 Unadjusted -1.5% 0.09 0.09 94.1%

0.50 0.96 Adjusted 0.1% 0.10 0.10 94.2%
0.50 0.96 Unadjusted -5.7% 0.09 0.11 89.2%

0.50 0.93 Adjusted 0.6% 0.10 0.10 94.1%
0.50 0.93 Unadjusted -9.4% 0.09 0.13 80.9%
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Table 2.3. Analysis of the effects of statin use on incident diabetes mellitus risk in
the WHI.

Univariable/ Hazard ratio
Statin variable type Type of Analysis Multivariable* N (95% CI)

Baseline statin Proposed model Univariable 152830 2.33(2.12, 2.56)
Baseline statin Proposed model Multivariable 138338 1.81(1.65, 1.99)
Baseline statin Cox model Univariable 152830 1.69(1.60, 1.78)
Baseline statin Cox model Multivariable 138338 1.54(1.46, 1.63)

Time varying statin Proposed model Univariable 152830 2.49(2.31, 2.68)
Time varying statin Proposed model Multivariable 138338 1.88(1.75, 2.02)
Time varying statin Cox model Univariable 152830 1.65(1.59, 1.72)
Time varying statin Cox model Multivariable 138338 1.48(1.42, 1.54)
* Covariates adjusted include race, smoking status, alcohol intake, age,
education, WHI study, BMI, recreational physical activity, dietary energy
intake, family history of diabetes, and hormone therapy use
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Table 2.4. Statin use versus risk of incident diabetes mellitus in the WHI - sensitivity
analysis for varying sensitivity, specificity and baseline negative predictive value (η)
associated with diabetes self reports. All models incorporate statin use as a time
varying covariate and adjust for potential confounders.

sensitivity specificity η Hazard Ratio (95% CI)
0.50 0.993 0.96 2.11(1.92, 2.31)
0.50 0.993 0.98 2.10(1.92, 2.30)

0.50 0.995 0.96 1.93(1.79, 2.08)
0.50 0.995 0.98 1.93(1.79, 2.07)

0.50 0.997 0.96 1.76(1.65, 1.88)
0.50 0.997 0.98 1.77(1.66, 1.88)

0.61 0.993 0.96 2.05(1.88, 2.24)
0.61 0.993 0.98 2.06(1.89, 2.24)

0.61 0.995 0.96 1.88(1.75, 2.02)
0.61 0.995 0.98 1.89(1.76, 2.03)

0.61 0.997 0.96 1.73(1.63, 1.84)
0.61 0.997 0.98 1.74(1.64, 1.84)

0.70 0.993 0.96 2.02(1.85, 2.20)
0.70 0.993 0.98 2.03(1.86, 2.21)

0.70 0.995 0.96 1.86(1.73, 2.00)
0.70 0.995 0.98 1.87(1.74, 2.00)

0.70 0.997 0.96 1.71(1.61, 1.82)
0.70 0.997 0.98 1.72(1.62, 1.82)
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CHAPTER 3

STUDY DESIGN IN THE PRESENCE OF
ERROR-PRONE DIAGNOSTIC TESTS AND

SELF-REPORTED OUTCOMES

3.1 Introduction

In Chapter 2, we discussed the effects of error-prone diagnostic tests such as self-

report on the estimation of covariate effects. In this chapter, we discuss the study

design issues arising when error-prone diagnostic tests are used to ascertain the oc-

currence of a silent event. When error-prone measurement is used, study design issues

have been considered in other experimental settings. [37, 38] developed methods to

find optimal designs given a fixed budget when both error-prone and error-free mea-

surements are used in two-stage studies for the estimation of sensitivity, specificity

and positive predictive value associated with a diagnostic test. In this chapter, we

consider studies aimed at estimating a treatment effect in the presence of time to

event outcomes measured with repeatedly administered, error-prone diagnostic pro-

cedures - to our knowledge, no previous studies have considered issues related to

study design for this setting. The goal of this chapter is to describe effects of various

factors influencing the sample size and statistical power in a regression context, when

a silent event such as diabetes is detected via sequentially administered diagnostic

procedures subject to imperfect sensitivity and/or specificity. We provide a freely

available R software package icensmis ([20]). In Section 3.2, we describe the meth-

ods to calculate power and sample size, incorporate the effects of missing tests and

censoring, and present the trade-off in power when comparing perfect and imperfect

tests. In Section 3.3, we illustrate the effect of different factors influencing power and
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sample size. In Section 3.4, we extend our methods to incorporate settings in which

the sensitivity and specificity of the diagnostic test are unknown. Lastly, in Section

3.5, we discuss the findings of this study and highlight future directions.

3.2 Method

In this section, we first present the notation, likelihood, and estimation and de-

scribe the approach for deriving analytical expressions for power and sample size

calculations. The derivation on likelihood function is very similar to that presented

in Chapter 2, but it is more general and applicable to not only self-report but also

other diagnostic tests. In Section 3.2.5, we illustrate the effect on power by comparing

the use of perfect versus imperfect diagnostic tests.

3.2.1 Notation, likelihood, estimation

Let T refer to the random variable denoting the unobserved time to event for

an individual, with associated survival, density and hazard functions denoted by

S(t), f(t) and λ(t), for t ≥ 0 respectively. Without loss of generality, we set T = ∞

when the event of interest does not occur. Let N denote the number of subjects and

ni denote the number of tests (visits) for the ith subject. Then, for the ith subject, we

let Ri and ti denote the 1 × ni vectors of binary test results and corresponding test

times. In particular, Rij is equal to 1 if the jth test result for the ith subject is positive

(indicating occurrence of the event of interest) and 0 otherwise. We note that the

term test result is used to denote both self-reported outcomes and results of laboratory

based diagnostic assays. For ease of notation, we consider the special case where all

tests are of the same type, with fixed sensitivity and specificity. Let τ1...τJ denote the

distinct test (visit) times in the data, where 0 = τ0 < τ1 < ... < τJ < τJ+1 =∞ - thus,

the time axis can be divided into J + 1 disjoint intervals, [τ0, τ1), [τ1, τ2), · · · , [τJ ,∞).

Let S = (1 = S1, S2, · · · , SJ+1)
T , where Sj = Pr(T > τj−1).
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Assuming that an individual’s test results are independent conditional on the true

event time T and that the tests are scheduled at pre-determined times, [3] showed

that the log-likelihood function for a random sample of N subjects can be written as:

l(θ) = log(L(θ)) =
N∑
i=1

log(
J+1∑
j=1

Cijθj) (3.1)

where Cij = p(Ri|τj−1 ≤ Ti < τj, ti) or, in other words, Cij is the conditional prob-

ability of observing the vector of test results Ri given that the event is known to

have occurred in the jth interval. For example, consider a study where all subjects

are tested at two times τ1 and τ2 with interval probabilities θ1, θ2, θ3 corresponding to

intervals [0, τ1), [τ1, τ2), [τ2,∞), respectively. Let the constant sensitivity and speci-

ficity of the diagnostic test (or self report) be denoted by ϕ1 and ϕ0, respectively.

For the ith subject, if we observe a negative test result at τ1 and a positive test result

at τ2, then the coefficients of the C matrix can be expressed as Ci1 = (1 − ϕ1)ϕ1,

Ci2 = ϕ0ϕ1, and Ci3 = ϕ0(1 − ϕ0). The likelihood function for this subject is equal

to Li = (1− ϕ1)ϕ1θ1 + ϕ0ϕ1θ2 + ϕ0(1− ϕ0)θ3.

For the general setting, let C = [Cij] denote the N × (J + 1) matrix of the

coefficients, Cij. For a given dataset, we details with regard to computing the C

matrix are given below.

Computing the C matrix: To calculate each element in the C matrix, we

first calculate the occurrence matrix O, where Ois,j denotes whether or not event has

occurred at sth test time for subject i given his event time is in jth interval. O has same

number of rows as the the number of subjects and J + 1 columns. Ois,j = I(tis ≥ τj),

where I(.) is an indicator function. We obtain the matrix L with same dimensions as

O, where Lis,j is the likelihood of each single test result Ris at each single test time

tis given Ti in jth interval,
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Lis,j = p(Ris|τj−1 ≤ Ti < τj) =



sensitivity, Ris = 1 andOis,j = 1;

1− sensitivity, Ris = 0 andOis,j = 1;

1− specificity, Ris = 1 andOis,j = 0;

specificity, Ris = 0 andOis,j = 0;

Then we have Cij =
∏ni

s=1 Lis,j.

Assuming that the sensitivity and specificity of the diagnostic test are known, the

maximum likelihood estimates of θ can be obtained by numerical optimization of the

log likelihood, subject to the constraints 0 ≤ θ1, · · · , θJ+1 < 1 and
∑J+1

j=1 θj = 1.

We re-parameterize the likelihood function in equation (3.1) in terms of the sur-

vival function, S = (1 = S1, S2, · · · , SJ+1)
T , where Sj = Pr(T > τj−1). Since

Sj =
∑J+1

l=j θl, the vector of interval probabilities can be expressed as θ = TrS, where

Tr is the (J + 1)× (J + 1) transformation matrix.

Tr =



1 −1 0 . . 0 0

0 1 −1 . . 0 0

. . . . . . .

0 0 0 . . 1 −1

0 0 0 . . 0 1


(J+1)×(J+1)

Let the N × (J + 1) matrix D be defined as DN×(J+1) = CN×(J+1)Tr(J+1)×(J+1).

Then, the log-likelihood function (3.1) can be expressed as

l(S) =
N∑
i=1

log(
J+1∑
j=1

DijSj), (3.2)

where S1 = 1 and S2, S3, · · · , SJ+1 are the unknown parameters of interest.

Incorporating covariates: Let X denote the P × 1 vector of explanatory vari-

ables with corresponding P × 1 vector of regression coefficients denoted by β. As-
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suming the proportional hazards model, we obtain λ(t|X = x) = λ0(t)e
x′β, or equiv-

alently, S(t|X = x) = S0(t)
ex
′β

. Let 1 = S1 > S2 > ... > SJ+1 denote the baseline

survival functions (i.e. corresponding to X = 0), evaluated at the left boundaries of

the intervals [0, τ1), [τ1, τ2), · · · , [τJ ,+∞). Then, for subject i, S
(i)
j = (Sj)

ex
′
iβ . Thus,

the log-likehood function for a random sample of N subjects can be expressed as

l(S,β) =
N∑
i=1

log(
J+1∑
j=1

Dij(Sj)
ex
′
iβ). (3.3)

Statistical inference regarding the parameters of interest (β1, · · · , βP , S2, · · · , SJ+1)

can be made by using asymptotic properties of the maximum likelihood estimator.

The estimated covariance matrix of the MLEs can be obtained by inverting the Hes-

sian matrix. Hypothesis tests regarding the unknown parameters can be carried out

using the likelihood ratio or Wald test. [40] and our simulation results (not shown

here) both show that ignoring the error-prone nature of test results leads to bias in

estimation and using likelihood based approaches incorporating measurement error

with known sensitivity and specificity can correct the bias.

