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CHAPTER 1

INTRODUCTION

Every practical system shows nonideal behavior. Due to limited precision, poor

design, imperfect components or ignored external conditions, systems perform differ-

ent than what they are intended to do. It is the engineer’s task to find ways of making

performance in the face of such flaws as close to ideal as possible. In this thesis we

are trying to enhance systems that are components of important applications.

The thesis work we are presenting is mainly divided into two research projects.

The first one is a target identification project for radars, and the second one is a

predistorter mechanism design to compensate for nonlinearities of digital-to-analog

converters (DACs). In this chapter, we explain our motivation for trying to solve

these problems, give a short background needed to understand our effort and finally

summarize our contributions. In the radar target identification project, we try to

find the optimal signal to be used in automobile radars to maximize their target

detection performance. The details of this project are given in Chapter 2. Our second

project is about an enhancement to digital-to-analog converters to compensate for

nonlinearities. We try to mitigate this undesired effect by constructing a predistorter.

The details of this project are explained in Chapter 3. We present our conclusions

derived from our work on these projects in Chapter 4.

1.1 Motivation

Radar systems are built with the aim of detection of a target. As with all real

systems, radars suffer from nonideal conditions which lead to incorrect decisions.

1



Signal Generator
Integrator
r Decision TargetNo