Note on conditional independence assumption: We note that the condi-

tional independence assumption with regard to the vector of test results for each

individual may be more plausible for laboratory-based diagnostic tests. Here we

show that under different set of assumptions that are more plausible for self-reported

outcomes, we derive a likelihood that is equivalent to that obtained assuming con-

ditional independence. The probability of an individual’s vector of test results Ri

conditional on the true time of the event of interest can be expressed as:

p(Ri|τj−1 ≤ Ti < τj) =
∏
l

p(Rl|R1, · · · , Rl−1, τj−1 ≤ Ti < τj)

We assume that the sensitivity and specificity are constant for each self-report as

long as there is no prior positive result reported. We further assume that no further
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reports are collected following the first positive report of the event of interest (NTFP

study design discussed in Section 3.2.4). That is,

p(Rl = 1|R1 = 0, · · · , Rl−1 = 0, τj−1 ≤ Ti < τj) =

 sensitivity tl ≥ τj

1− specificity tl ≤ τj−1

Under these assumptions, the form of the likelihood is identical to that obtained by

assuming conditional independence.

3.2.2 Power

Analytical solutions for power calculations can be obtained by deriving expressions

for the variance of β̂ under the alternative hypothesis.

First, for simplicity, we assume that each subject is tested at J times denoted

τ1, τ2...τJ and that there are no missing tests. This assumption is relaxed in Section

3.2.4, where we allow the possibility of missing tests. Assuming that each test result

is binary (positive or negative), there are 2J possible patterns of test results for each

subject. Let rki denote the number of subjects in the kth exposure group having the

ith pattern of test results, where k = 1, 2 and i = 1, 2, · · · , 2J . Let lki represent the

corresponding log-likelihood function. Note that the index i here refers to the index

of possible patterns of test results. Then the log-likelihood function for a random

sample of N subjects can be expressed as

l =
2∑

k=1

2J∑
i=1

rkilki

, where

lki = log(
J+1∑
j=1

DijSkj)

where Sk = (1 = Sk1, · · · , Sk(J+1)) represents the survival function in the kth group

(k = 1, 2), evaluated at visit times τ0, · · · , τJ . We note that the 2J × (J + 1) matrix
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D can be obtained by enumerating the 2J possible patterns of test results and then

computing the corresponding coefficients as described in Section 3.2.1.

Under the proportional hazards model, the log-likelihood function specific to each

exposure group is given by:

l1i = log(
J+1∑
j=1

DijSj)

l2i = log(
J+1∑
j=1

Dij(Sj)
eβ)

, where Sj denotes the survival function at the left boundary of jth interval in group

1.

Analytical expressions for the second derivatives of log-likelihood functions for the

two-treatment group case (Group 1 Vs Group 2) are presented below: Group 1:

∂2l1i
∂S2

j

=
−D2

ij

(
∑J+1

l=1 DilSl)2
;
∂2l1i
∂β2

=
∂2l1i
∂Sj∂β

= 0;
∂2l1i

∂Sj∂Sj′
=

−DijDij′

(
∑J+1

l=1 DilSl)2

Group 2:

∂2l2i
∂S2

j

=
Dije

β(eβ − 1)(Sj)
eβ−2∑J+1

l=1 Dil(Sl)e
β

− (Dij(Sj)
eβ−1eβ)2

(
∑J+1

l=1 Dil(Sl)e
β)2

∂2l2i
∂β2

=

∑J+1
l=1 Dil(Sl)

eβ log(Sl)e
β(1 + log(Sl)e

β)∑J+1
l=1 Dil(Sl)e

β
− (
∑J+1

l=1 Dil(Sl)
eβ log(Sl)e

β)2

(
∑J+1

l=1 Dil(Sl)e
β)2

∂2l2i
∂Sj∂Sj′

=
−DijDij′(SjSj′)

eβ−1e2β

(
∑J+1

l=1 Dil(Sl)e
β)2

∂2l2i
∂Sj∂β

=
Dij(Sj)

eβ−1eβ(1 + log(Sj)e
β)∑J+1

l=1 Dil(Sl)e
β

− (
∑J+1

l=1 Dil(Sl)
eβ log(Sl)e

β)Dij(Sj)
eβ−1eβ

(
∑J+1

l=1 Dil(Sl)e
β)2

where j, j′ = 2, 3, · · · , J + 1 and j 6= j′.
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Let γ1, γ2, γ3, · · · , γJ+1 denote the parameters β, S2, S3, · · · , SJ+1. Then the ele-

ments of the expected Fisher information matrix I(J+1)×(J+1) can be obtained by

Ijj′ = −E(
∂2l

∂γj∂γj′
) = −

2∑
k=1

2J∑
i=1

E(rki)
∂2lki
∂γj∂γj′

(3.4)

Let N1 and N2 refer to the sample sizes in groups 1 and 2, respectively. Then the

expected number of subjects with the ith pattern of test results in the kth exposure

group is

E(rki) = Nk exp(lki) = Nk

J+1∑
l=1

DilSkl

Thus,

Ijj′ = −
2∑

k=1

Nk

2J∑
i=1

(
∂2lki
∂γj∂γj′

J+1∑
l=1

DilSkl) (3.5)

Thus, the expected Fisher information matrix can be expressed as a function of the

sensitivity and the specificity of the diagnostic test, the survival function at each

test time for the reference group, β or hazard ratio (HR) under alternative, and the

sample sizes in each group. The covariance matrix corresponding to the MLEs of

β, S2, · · · , SJ+1 can be obtained by inverting the expected Fisher information matrix,

from which we estimate the variance of β̂. The power can be calculated using the

asymptotic normal property of the test statistic,

power = p

Z > z1−α
2
− β√

V ar(β̂)

+ p

Z < −z1−α
2
− β√

V ar(β̂)



where Z is standard normal random variable, α is type I error, and V ar(β̂) is the

variance of β̂.

3.2.3 Sample size

We derive expressions for sample size by assuming equal sample size allocation

into the two exposure groups, that the the type I error is denoted by α corresponding

48



to a two-sided hypothesis test, and that the desired power is ρ. We set N1 = N2 = 1
2

in (3.5) to obtain the expected Fisher information matrix for one unit. The expression

for total sample size is given by:

N =
(z1−α/2 + zρ)

2V ar1(β̂)

β2

, where the V ar1(β̂) is obtained as the inverse of the expected Fisher information for

one unit.

3.2.4 Incorporating Missing Tests

In this section, we incorporate the possibility of missing test results due to missed

visits in deriving expressions for power and sample size. Let J denote the number

of scheduled test times, let R denote the J × 1 vector of binary test results and

let I denote the J × 1 vector of binary indicators corresponding to the pattern of

missingness. That is, Ij = 0 denotes that the jth test is missing and Ij = 1 denotes

that the jth test result is observed. Note that I is fully observed. Let Robs and Rmis

denote the observed and missing components of the vector R. Let Θ denote the

parameters governing the likelihood function (i.e. Θ = (θ,β)), and let Φ denote the

parameters governing the missing mechanism. We assume the missing mechanism is

missing at random (MAR), which implies that the missing mechanism is independent

of the unobserved results Rmis. Under this assumption, the joint distribution of Robs

and I can be expressed as ([16]),

p(Robs, I|Φ,Θ) = p(I|Robs,Φ)p(Robs|Θ)

In this application, p(Robs|Θ) corresponds to the previously described likelihood func-

tion based on the observed data. φ = p(I|Robs,Φ) denotes the distribution of the

missing mechanism. Since p(I|Robs,Φ) is independent of the parameters Θ govern-

ing the likelihood, this can be ignored when obtaining both the maximum likelihood
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estimates of the parameters of interest (θ,β), as well as the second derivatives of the

likelihood function required for calculating the Fisher information matrix.

In the presence of missing data, the expected number of subjects in kth group with

the ith pattern of test results (rki) is given by

E(rki) = Nkp(I i | Ri,Φ)p(Ri | Θk)

= NkφiLki

= Nkφi

J+1∑
l=1

DilSkl

Thus, when incorporating the possibility of missed visits, the only difference in de-

riving expressions for sample size is due to the presence of the extra term φi, corre-

sponding to the distribution of the missing data mechanism.

Below, we consider some common missing mechanisms.

Missing completely at random (MCAR): In this setting, we assume that

each test can be independently missing with probability pmiss. Let pmiss denote the

probability of a missing test. For the ith pattern of test results

φi =
J∏
j=1

(1− pmiss)Iij(pmiss)1−Iij = (1− pmiss)mi(pmiss)J−mi

, where mi is the number of non-missing tests.

Missing all tests following the first positive (NTFP): In several studies,

no additional diagnostic tests are administered following the first positive test result,

indicating the occurrence of the event of interest. This study design is especially useful

when the specificity of the diagnostic test is perfect. This study design is referred to

as NTFP or ’No Tests after First Positive’. To derive sample sizes for this setting,

we assume that at each test time prior to the first positive test result, each test can
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be missing with probability pmiss. On the other hand, following the first positive test

result, all tests are missing with probability 1.

φi = p(I i|Ri,Φ) = p(Ii1|Ri,Φ)p(Ii2|Ii1,Ri,Φ) · · · p(IiJ |Ii1 · · · Ii,J−1,Ri,Φ)

If the first positive is at test time Ji, then for j > Ji we have p(Iij = 0|Ii1 · · · Ii,j−1,Ri,Φ) =

1, and for j ≤ Ji we have p(Iij|Ii1 · · · Ii,j−1,Ri,Φ) = (1− pmiss)Iij(pmiss)1−Iij .

φi = (1− pmiss)mi(pmiss)Ji−mi

, where mi is the number of non-missing tests. If no positive result is observed, then

Ji = J .

Censoring: We present the derivation of power and sample size calculations in

the presence of censoring or loss to follow-up. We assume non-informative censoring

and that the distribution of censoring times is identical for all subjects - under these

assumptions, the missing mechanism can be shown to be MAR. The presence of non-

informative censoring can be incorporated into power and sample size calculations

through the distribution of missingness, denoted by φi. Let Tc denote the random

variable corresponding to censoring time and let the probability of being censored in

jth interval is p(τj−1 ≤ Tc < τj) = cj. Thus, the distribution of missing pattern when

censoring is present can be expressed as:

φi =
J+1∑

j=Ji+1

cjp(I i|Ri,Φ, τj−1 ≤ Tc < τj)

, where Ji represents the index of the last observed test time for ith pattern of test

results.
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For example, assume that there are 4 test times, τ1, · · · , τ4, dividing the time axis

into 5 intervals. The probability of being censored in the jth interval is denoted by

cj, for j = 1, · · · , 5, where
∑5

j=1 cj = 1. We assume that each test has a random

missing probability of pmiss and that the random missing process is independent on

the censoring process. Consider a pattern of test results that has an associated miss-

ingness pattern I i = (1, 0, 1, 0), where Iij = 1 denotes that a test result is available

(observed) at visit τj and 0 otherwise. In this example, the last non-missing observa-

tion is at τ3, thus Ji = 3. Therefore, in this example, censoring could have occurred in

either the 4th interval ([τ3, τ4)) or the 5th interval ([τ4,+∞)). Given that the censor-

ing time is in the interval [τ3, τ4), there are 1 missing and 2 non-missing tests before

censoring, thus the probability of the missing pattern is p(I i|Ri,Φ, τ3 ≤ Tc < τ4) =

(1 − pmiss)2pmiss. Similarly, given that censoring occurs in the interval [τ4,+∞), we

have p(I i|Ri,Φ, τ4 ≤ Tc < +∞) = (1 − pmiss)
2p2miss. Thus, the probability of the

missing pattern, is expressed as φi = c4(1− pmiss)2pmiss + c5(1− pmiss)2p2miss.

3.2.5 Comparing perfect versus imperfect tests

We present an analysis of the trade-off between perfect and imperfect diagnostic

tests, by considering parameter settings that reflect the characteristics of diabetes

self-reports in the WHI study.

Motivating application: The WHI recruited postmenopausal women (N=161,808)

aged 50-79 at 40 clinical centers across the U.S. from 1993-1998 with ongoing follow-

up. Prevalent diabetes was ascertained by self-report at the baseline visit. Similarly,

incident diabetes was also determined by self-reports obtained at each annual visit. At

each visit, participants were asked whether she has ever received a physician diagnosis

of and/or treatment for diabetes when not pregnant. The accuracy of self-report re-

sults have been shown in Chapter 2 to be 0.61 and 0.995 for sensitivity and specificity

respectively.
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Results: In this analysis, we present the trade-off in power when comparing a

perfect test to tests with varying degrees of imperfect sensitivity and/or specificity.

We assume two treatment groups of interest, equal sample size allocation to the

two groups and that the type I error is fixed at 0.05 for a two-sided hypothesis test.

Further, to specify the survival function at each test time, we assume that the time to

the event of interest (T) within each group follows an exponential distribution, where

the parameter of the exponential distribution with each exposure group is determined

by the survival function at the last test time, SJ+1 (i.e. 1 - cumulative incidence in

group 1).

Figure 3.1 shows the power versus sample size curves corresponding to different

values of (sensitivity, specificity), assuming that the hazard ratio (HR) between the

two groups is equal to 1.25. We assumed that the duration of the study is 8 years, that

tests (visits) are scheduled either annually or every 4 years, and that the cumulative

incidence in the reference group is either 1 − SJ+1 = 0.1 or 1 − SJ+1 = 0.5 - this

corresponds to a mean event time of 75.9 years or 11.5 years, respectively.

As the frequency of testing increases, the curves corresponding to imperfect tests

tend towards the curve of the perfect test, indicating an increase in power with more

frequent tests even in the presence of error-prone diagnostic tests. As expected, when

the cumulative incidence rates are larger, power increases for all values of (sensitiv-

ity, specificity). Moreover, when the cumulative incidence rate is low (SJ+1 = 0.9),

reduction in specificity has a significant impact on power. However, for this setting,

a corresponding reduction in sensitivity does not have a similarly big effect on power.

On the other hand, when cumulative incidence rates are higher (SJ+1 = 0.5), both

sensitivity and specificity have similar impact on power. For example, we consider the

power curves corresponding to diagnostic tests with (sensitivity, specificity) of (1.00,

0.75) versus (0.61, 0.995) - the power curve corresponding to the test with lower sen-

sitivity but higher specificity ( i.e. (0.61, 0.995)) has higher power when cumulative
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incidence rates are low (SJ+1 = 0.9) but has lower power when cumulative incidence

rates are high (SJ+1 = 0.5). In settings of low cumulative incidence rates, reduced

specificity results in a large number of false positive results that have a deleterious

effect on power. However, in settings of larger cumulative incidence rates (≈ 0.5), re-

duced sensitivity would result in significant number of false negative results, whereas

reduced specificity would also result in a significant number of false positive results

- thus, the effects of reduced sensitivity and specificity are more pronounced when

cumulative incidence rates are larger. Diabetes self-reports in the WHI have sensitiv-

ity and specificity of approximately 0.61 and 0.995, respectively - however, since the

cumulative incidence of diabetes over a 8-year follow up period until 2005 is relatively

low within the WHI (≤ 10%), the low sensitivity of self-reports is expected to not

have a drastic impact on statistical power.

3.3 Study Design

In this section, we address the following questions that arise during design of

biomedical investigations, namely (1) What is the minimum sample size to achieve a

desired level of statistical power? (2) What is the optimal number tests per subject?

(3) Should the study incorporate different testing schedules for different subjects in

the study? and (4) Should further tests be administered after the first positive test

result is observed?. In all the examples we assume there are no missing tests unless

otherwise specified, that type I error and power are fixed at 0.05 and 0.90, respectively

for a two-sided hypothesis test.

3.3.1 Sample size

The desired sample size typically depends on the specified statistical power and

minimum clinically meaningful difference between groups (hazard ratio) as well as the

characteristics of the diagnostic test (sensitivity,specificity), cumulative incidence in
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each group, and the testing frequence and associated schedule. Figure 3.2 illustrates

the effects of varying hazard ratio, cumulative incidence and frequency of tests (visits)

on resulting sample size estimates for diagnostic tests with varying levels of sensitivity

and specificity. For each setting, we assume that the desired power is 0.90, and

compare the perfect diagnostic test with sensitivity and specificity of (1.00, 1.00),

to imperfect tests with values of sensitivity and specificity given by (i) (0.75, 1.00);

(ii) (1.00, 0.75); and (iii) (0.61, 0.995), which corresponds the characteristics of self-

reports of incident diabetes in the WHI ([34]).

Figure 3.2(a) presents how sample size varies with hazard ratio, assuming statis-

tical power of 0.90, equally spaced 4 test times (visits) during the study period and

a cumulative incidence of 0.10 (or SJ+1 = 0.9) in the reference group. As expected,

the required sample size decreases with increasing values of hazard ratio. In addition,

we observed that the diagnostic tests with perfect specificity have the lowest required

sample size (all other factors assumed fixed), whereas the diagnostic tests with im-

perfect specificity require the largest sample sizes. In particular, sensitivity has little

effect on sample size estimates for this setting - there is little difference between the

perfect test and (0.75, 1.00) test. These observations are driven by the low cumula-

tive incidence of 0.10 - in this case, decreasing specificity results in a corresponding

large number of false positive test results which in turn results in a correspondingly

larger sample size in order to detect statistically significant differences between the

two groups of comparison.

Figure 3.2(b) shows how sample size depends on the cumulative incidence in the

reference group, where we fix statistical power to equal 0.90, the hazard ratio to equal

1.25 and assume four equally spaced test times (visits) during the study period. As

expected, regardless of the characteristics of the diagnostic tests, sample size decreases

as cumulative incidence is increased. Since low specificity of a diagnostic test results

in a high rate of false positive tests and low sensitivity results in high rate of false
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negative test results, the impact of imperfect sensitivity and specificity on sample

size depends on the true positive proportion, which is determined by the cumulative

incidence. As discussed earlier, when cumulative incidence is low, specificity plays

a dominant role with respect to sample size. When cumulative incidence is higher

resulting in more true positives, the relative importance of false positives as a result

of low specificity is diminished. In contrast, the rate of false negative test results as a

result of low sensitivity has a larger impact on the sample size when there are fewer

true negatives (i.e. high cumulative incidence). This discussion is supported by the

observation that the curves for (1.00, 0.75) and (0.61, 0.995) cross at a cumulative

incidence rate of approximately 0.4 - when cumulative incidence in lower than 0.4,

the required sample size for the test with imperfect specificity [(1.00, 0.75)] is larger

than the test with imperfect sensitivity [(0.61, 0.995)]. However, this trend is reversed

when cumulative incidence is larger than 0.4, in which case the test with imperfect

sensitivity [(0.61, 0.995)] requires a larger sample size than the test with imperfect

specificity [(1.00, 0.75)]. We also observed that for cumulative incidence below 0.65,

the required sample size for the test (0.75, 1.00) is smaller than that for the test

(1.00, 0.75), illustrating that even when the cumulative incidence is high, at early

test times the majority of subjects may still be event-free or true negative and thus,

a test with high specificity will still result in lower sample sizes. In practice, when

cumulative incidence over the study period is modest, it is more important to choose

a test with high specificity than high sensitivity. Since a higher cumulative incidence

can decrease the resulting sample size, one practical option may be to increase the

follow-up time assuming that is feasible and cost-effective to do so.

Figure 3.2(c) presents how the required sample size changes with the number

of tests, assuming equally spaced tests (visits) during the follow up period. The

statistical power was fixed at 0.90, hazard ratio was fixed at 1.25 and the cumulative

incidence in the reference group at 0.10 (or equivalently, SJ+1 = 0.9). For the case of
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perfect test [(1.00, 1.00)], the required sample size does not increase when the number

of tests increases. As more tests are administered, the underlying survival function can

be estimated more precisely but at an increased cost or loss in power resulting from

an increase in the number of parameters estimated. For imperfect tests, the required

sample size decreases with increased number of tests but reaches a limiting value

when the number of tests becomes large. Thus the gain in statistical power reaches a

limiting value, which is determined by how well the test can discriminate the survival

distributions of the two groups being compared. In practice, when diagnostic tests

are imperfect, increasing the frequency of testing can reduce the required sample size

upto a limit.

3.3.2 Optimal number of tests per subject

As seen in Section 3.3.1, for an imperfect diagnostic test, as the number of tests

administered over the duration of the study period increases, the required sample

size decreases upto a limiting value. However, increasing the frequency of testing

can also increase the total cost of a study as a result of the more frequent testing

or visits. Here, we consider the tradeoff between increasing the number of subjects

versus frequency of tests per subject, with regard to the total cost of the study.

Assume C0 is the cost of recruiting a subject into the study including the cost

of a diagnostic test at baseline and C1 is the additional cost for each test (visit) per

subject. Let N denote total sample size and J denote the number tests per subject,

then the total cost C can be expressed as:

C = N(C0 + JC1)

Assume C0 = 1 and let C1 = 1 for perfect test and C1 = 0.1 for self-report. That is, we

assume that collecting a self-reported questionnaire costs 10% of the corresponding

cost of a laboratory based diagnostic test result, which is assumed to be the gold

57



standard . Figure 3.3 presents how total cost C changes with increasing frequency of

tests (visits), by comparing a perfect diagnostic test to self-reports with sensitivity

and specificity of 0.61 and 0.995, respectively. For each type of test (self report Vs

perfect test), we obtain the total cost C by calculating N assuming J equally spaced

tests (visits) during the study period, that the hazard ratio is 1.25, the cumulative

incidence in the reference group is 0.10 (i.e. SJ+1 = 0.9) and the desired power is

0.90. We observe that self-report has much lower total cost than a perfect test and

that the cost is minimized at J = 3 visits.

3.3.3 Varying schedule of testing

Our previous results in Section 3.3.2 indicate that performing too many tests per

subject may not be cost-effective in comparing group effects. However, performing

too few tests per subject would limit our ability to estimate the survival distributions

within each group. One strategy to overcome this limitation is to assign different

test schedules for different subjects in the study. For example, if study follow up is

4 years, one half of the subjects in each group can be tested at years 2,4 and the

other half of the subjects tested at years 1, 3. In this case, the survival function

within each group can be estimated at times 1,2,3,4; however, each subject is tested

only at two time points during follow-up. This more complex design may come

with increased administrative costs and may result in some loss in efficiency (or

corresponding increase in sample size) when compared to the design where all subjects

are tested twice according to the same schedule.

Assume we have 2J possible test time points equally spaced during the study

period, we compare two schedules. In schedule 1, all subjects are tested at times

2, 4, · · · , 2J . In schedule 2, half of the subjects are tested at times 1, 3, · · · , 2J − 1

and another half are tested at times 2, 4, · · · , 2J . In both schedules, each subject

receives J tests. Figure 3.4(a) shows how the ratio of sample sizes of schedule 2 to
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schedule 1 depends on the hazard ratio. Here, we assumed J = 4 or 8 equally spaced

possible test time points during the study period, statistical power is fixed at 0.90

and the cumulative incidence in the reference group is fixed at 0.10 (SJ+1 = 0.9).

The relative increase in sample size for schedule 2 compared to schedule 1 is modest

and remains approximately constant as a function of hazard ratio for this setting.

Figure 3.4(b) shows how the relative sample size depends on the number of equally

spaced test points, 2J . These results were generated by setting power to equal 0.90,

the hazard ratio to equal 1.25 and cumulative incidence in the reference group to equal

0.10 (SJ+1 = 0.9). We observed that with increasing frequency of tests, the loss of

efficiency for schedule 2 relative to schedule 1 becomes progressively smaller. However,

if the frequency of testing is already large enough, using a more complex study design

involving different schedules for different subjects may not provide additional value in

terms of estimation of the survival distribution. Figure 3.4(c) shows how the relative

sample size depends on cumulative incidence, where we assume that there are 8 test

points and hazard ratio is 1.25. We observed that the relative increase in sample size

for schedule 2 compared to schedule 1 is slightly decreased with increased cumulative

incidence.

In summary, using different schedules for different subjects will result in a finer

estimation of the survival function within each group, but this is accompanied with

an increase in sample size in addition to the burden of implementing a more complex

study design. In practice, we recommend that one first determines the optimal number

of tests per subject assuming a fixed cost as illustrated in Section 3.3.2. If the optimal

number of tests is small and better estimation of the underlying survival is of value,

we recommend further investigation into more complex testing paradigms involving

varying testing schedules as illustrated in this section.
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3.3.4 Stop testing after first positive result is observed

When specificity is perfect, the first positive result indicates the occurrence of

event with probability 1. Test results after the first positive are non-informative and

thus unnecessary. However, when specificity is imperfect, tests after first positive can

provide additional information and increase power.

Here, we compare two designs: In the first design (Design 1), each subject is

tested at all pre-specified test times. In the second design, each subject receives all

tests until the first positive is observed and there is no test performed afterwards.

We refer to the second design as ‘NTFP’ (or “No Test following First Positive’’).

Figure 3.5 presents the relative efficiency of NTFP when compared to Design 1 (i.e.

sample size ratio of NTFP to Design 1). We observe that the relative sample sizes

increase rapidly with decreasing specificity, driven by the low cumulative incidence of

0.1 (i.e. SJ+1 = 0.9). This is because when specificity is low for the NTFP design,

early false positive test results prevent further tests, thus leading to a significant loss

in information.

In summary, when specificity is perfect, NTFP design is optimal. When specificity

is less than perfect and cumulative is low, NTFP can lead to substantial loss in power.

In the case when specificity is only slightly less than perfect, sample sizes of MCAR

and NTFP may be comparable - however, using NTFP requires fewer tests per subject

and thus may lead to a more cost-effective study design. A cost analysis similar to

Section 3.3.2 can be conducted to compare these two designs.

3.4 Unknown sensitivity and specificity

In this section, we consider studies that incorporate an imperfect diagnostic test

with unknown sensitivity and specificity. We assume that such studies would also

include a subset of subjects who would be enrolled in a validation study, for whom
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both the imperfect and a perfect diagnostic test are administered at pre-determined

time points throughout the duration of the study.

Notation: Let ϕ1 and ϕ0 denote unknown sensitivity and specificity of the imper-

fect diagnostic test, respectively. Let N denote the number of subjects in the study

and let N1 < N denote the number of subjects enrolled in the validation study. For

the ith subject, we let ti and Ri denote the 1× ni vectors of pre-scheduled test times

and corresponding binary test results from the imperfect diagnostic test, respectively.

For the ith subject in the subgroup of N1 subjects in the validation study, we let V i

denote the 1×ni vector of binary test results from the perfect diagnostic test, admin-

istered at the pre-scheduled test times ti. For simplicity, we present this derivation

assuming that there are no missed visits and no censoring. We let X i denote the

P ×1 vector of explanatory variables measured on the ith subject, with corresponding

P × 1 vector of regression coefficients denoted by β.

Likelihood: Let pv denote likelihood function corresponding to the N1 subjects

who are given both perfect and imperfect tests and let pu denote likelihood function

corresponding to the N−N1 subjects who are scheduled to receive only the imperfect

diagnostic test. Then the log-likelihood function for the N subjects can be expressed

as:

l(S,β, ϕ1, ϕ0) =

N1∑
i=1

log(pv(V i,Ri | S,β, ϕ1, ϕ0,xi))+

N−N1∑
j=1

log(pu(Rj | S,β, ϕ1, ϕ0,xj))

, where S is as defined in equation (3.3). The likelihood function pu has same form as

in equation (3.3), with the exception that the sensitivity and specificity parameters

ϕ1, ϕ0 are unknown. The likelihood function for the validation set can be further

expressed as,

pv(V i,Ri | S,β, ϕ1, ϕ0,xi) = p(V i | S,β,xi)p(Ri | V i, ϕ1, ϕ0)
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p(V i | S,β,xi) represents likelihood function for the perfect test results only, which

is special case of previous derived likelihood function (3.3) when both sensitivity

and specificity are 1. p(Ri | V i, ϕ1, ϕ0) represents the conditional likelihood of the

observed test results from the imperfect diagnostic test conditional on the test results

from the perfect diagnostic test - this is product of terms ϕ1, 1−ϕ1, ϕ0, 1−ϕ0. Thus,

this conditional probability allows the estimation of the sensitivity and specificity of

the imperfect diagnostic test (i.e. ϕ1, ϕ0).

Power and sample size calculations: To derive power and sample size, we

obtain the expected Fisher Information matrix by enumerating all possible patterns

of test results in both the validation study as well as the subjects receiving only

the imperfect diagnostic test. We present the key steps for calculating the expected

Fisher information matrix by considering separately the subgroup of N1 subjects in

the validation study and the subgroup of N−N1 subjects receiving only the imperfect

diagnostic test. The mathematical derivations are straightforward but algebraically

tedious, so we do not show them here. Instead, we present the key steps in the

approach leading to the derivation.

First, we consider the subgroup of N−N1 subjects who receive only the imperfect

diagnostic test. This setting is identical to that discussed in previous sections, with the

exception that the sensitivity and specificity of the imperfect diagnostic tests denoted

by ϕ1, ϕ0 are unknown parameters. We refer to equation (3.5) for the calculation of

the expected Fisher information matrix, where the dimension of the expected Fisher

information matrix increases from (J + 1)× (J + 1) to (J + 3)× (J + 3) due to the

inclusion of additional parameters ϕ1, ϕ0. Note that the coefficient matrices C and D

depend on ϕ1, ϕ0, and thus are not constant in this setting. As shown in Section 3.2.1,

each element in matrix C is a product of powers of ϕ1, 1− ϕ1, ϕ0 and 1− ϕ0. Thus,

we can calculate the first and second derivatives on sensitivity and specificity for each

element in the C matrix and hence the D matrix by transformation. We basically
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need to derive 5 additional derivative matrices for D matrix: two first derivative

matrices and three second derivative matrices on sensitivity and specificity. With the

derivative matrices, we can easily calculate additional elements involving sensitivity

and specificity for the expected Fisher Information matrix.

Second, we consider the subgroup of N1 subjects in the validation study. To

enumerate all possible patterns of test results (V ,R), we first enumerate all possible

patterns of test results from the perfect diagnostic tests (i.e. V ) - in this case,

we can refer to the discussion in previous sections by setting the sensitivity and

specificity to equal 1.0 corresponding to a perfect test. Conditional on each pattern

of perfect test results V , we enumerate all possible patterns of test results from the

imperfect diagnostic test (R). Let V i denote ith possible pattern of test results from

the perfect test and Ril denote lth possible pattern of test results from the imperfect

test conditional on V i. As in equation(3.5), the Fisher information matrix can be

expressed as:

Ijj′ = −
2∑

k=1

Nk

∑
i

∑
l

∂2 log(pvk(V i,Ril))

∂γj∂γj′
pvk(V i,Ril)

where pvk denotes the is likelihood function corresponding to the kth treatment group

(k = 1, 2) in the validation study. The expected Fisher information is obtained as

the sum of the expected Fisher information matrices corresponding to the two sub-

groups, namely those in the validation study and those in receiving only the imperfect

diagnostic test. Missed visits can be incorporated into sample size calculations as de-

scribed previously by incorporating the probability of each pattern of missingness

(φi).

Results: We illustrate the effect of unknown sensitivity and specificity by compar-

ing the following two scenarios: all subjects are tested using an imperfect diagnostic

test with known sensitivity and specificity Versus a study in which all subjects receive

an imperfect diagnostic test with unknown sensitivity and specificity (assuming no
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validation set in this case). In Figure 3.6(a), we present the relative sample size as a

function of the number of tests (visits) scheduled during the study, where the relative

sample size (or sample size ratio) defined as the ratio of the sample size when sensi-

tivity and specificity are unknown to the sample size when sensitivity and specificity

are known. We assume no missing tests, that the true sensitivity and specificity of

the imperfect diagnostic test are 0.61 and 0.995, respectively, the hazard ratio is 1.25,

power is set at 0.90 and type I error is assumed to be 0.05 corresponding to a two-sided

hypothesis test. For both high (SJ+1 = 0.5) and low (SJ+1 = 0.9) rates of cumulative

incidence, we observed that when the number of tests is greater than 2, the relative

sample size is close to 1, indicating that the loss of power due to unknown sensitivity

and specificity is negligible when there are sufficient number of tests scheduled per

subject. A similar result was observed when incorporating the effects of missingness

under the MCAR mechanism. However, when the NTFP study design is assumed in

settings of low cumulative incidence rates, the sample size estimates when sensitivity

and specificity are unknown are dramatically larger when compared to the setting

when sensitivity and specificity is known.

In Figure 3.6(b), we evaluate the effect of incorporating a validation study of

sample size N1, in which subjects receive both a perfect and imperfect diagnostic test

at all scheduled visits. We assume no missed visits and consider total sample sizes for

two study designs - a study in which all subjects are tested at all scheduled test (visit)

times (‘ Design 1’) Versus a study in which testing ceases following the first positive

test result (‘ NTFP”). Fig 3.6(b) shows the total sample size (N) for each setting as

function of the proportion of subjects included in a validation study (N1

N
). In general,

incorporating a validation study can reduce sample size. As shown previously, the

loss in power due to unknown sensitivity and specificity under Design 1 is negligible -

thus, in this case, the reduction of sample size is driven by more precise estimation of

the treatment effect resulting from the inclusion of a validation study. For the NTFP
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design, the use of validation set can greatly reduce the sample size even when the

proportion of subjects included in the validation study is modest.

3.5 Discussion

In this chapter, we have presented methods to estimate sample size and power

applicable to studies in which an error-prone diagnostic procedure is administered

sequentially to ascertain disease status. The methods developed in this chapter are

motivated by self-reported outcomes of diabetes in the WHI. In our development,

we illustrated the trade-off with regard to sample size and power when comparing

perfect and imperfect tests. We observed that in studies with low rates of cumulative

incidence (in the order of 10%), using a diagnostic test with low specificity results in

dramatic increase in required sample size. However, when cumulative incidence rates

are larger, both imperfect sensitivity and specificity result in decreased power for a

given sample size. We have also illustrated the effects of various factors related to

study design that influence the power and samples size, including (1) sensitivity and

specificity of test, (2) hazard ratio, (3) testing frequency, (4) cumulative incidence

during the study period, (5) total cost, (6) varying testing schedules for different

subgroups within the study, and (6) whether or not to stop testing after observing the

first positive test result. Lastly, we extended our methods to incorporate settings in

which a diagnostic test with unknown sensitivity and specificity is used. The methods

illustrated in this chapter can be readily implemented using our freely available R

software package icensmis ([20]), which can be downloaded from the Comprehensive

R Archive Network (CRAN).

Our proposed methods can be generalized in several ways. In some studies, the

diagnostic procedure used at baseline or study entry is subject to imperfect sensitivity

and specificity. For example, in the WHI, diabetes status at baseline was assessed

through self reports. A study by [34] found that the negative predictive value of
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prevalent diabetes at baseline in the WHI was approximately 97% - in other words,

3% of women who self-reported as being diabetes free were in fact diabetic. In this

case, some subjects whose events have already occurred at baseline are included in

the study. This specific setting can be readily incorporated into power and sample

size calculations as shown in Appendix A.

In other studies, several diagnostic tests with varying sensitivity and specificity

may be used, where the sensitivity and specificity values can depend on test times

and/or subject-specific attributes. These more general settings can be accommodated

through appropriate modifications to the C matrix.

Missing visits are common in practical applications, and our methods allow the

specification of the missing probabilities at each test time to estimate the power and

sample size. Our methods can be easily extended to allow the missing probabilities

to vary with treatment group. Finally, our methods can also be extended to k-sample

settings. Lastly, we note that the computation complexity of our proposed method

grows rapidly with the number of test times. In our analysis, we found that analysis

for settings up to 15 test times are computationally tractable using currently available

computing power on a standard desktop.
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Figure 3.1. Comparison of power versus total sample size (N) for different values
of the (sensitivity, specificity) of the diagnostic test, with varying cumulative inci-
dence and testing schedules. The results are based on assuming that there are no
missed visits, HR=1.25 and type I error is fixed at 0.05, corresponding to a two-sided
hypothesis test.
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Figure 3.2. Effects of hazard ratio, cumulative incidence, and number of tests with respect to sample size for different values
of (sensitivity, specificity). The results are based on assuming no missing tests, that type I error and power are fixed at 0.05
and 0.90, respectively, corresponding to a two-sided hypothesis test. (a) Sample size as a function of hazard ratio, assuming
SJ+1 = 0.9 and 4 equally spaced tests during the study period. (b) Sample size as a function of cumulative incidence of baseline
group (1 - SJ+1), assuming HR = 1.25 and 4 equally spaced tests during the study period. (c) Sample size as a function of the
number of equally spaced tests during study period, assuming that HR=1.25 and SJ+1 = 0.9
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Figure 3.3. Total cost as function of the number of tests. The results are based
on assuming no missing tests, that type I error and power are fixed at 0.05 and 0.9,
respectively, corresponding to a two-sided hypothesis test. (a) Assume the recruit-
ment and administration cost for each subject is 1. Assume that the cost of a single
perfect test is 1.00, with (sensitivity, specificity) given by (1.00, 1.00), and the cost for
a single self-report is 0.1, with corresponding (sensitivity, specificity) equal to (0.61,
0.995). The results are based on assuming that HR is fixed at 1.25 and SJ+1 = 0.9.
(b) The plot corresponding to self-reports shown in (a) is displayed using a narrower
Y-axis range.
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Figure 3.4. Relative efficiency of different testing schedules. Sample size ratio is defined as the ratio of sample size corresponding
to schedule 2 relative to the sample size for schedule 1. The results are based on assuming no missing tests and that type I
error and power are fixed at 0.05 and 0.90, respectively, corresponding to a two-sided hypothesis test. (a) Sample size ratio as a
function of hazard ratio, assuming there are 8 equally spaced tests and SJ+1 = 0.9. (b) Sample size ratio as function of number
of equally spaced tests, assuming HR=1.25 and SJ+1 = 0.9. (c) Sample size ratio as function of cumulative incidence for the
study duration, assuming that there are 8 equally spaced tests and HR=1.25.
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Figure 3.5. Relative efficiency of NTFP when compared to the Design 1. Relative
efficiency or sample size ratio is calculated as the ratio of sample size for NTFP
relative to Design 1 and is shown as a function of specificity of imperfect diagnostic
test. The results are based on assuming no missing tests, that type I error and power
are fixed at 0.05 and 0.90, respectively, corresponding to a two-sided hypothesis test,
HR=1.25 and that there are 8 equally spaced test times over the study period.
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Figure 3.6. Sample sizes when sensitivity and specificity are unknown.
Panel (a): Sample size ratio (or relative efficiency) as a function of number of tests
(visits). Sample size ratio (Y-axis) is defined as the ratio of sample size for studies
including diagnostic tests with unknown sensitivity and specificity relative to sam-
ple size for studies including diagnostic tests with known sensitivity and specificity.
Results are based on the following assumptions: type I error and power are fixed at
0.90 and 0.05, respectively, corresponding to a two-sided hypothesis test, sensitivity
is 0.61, specificity is 0.995, HR=1.25, and that there are no missing tests.
Panel (b): Sample size as function of proportion of subjects (N1/N) included in a
validation study. Results are based on the following assumptions: type I error and
power are fixed at 0.90 and 0.05, respectively, corresponding to a two-sided hypothesis
test, sensitivity is 0.61, specificity is 0.995, HR=1.25, SJ+1 = 0.9, 4 tests scheduled
during the study period and no missed visits.
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CHAPTER 4

VARIABLE SELECTION IN HIGH DIMENSIONAL
DATASETS IN THE PRESENCE OF ERROR-PRONE

DIAGNOSTIC TESTS

4.1 Introduction

In previous chapters, we have addressed issues of covariate effect estimation and

study design in settings of error-prone time to event outcomes. In this chapter, we

consider settings characterized by high dimensional data. The motivating application

in this chapter is biomarker discovery for diabetes using data from the WHI clini-

cal and observational study SHARe, which includes extensive genotypic (> 900,000

SNPs) and phenotypic data on 12,008 African American and Hispanic women. We

propose and apply two approaches for variable selection in high dimensional datasets,

while accounting for error-prone, self-reported outcomes.

While a rich literature exists to handle estimation and hypothesis testing in the

presence of error-prone survival outcomes, none of the previous studies have con-

sidered the setting of high-dimensional data, in which the number of features (p)

far exceeds the number of subjects (n). In this setting, likelihood based estimation

approaches are intractable. The lasso ([51] )and Bayesian variable selection (BVS)

([41], [17]) approaches are two methods that are appropriate for variable selection in

high-dimensional datasets.

The lasso algorithm proceeds by adding the absolute value of the coefficients as

a penalty term to the objective function. This results in a sparse solution with some

coefficients set to zero, thus performing automatic variable selection. The idea of

lasso is general and has been applied to various statistical models including linear
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and generalized linear models, and the Cox proportional hazards model ([51, 52]). In

a recent study, [55] demonstrated the use of the lasso to select relevant biomarkers

from a large number of SNPs in a case-control, gene-disease mapping study. The

lasso problem can be solved using very computationally efficient algorithms such as

the pathwise coordinate descent algorithm ([14, 15, 46]), which is implemented in the

R package glmnet.

The BVS approach proceeds by assigning the prior distribution of the regression

coefficients (β) to be a mixture distribution - [41] proposed a mixture of a point

mass at 0 and a uniform distribution, whereas [17] propose a mixture of two nor-

mal distributions centered at 0 but with distinct variances. The estimated posterior

distribution of the probability of being included in the model can be used for vari-

able selection. Several papers have applied this approach for identifying important

features in high-dimensional microarray data for various settings such as binary out-

comes ([30]), multi-category responses ([45]), and censored outcomes ([44]). In a

recent study, [22] demonstrated the use of the BVS method in large-scale settings

such as genome-wide association studies (GWAS). In addition to variable selection,

the BVS approach has also been shown to be able to simultaneously cluster variables

to identify group structures ([49, 28, 11]). One advantage of the BVS approach when

compared to other variable selection methods is that it can be naturally extended to

incorporate external information such as biological pathway membership ([32, 48]).

In this chapter, we extend the lasso and BVS algorithms to accommodate error-

prone, self-reported outcomes. Through simulation studies, we compare our proposed

algorithms to naive approaches that ignore the error in self-reported outcomes. We

apply our proposed approaches to GWAS data on 12,008 African American and His-

panic women enrolled in the WHI to discover biomarkers of self-reported incident

diabetes. This chapter is organized as follows: In Section 4.2, we present notation

and the form of the likelihood function that accommodates error in self-reported out-
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comes. We incorporate the lasso and BVS algorithms into this loglikelihood, to handle

high-dimensional datasets. In Section 4.3, we perform simulation studies to compare

the variable selection performance of different approaches. In Section 4.4, we apply

our proposed methods to the GWAS data from the WHI. Lastly, in Section 4.5 we

discuss the findings of this study and highlight future directions.

4.2 Method

In this section, we introduce notation and present the form of the likelihood func-

tion to accommodate error-prone, self-reported outcomes. We propose two variable

selection methods by adapting the Lasso and the Bayesian variable selection strate-

gies.

4.2.1 Notation, likelihood function

Consider a dataset of N subjects each with P observed features. Let xip denote

the pth covariate for subject i. We assume that the visits for each subject are pre-

scheduled, and at each visit the diagnostic test result for occurrence of event is either

positive or negative. We treat self-report as a type of diagnostic test. Let T refer to

the random variable denoting the unobserved time to event for an individual, with

associated survival, density and hazard functions denoted by S(t), f(t) and λ(t), for

t ≥ 0 respectively. Without loss of generality, we set T = ∞ when the event of

interest does not occur. Let τ1, · · · , τJ denote the distinct, ordered visit times in the

dataset, where 0 = τ0 < τ1 < ... < τJ < τJ+1 =∞ - thus, the time axis can be divided

into J + 1 disjoint intervals, [τ0, τ1), [τ1, τ2), · · · , [τJ ,∞). Let Sj denote the survival

function at time τj−1 for the reference group (i.e. X = 0), where j = 1, 2, · · · , J + 1.

Therefore S1 = 1 and 1−SJ+1 refers to the cumulative incidence in the reference group

at the end of follow up. We assume the sensitivity and specificity of the diagnostic

test are known and constant and are denoted by ϕ1 and ϕ0. Assuming a proportional
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hazards model, λ(t|X = x) = λ0(t)e
x′β, it can be shown that the log-likelihood

function can be written as:

l (S,β) =
N∑
i=1

log

(
J+1∑
j=1

Dij (Sj)
exp(

∑P
p=1 βpxip)

)
. (4.1)

where β are regression coefficients of the covariates. The elements of the D matrix

are functions of the observed data including the visit times and corresponding self-

reported results, as well as the constants ϕ0, ϕ1 denoting the specificity and sensitivity

of the diagnostic test (self-report), respectively. We define sensitivity and specificity as

ϕ1 = p(Positive test result | Disease) and ϕ0 = p(Negative test result | Disease free).

β1, · · · , βP , S2, · · · , SJ+1 denote the unknown parameters of interest and can be es-

timated by numerical maximization of the log-likelihood function, subject to the

constraints that 1 > S2 > S3 > · · · > SJ+1 > 0.

4.2.2 Lasso

In this section, we adapt the Lasso to handle error-prone self-reported outcomes.

For computational considerations, we reparameterize the log-likelihood function by

setting αj = log(− log(Sj+1)). The objective function including penalty term can be

expressed as:

f(α,β) = 2
n
l(S,β)− λ

∑P
p=1 |βp|

= 2
n

∑n
i=1 log

(
Di1 +

∑J
j=1Di,j+1 exp

(
− exp

(
αj +

∑P
p=1Xipβp

)))
−λ
∑P

p=1 |βp|,
(4.2)

where λ is the tuning parameter controlling the magnitude of shrinkage. When λ is

large, all coefficients β approach 0.

The Lasso objective function can be optimized using the pathwise coordinate de-

scent algorithm. Our algorithm is based on the procedure developed by [46] for the
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penalized Cox proportional hazards model. First, assume that α is fixed and use a

Taylor series expansion to approximate the log-likelihood function around some con-

stant β̃. β̃ can be set to equal a set of starting values or the values of β from a previous

iteration. Then the log-likelihood function in Equation (4.1) can be approximated as:

l(β) = l(β | α = α̃) =
1

2
(z (η̃)−Xβ)T l

′′
(η̃) (z (η̃)−Xβ) + C

where C is independent of β, η̃ = Xβ̃, l
′′
(.) is the Hessian of the log-likelihood func-

tion with respect to η = Xβ, and z(η̃) = η̃− l′′(η̃)−1l
′
(η̃). , For ease of computation,

l
′′
(η̃) can be replaced with a diagonal matrix - this follows since the off diagonal

elements of the Hessian matrix can be shown to be of much smaller magnitude when

compared to the diagonal elements ([46]). Let w(η̃)i = −l′′(η̃)ii. Then with fixed

α, maximizing the objective function (4.2) is equivalent to minimizing the following

function,

M(β) =
1

n

n∑
i=1

w (η̃)i
(
z (η̃)i − x

T
i β
)2

+ λ
P∑
p=1

|βp|, (4.3)

which can be solved using pathwise coordinate descent algorithm.

The Lasso algorithm using pathwise coordinate descent:

1. Standardize the design matrix X.

2. Set initial values of the parameters α,β to equal α̃, β̃, respectively.

3. Optimize the log-likelihood function l(α,β) with respect to α while fixing β =

β̃. The optimization can be achieved using the Newton Raphson algorithm.

Update α̃ to equal the optimized value of α.

4. Compute the values of η̃ = Xβ̃, z(η̃) and w(η̃) by fixing α = α̃ as follows:

yij = exp (− exp (α̃j + η̃i))
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li = Di1 +
J∑
j=1

Di,j+1yij

l1i =

∑J
j=1Di,j+1yij log(yij)

li

l2i =

∑J
j=1Di,j+1yij log(yij)(1 + log(yij))

li
− l12

i

z(η̃) and w(η̃) are both N × 1 vectors, with elements obtained as:

w(η̃)i = −l2i

z(η̃)i = η̃i −
l1i
l2i

5. Iterate and update each element of β while fixing other elements. The kth

element of β (i.e. βk) is updated as:

β̂k =
S
(

1
n

∑n
i=1w (η̃)i xi,k

(
z (η̃)i −

∑
j 6=k xijβj

)
, λ
)

1
n

∑n
i=1w (η̃)i x

2
ik

where S(x, λ) = sign(x)(|x| − λ)+.

6. Repeat step (5) until convergence of the objective function in equation (4.3).

7. Set β̃ = β̂.

8. Repeat steps (3)-(7) until convergence of the objective function in equation

(4.2).

An important aspect with implementing the Lasso algorithm is the selection of the

shrinkage parameter λ. In linear regression models, the optimal value for λ is usually

chosen using a cross validation approach, in which the optimal value of λ is that value

which minimizes the cross-validated sum of squared error. This approach can also be

applied to our setting where the cross-validated sum of squared error is replaced by
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the cross-validated log-likelihood as the criterion for selection of the optimal value of

λ.

k-fold cross validation approach for selecting the optimal value of λ:

1. Define a grid of values for λ: λ1, · · · , λm, from which the optimal value of λ will

be chosen.

2. Split data equally into k groups.

3. Compute the cross validated log-likelihood lij as follows: Set λ = λi and fit

the Lasso model to estimate the parameters β on the subset of the data by

excluding the jth partition. Use the fitted parameters to compute the log-

likelihood function on the jth partition of the dataset using the fitted values of

the parameters β.

4. Compute the cross validated log-likelihood for λi by summing over the j parti-

tions, CVi =
∑

j lij.

5. Select the value of λ that maximizes the cross validated log-likelihood function.

When the value of λ is large, all Lasso solutions for βs approach 0. To determine

the candidate list of λ values, we first obtain the maximum value of λ that gives at

least one non-zero solution. As described in [46], we first set β = 0 and obtain α̂ as the

value that optimizes the log-likelihood function. We obtain values of w(0) and z(0).

The maximum value of λ can then be obtained as λmax = maxj
1
n

∑n
i=1wi(0)zi(0).

4.2.3 Bayesian Variable Selection

In this section, we adapt the Bayesian variable selection approach to incorporate

error-prone self reported outcomes. We introduce a latent vector γ = (γi, 1 ≤ i ≤ P ),

where each γi is an indicator variable denoting whether the ith covariate is included

or not in the model. The Bayesian variable selection analysis proceeds via MCMC
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methods to estimate the posterior distribution γ. With this latent variable formula-

tion for variable selection, the log likelihood function in Equation (4.1) is a function

of the parameters S2, · · · , SJ+1,β,γ and is denoted l(S,β,γ). We assume the fol-

lowing hierarchical structure of the prior distributions corresponding to the unknown

parameters in the model:

βp | γp ∼ γpN(0, b2) + (1− γp)δ0

γp | ω ∼ Bernoulli(ω)

ω ∼ Beta(w1, w2)

where δ0 is delta function corresponding to a point mass at 0 and b, w1, w2 are treated

as known hyper-parameters.

By treating the survival parameters S as nuisance parameters, we propose the

following Metropolis-Hasting algorithm:

1. Initialization: For fixed values of w1, w2, set ω(0) to equal a randomly generated

value from Beta(w1, w2) distribution. Set γ(0) = 0 and β(0) = 0. Optimize the

log-likelihood function in Equation (4.1) with respect to S by fixing β = β(0),

and then set S(0) to equal the optimized value for S.

2. At iteration t, we let the indices t − 1 and ∗ denote the current and proposed

values of the parameters, respectively.

3. Update main effects: Select a covariate p ∈ (1 · · ·P ) at random and let the

proposed value γ∗p = 1−γt−1p . If γ∗p = 0, the corresponding regression coefficient

β∗p is set to 0. If γ∗p = 1, the proposed regression coefficient β∗p is sampled from

N(0, b2) distribution. Compute:

∆ = l
(
S(t−1),β∗

)
− l
(
S(t−1),β(t−1)

)
+
(
2γ∗p − 1

)
log

(
ω(t−1)

1− ω(t−1)

)
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Generate a uniformly distributed random sample U. If log(U) ≤ ∆ then accept

the proposed update for βp and γp.

4. Update regression coefficients: For each included main effect, update the coef-

ficient with a user defined probability pmain, for example 30%. If a main effect

βp is chosen for update, let the proposed value, β∗p , be a random sample from

the distribution N(β
(t−1)
p , b2). Compute:

∆ = l
(
S(t−1),β∗

)
− l
(
S(t−1),β(t−1)

)
+

(
β
(t−1)
p

)2
−
(
β∗p
)2

2b2

Generate a uniformly distributed random sample U. If log(U) ≤ ∆ then accept

the proposed update for βp.

5. Update S: Optimize the log-likelihood function with respect to S by fixing

β = β(t). Set S(t) to equal the optimized value of S.

6. Update ω: Using Gibbs sampling, update ω by generating a sample from Beta(w1+

Kγ, w2 + P −Kγ), where Kγ is the number of main effects selected.

After the burn-in period, the features that have highest inclusion probabilities based

on the posterior distribution of γp, are selected.

4.3 Simulation studies

In this section, we report results from simulation studies to evaluate the perfor-

mance of the proposed adaptions of the Lasso and Bayesian variable selection algo-

rithms in the presence of error-prone self-reported outcomes, under various parameter

settings. To closely mimic real data settings, the design matrix for the simulation

study was selected as a randomly selected subset of the existing GWAS data from the

WHI Clinical Trial and Observational Study SHARe that includes extensive geno-

typic (> 900K SNPs) and phenotypic data 12,008 African American and Hispanic
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women. We randomly selected 1000 SNPs on 300 subjects from the existing WHI

dataset. All missing genotypes were imputed to be genotype ”AA”. Corresponding

to each SNP, we created binary variables by coding genotype ”AA” as 0 (reference),

and genotype ”Aa” and ”aa” as 1.

To simulate results from error-prone self-reports (diagnostic tests) for each sub-

ject, we assumed that there are 8 pre-scheduled test times with no missed visits. The

distribution of event times for the reference group (i.e. X = 0) was assumed to

be exponential with baseline hazard rate denoted by λ0. λ0 was determined by the

corresponding cumulative incidence rate (CIR) during the study, which was varied

between 5%, 10%, 25% and 50%. Event times for each subject in the study were simu-

lated from an exponential distribution, where the hazard function (λ) was determined

through the proportional hazards model (λ = λ0e
βX). A total of 5 SNPs were ran-

domly sampled from the 1000 SNPs as true biomarkers, each with a coefficient β = 0.7

in the proportional hazards model, corresponding to a hazard ratio of eβ = 2. The

regression coefficients for the remaining 995 SNPs in the proportional hazards model

were set to 0. To simulate the results from the error-prone self-reports or diagnostic

tests for each subject, we first simulated the true event time from an exponential dis-

tribution with hazard rate λ = λ0e
β1SNP1+···+β5SNP5 , where SNP1, · · · , SNP5 are the

selected 5 SNPs with regression coefficients β = 0.7. The true disease status at each

visit was obtained by comparing the true event time and visit time. Lastly, for each

subject, the results from the error-prone diagnostic test result at each visit can be

simulated from an appropriate Bernoulli distribution determined by the true disease

status at that time and the sensitivity (ϕ1), specificity (ϕ0) parameters governing the

behavior of the diagnostic test (self-report). The values of (sensitivity, specificity)

were varied between [(1, 1), (0.9, 1), (1, 0.9), (0.55, 0.99), (0.75, 0.98)]. The sensitivity

and specificity values (0.55, 0.99) correspond to the properties of diabetes self-repo

rts in the WHI ([34]).
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We consider two study design settings: (1) Diagnostic (self-reported) test results

are collected at all predetermined times/visits (denoted ‘ No missed visits” in Table

4.1); (2) Results following the first positive test are discarded or considered to be non-

informative (denoted “NTFP” in Table 4.1). The latter scenario commonly applies

to self-reported outcomes.

For each parameter setting, we compared the variable selection performance of the

following three strategies: (1) Lasso algorithm implemented for the Cox proportional

hazards model (glmnet R package); (2) proposed Lasso algorithm; and (3) proposed

Bayesian variable selection algorithm.

(1) Lasso for the Cox proportional hazards model: To apply the algorithm imple-

mented in the glmnet R package, the event time was defined as the time of the first

positive test result (observed event) or the time of last observation (censored obser-

vation). We note that the two study design settings (“No missed visits”, “NTFP”)

will yield identical results under the Cox proportional hazards Lasso model. 10-fold

cross validation was used to select the optimal tuning parameter λ. Features were

ranked based on the absolute values of the estimated regression coefficients β.

(2) Proposed Lasso algorithm: 10-fold cross validation was used to obtain the op-

timal tuning parameter, λ.

(3) Proposed Bayesian variable selection algorithm: The MCMC algorithm was

run up to 100,000 iterations and the first 20,000 iterations were discarded as the

burn-in period. We assumed the following parameter values corresponding to the

hyper-parameters determining the prior distributions: b = 0.7, w1 = 5, w2 = 1000.

The 1000 SNPs were ranked based on posterior inclusion probabilities determined by

the posterior distribution of γ.

For each simulated dataset, the performance of each of the three approaches with

regard to identifying the true five biomarkers was quantified through the area under

curve (AUC) metric. For each simulated dataset and analysis approach, the ROC
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curve was generated by varying the threshold with regard to the magnitude of the

estimated regression coefficients in (methods (1) and (2)) or the magnitude of the

posterior inclusion probabilities (method (3)). The AUC for each parameter setting

and approach was obtained as the average of AUCs obtained over 500 simulated

datasets. The confidence interval for the AUC corresponding to each approach was

obtained by ±1.96σ, where σ corresponds to the estimated standard error of the AUC

estimates across the 500 simulations.

Table 4.1 presents the simulation results. When the study design is NTFP, the

AUC of proposed Lasso and Bayesian variable selection algorithms are not signifi-

cantly different from that of Cox Lasso which ignores the error in self-reported out-

comes. On the other hand, when there are no missed visits, the AUC estimates

corresponding to the proposed Lasso and Bayesian variable selection algorithms are

significantly larger than that of Cox Lasso, especially in settings where the specificity

is less than perfect and the cumulative incidence is low. In all settings considered, the

results from the proposed Lasso were comparable to that from the proposed Bayesian

variable selection algorithm.

For all parameter settings, the AUC increases with increased incidence rate -

this result is expected as a higher incidence rate results in higher statistical power

to distinguish true biomarkers from non-markers, regardless of the approach. In

the parameter settings considered, the AUC was more sensitive to the change in

specificity. This effect is especially dramatic when cumulative incidence rate is low

because the false positive events dominate all observed positive events. On the other

hand, for all approaches, the AUC was not affected by changes in sensitivity - the

AUCs when ϕ1 = 1.0, ϕ0 = 1.0 was always close to that when ϕ1 = 0.9, ϕ0 = 1.0.

As expected, for both the proposed Lasso and Bayesian variable selection algorithms,

the AUC when there are no missed visits was generally higher than that under the

NTFP study design - this was pronounced when specificity was less than perfect and
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cumulative incidence was low. When specificity is perfect, there was no difference

in AUC when comparing the study design NTFP to the setting of no missed visits

- this is expected as when specificity is perfect, the first positive event indicates the

occurrence of event with probabilty 1 and hence further diagnostic tests are non-

informative.

4.4 Application: Genetic biomarkers of incident diabetes mel-

litus in the Women’s Health Initiative

Background: The proposed methods were applied to data from the WHI Clini-

cal Trial and Observational Study SHARe, to identify biomarkers of incident diabetes

mellitus. The dataset includes extensive genotypic (909, 622 SNPs) and phenotypic

information on 12,008 African American and Hispanic women. The biomarkers iden-

tified in this analysis were compared to the set of 40 genes (and associated SNPs) in

the review by [35] that have been previously identified in candidate gene studies and

genome-wide investigations of Type 2 Diabetes. The WHI SHARe dataset provides a

unique opportunity for the discovery of genetic biomarkers of diabetes in a population

of African American and Hispanic women, who are at higher risk for developing dia-

betes when compared to Caucasians (http://www.cdc.gov/diabetes/consumer/groups.htm).

Diabetes self-reports: Prevalent diabetes at baseline and incident diabetes

were assessed through self reported questionnaires in the WHI. At baseline and at

each annual visit, participants were asked whether they had ever received a physician

diagnosis of and/or treatment for diabetes when not pregnant since the time of the

last self-report/visit. Using data from a WHI substudy ([34]), estimates of sensitivity,

specificity, and baseline negative predictive value of self reported diabetes outcomes

were obtained by comparing self reported outcomes to fasting glucose levels and

medication data. A woman was considered to be truly diabetic if she had either

taken anti-diabetic medication and/or had a fasting glucose level ≥ 126mg/dL. By
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using a subset of 5485 women, with information at baseline on diabetes self reports,

fasting glucose levels and medication inventory, we estimated that self reports have a

sensitivity of 0.61, the specificity of 0.995, and a negative predictive value of 0.96 at

baseline. These estimated parameter values are used in our analysis.

Methods: Subjects who reported diabetes at baseline were excluded from the

analysis, resulting in a dataset of 8,293 women. The results presented here are based

on follow up until 2010. The average follow up from baseline was 11 years, with a

maximum follow up of 16 years. During the period of follow up, 10.1% of the women

self-reported a new diagnosis of diabetes.

To reduce the dimension of the dataset of 909,622 SNPs, the following two step

procedure was followed: First, SNPs that satisfied one or more of the following three

criteria were excluded from the analysis: (i) more than 1% missing values; or (ii) less

than 5% minor allele frequency; or (iii) a Hardy-Weinberg equilibrium test p-value

less than 0.05. Second, the univariate association of each SNP with incident self-

reported diabetes was estimated using a two sided likelihood ratio test from fitting

the model described in (4.1). SNPs with a univariate p value greater than 0.4 were

excluded from the analysis. This two-step filtering procedure resulted in a dataset

of 133,781 SNPs available for analysis. All missing genotypes were imputed to be

genotype ”AA” (wildtype). SNPs were incorporated into the analysis by creating

binary variables where genotype ”AA” was coded as 0 (reference), and genotypes

”Aa” or ”aa” as 1.

The dataset of 133,781 SNPs on 8,293 subjects was analyzed using three different

methods:

(1) Univariate Cox proportional hazards (PH) model was fit to each SNP to eval-

uate the association with incident self-reported diabetes. Here, the time to event

variable was calculated as the interval between enrollment date and the earliest of

the following: (i) date of annual medical history update when new diabetes is self-
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reported (positive outcome); (ii) date of last annual medical update during which

diabetes status can be ascertained (censorship); or (iii) date of death (censorship).

SNPs were ranked based on the maximized value of the log-likelihood.

(2) Proposed Lasso algorithm: We found for this particular dataset, the algorithm

does not converge when the value of λ is small. Thus, we use the smallest possible

value of λ based on computational feasibility. SNPs were ranked based on the absolute

value of the estimated regression coefficients β.

(3) Proposed Bayesian variable selection algorithm: The values of the hyper-parameters

governing the prior distributions were assumed to be b = 0.5, w1 = 5, w2 = 50000.

The MCMC algorithm was run for 5,000,000 iterations and the first 500,000 iterations

were discarded as the burn-in period.

Results: The final model from the proposed Lasso algorithm resulted in 36

SNPs with nonzero coefficients (Table 4.2). The Bayesian variable selection algo-

rithm resulted in 174 SNPs with non-zero posterior inclusion probability (Table 4.3).

To compare the results from each of the three approaches, we present the top 10

SNPs identified by each method in Table 4.4. In Tables 4.2 - 4.4, each SNP is

annotated with associated genes (intron, left and right) using a publicly available

database (http://www.scandb.org). A total of 24 SNPs were identified in the top

10 list by at least one analysis approach. Two SNPs (rs2575507, rs17028352) were

ranked in the top 10 by all three approaches, suggesting that these two SNPs are

very likely associated with risk of diabetes. One of the genes associated with SNP

rs2575507 (ATP8A1) has previously been implicated with risk of type 2 diabetes

(http://www.disgenet.org). However, none of these identified genes is among the list

of the genes associated with type 2 diabetes that is presented in [35]

We observed that the results from the Lasso and the univariate Cox PH model

aligned well with each other and resulted in a similar ranking. However, the ranks
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from the Bayesian variable selection approach were generally different from other

methods.

4.5 Discussion

The use of of error-prone diagnostic tests or self-report is common in large scale

epidemiology studies. While likelihood based statistical approaches exist to evaluate

the association of a small, targeted set of covariates with an error-prone outcome,

these methods are not appropriate for the analysis of high dimensional datasets. In

this chapter, we extend the likelihood based approach for error-prone self-reported

outcomes to handle high dimensional datasets by adapting the Lasso and the Bayesian

variable selection algorithms for this setting. We proposed a pathwise coordinate

descent algorithm to solve the extension of the Lasso approach for error-prone out-

comes. For the extension of the Bayesian variable selection method, we proposed a

Metropolis-Hasting algorithm to stochastically search for important variables associ-

ated with the error-prone outcome.

We performed simulation studies to compare variable selection performance of the

proposed approaches under various parameter settings corresponding to the sensitiv-

ity and specificity of the error-prone diagnostic tests. Our simulation results suggest

that the Bayesian variable selection algorithm generally has better variable selection

performance when compared to the Lasso based approaches. While the naive Cox

Lasso method ignores measurement error, its variable selection performance is not sig-

nificantly different from our proposed Lasso method when the study design specifies

that no tests are administered following the first positive result (NTFP). However, in

the absence of missed visits, our proposed Lasso and Bayesian variable selection al-

gorithms outperform the naive Cox Lasso, in settings where the cumulative incidence

rates are modest and specificity is imperfect.
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The proposed methods were applied GWAS data from the WHI Clinical Trial and

Observational Study SHARe to identify biomarkers of incident self-reported diabetes

mellitus. Two SNPs rs2575507 and rs17028352 were consistently ranked among the

top 10 SNPs by both proposed approaches, suggesting a true association with incident

diabetes.

In the methods developed in this chapter, we assumed that the variables are inde-

pendent and that their effects are additive. In real world settings, this assumption is

likely to be an over simplification. For example, it is known that there exists complex

network relationships between different SNPs based on genetic inter-relationships and

membership in co-acting biological pathways. In this context, the proposed Bayesian

variable selection approach can be extended to incorporate external biological infor-

mation into the prior distributions for γ.
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Table 4.1. Comparing variable selection performance of different methods as quan-
tified by the area under curve (AUC), for varying sensitivity ϕ1, ϕ0 and cumulative
incidence rate (CIR). NMISS denotes the setting in which no visits are missed. NTFP
denotes the study design in which no further testing is carried out following the first
positive test result.

Proposed Lasso Cox Lasso Proposed BVS
ϕ1 ϕ0 CIR NMISS NTFP Lasso NMISS NTFP

1.00 1.00 0.05 0.78(±.014) 0.77(±.014) 0.76(±.014) 0.81(±.011) 0.83(±.010)
0.90 1.00 0.05 0.76(±.014) 0.77(±.014) 0.75(±.014) 0.81(±.011) 0.82(±.010)
1.00 0.90 0.05 0.73(±.014) 0.51(±.009) 0.52(±.004) 0.79(±.011) 0.54(±.010)
0.55 0.99 0.05 0.72(±.015) 0.66(±.016) 0.63(±.012) 0.78(±.011) 0.73(±.012)
0.75 0.98 0.05 0.74(±.015) 0.63(±.018) 0.61(±.011) 0.79(±.011) 0.70(±.012)
1.00 1.00 0.10 0.91(±.011) 0.90(±.011) 0.90(±.011) 0.91(±.009) 0.91(±.008)
0.90 1.00 0.10 0.91(±.010) 0.92(±.009) 0.89(±.011) 0.91(±.008) 0.92(±.008)
1.00 0.90 0.10 0.90(±.010) 0.55(±.016) 0.57(±.009) 0.90(±.009) 0.65(±.012)
0.55 0.99 0.10 0.85(±.015) 0.82(±.013) 0.80(±.014) 0.88(±.009) 0.85(±.010)
0.75 0.98 0.10 0.89(±.011) 0.78(±.015) 0.77(±.014) 0.89(±.009) 0.84(±.010)
1.00 1.00 0.25 0.99(±.004) 0.98(±.004) 0.98(±.005) 0.98(±.004) 0.98(±.004)
0.90 1.00 0.25 0.98(±.004) 0.98(±.005) 0.98(±.005) 0.98(±.004) 0.98(±.004)
1.00 0.90 0.25 0.98(±.004) 0.77(±.020) 0.77(±.014) 0.98(±.004) 0.84(±.010)
0.55 0.99 0.25 0.95(±.007) 0.95(±.007) 0.94(±.008) 0.96(±.006) 0.95(±.007)
0.75 0.98 0.25 0.97(±.005) 0.95(±.007) 0.93(±.009) 0.97(±.005) 0.95(±.006)
1.00 1.00 0.50 0.99(±.003) 0.99(±.003) 0.99(±.003) 0.99(±.003) 0.99(±.002)
0.90 1.00 0.50 0.99(±.003) 0.99(±.003) 0.99(±.003) 0.99(±.003) 0.99(±.003)
1.00 0.90 0.50 0.99(±.003) 0.91(±.011) 0.91(±.010) 0.99(±.002) 0.93(±.008)
0.55 0.99 0.50 0.95(±.007) 0.94(±.008) 0.93(±.008) 0.95(±.006) 0.95(±.007)
0.75 0.98 0.50 0.98(±.004) 0.97(±.005) 0.96(±.006) 0.98(±.004) 0.97(±.005)
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Table 4.2. Biomarkers of incident diabetes in the WHI based on the proposed Lasso
algorithm (top 30 SNPs presented).

SNP Intron gene Left gene Right gene Rank
rs2575507 . ATP8A1 GRXCR1 1
rs2191331 MAGI2 MGC34774 LOC100124402 2

rs11655073 ACCN1 LOC100129255 TLK2P1 3
rs4945056 . WNT11 PRKRIR 4

rs11628414 KCNK13 TDP1 GLRXP2 5
rs565503 PLA2G5 PLA2G2A PLA2G2D 6

rs17028352 . TMEM182 LOC728815 7
rs8097803 . hCG 1776047 TXNL1 8

rs11988314 KCNK9 COL22A1 TRAPPC9 9
rs8082986 SETBP1 KRT8P5 LOC100131669 10

rs13419210 . LOC100130841 KLHL29 11
rs2505140 . LOC646348 ANKRD30A 12
rs500090 FLI1 ETS1 KCNJ1 13

rs1546031 . KCNH7 FIGN 14
rs756930 DYNC1I1 PDK4 SLC25A13 15

rs17239028 SLC12A8 HEG1 ZNF148 16
rs6944339 MAGI2 MGC34774 LOC100124402 17
rs2698723 SNX10 LOC442659 LOC100129036 18
rs9925238 . LOC100131080 TMEM114 19

rs16889988 ZMAT4 C8orf4 SFRP1 20
rs136622 . TBC1D22A RP11-191L9.1 21

rs6930750 C6orf195 LOC100128372 MYLK4 22
rs4677987 SEMA5B LOC100129550 PDIA5 23
rs638234 ALKBH8 CWF19L2 LOC100132695 24

rs10830770 . CTSC GAPDHL15 25
rs1200160 NME7 ATP1B1 BLZF1 26

rs41485749 . . . 27
rs9814339 . LOC644662 KLF15 28
rs9848926 PPP2R3A EPHB1 MSL2L1 29
rs2130806 CUBN RSU1 TRDMT1 30
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Table 4.3. Biomarkers of incident diabetes in the WHI based on the proposed
Bayesian variable selection (top 30 SNPs presented).

SNP Intron gene Left gene Right gene Rank
rs2575507 . ATP8A1 GRXCR1 1
rs644818 FLI1 ETS1 KCNJ1 2

rs10431977 . LOC100128497 MON1B 3
rs4074769 . LOC100131080 TMEM114 4

rs11857642 LCTL ZWILCH SMAD6 5
rs263173 . GPR126 HIVEP2 6

rs17028352 . TMEM182 LOC728815 7
rs4506998 . LOC388474 KC6 8
rs989975 . CYCSP14 LOC100132483 9

rs6658894 EPHB2 C1QB LOC646262 10
rs4395106 . CBX4 TBC1D16 11
rs2698723 SNX10 LOC442659 LOC100129036 12

rs11589612 SLC35F3 KCNK1 LOC100130965 13
rs16889988 ZMAT4 C8orf4 SFRP1 14
rs2741757 OR10A4 OR10A2 OR10A4 15

rs11192261 SORCS3 CCDC147 YWHAZP5 16
rs12306145 . LOC100131418 SOX5 17
rs13117180 . LOC729902 NPY2R 18
rs2226798 . C21orf34 C21orf37 19

rs11867749 . NUFIP2 TAOK1 20
rs756930 DYNC1I1 PDK4 SLC25A13 21

rs11668998 C19orf48 ACPT C19orf48 22
rs7485690 . LOC100129937 BCAT1 23
rs2683173 . LOC728073 RPL38 24

rs10494795 . LOC647202 NR5A2 25
rs11209403 . AF357533 LOC100133218 26
rs6967983 MAGI2 MGC34774 LOC100124402 27
rs638234 ALKBH8 CWF19L2 LOC100132695 28

rs6953785 . LOC100129606 LOC401316 29
rs446695 KIAA1576 NUDT7 CLEC3A 30
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Table 4.4. Biomarkers of incident diabetes in the WHI based on: (1) univariate Cox
proportional hazards model (2) proposed Lasso and (3) proposed Bayesian variable
selection algorithm. SNPs ranking among the top 10 by at least one method are
presented.

Rank
SNP Intron gene Left gene Right gene Univariate Lasso BVS

rs2575507 . ATP8A1 GRXCR1 8 1 1
rs644818 FLI1 ETS1 KCNJ1 . . 2

rs10431977 . LOC100128497 MON1B . . 3
rs4074769 . LOC100131080 TMEM114 . . 4

rs11857642 LCTL ZWILCH SMAD6 . . 5
rs263173 . GPR126 HIVEP2 . . 6

rs17028352 . TMEM182 LOC728815 1 7 7
rs4506998 . LOC388474 KC6 . . 8
rs989975 . CYCSP14 LOC100132483 . . 9

rs6658894 EPHB2 C1QB LOC646262 . . 10
rs2698723 SNX10 LOC442659 LOC100129036 7 18 12
rs756930 DYNC1I1 PDK4 SLC25A13 6 15 21

rs2191331 MAGI2 MGC34774 LOC100124402 4 2 51
rs1546031 . KCNH7 FIGN 2 14 83
rs9918753 HMBOX1 INTS9 KIF13B 9 32 107
rs8097803 . hCG 1776047 TXNL1 3 8 113

rs11628414 KCNK13 TDP1 GLRXP2 13 5 153
rs8082986 SETBP1 KRT8P5 LOC100131669 21 10 278

rs11655073 ACCN1 LOC100129255 TLK2P1 18 3 .
rs4945056 . WNT11 PRKRIR 45 4 .
rs565503 PLA2G5 PLA2G2A PLA2G2D 32 6 .

rs11988314 KCNK9 COL22A1 TRAPPC9 40 9 .
rs9925238 . LOC100131080 TMEM114 10 19 .
rs4389218 . LOC388458 PPIAP14 5 . .
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APPENDIX

MISCLASSIFICATION AT STUDY ENTRY

In this appendix, we consider the setting in which the diagnostic procedure used at

baseline or study entry is subject to imperfect sensitivity and specificity and see how it

affects the sample size calculation. For example, in the WHI, women’s diabetes status

at baseline is also assessed through self reports. However, the study by [34] found that

the negative predictive value of prevalent diabetes at baseline was approximately 97%

- in other words, 3% of women who self-reported as being diabetes free were in fact

diabetic. As discussed in Chapter 2, the incorporation of baseline misclassification can

be achieved by simply modifying the D matrix using the baseline negative predictive

value.

Figure A.1 illustrates the effect of misclassification at baseline with respect to

sample size calculations. We consider parameters that mimic the properties of dia-

betes self-reports in the WHI. In particular, we assume a study duration of 8 years

with annual visits, with an event rate of 10% during the course of the study (i.e.

SJ+1 = 0.9), assume no missing tests and that the sensitivity and specificity are

equal to 0.61 and 0.995, respectively. Total sample sizes are calculated assuming that

HR=2, the desired power is 0.9 and the Type I error is fixed at 0.05. As expected, the

required sample size increases with decreasing negative predictive value (η). In the

context of the WHI, using self-reports to ascertain diabetes status at baseline results

in a sample size of 954(or a 20% increase) when compared to a sample size of 792

when using a perfect test at baseline.
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Figure A.1. Effect of using an imperfect diagnostic procedure at study entry. Re-
sults are based on the assumptions of annual visits over a study duration of 8 years,
sensitivity=0.61, specificity=0.995, HR=2, SJ+1 = 0.9, and that there are no missing
tests, where type I error is fixed at 0.05 and power is fixed at 0.9 corresponding to a
two-sided hopothesis test. η denotes the negative predictive value of the diagnostic
test at baseline.
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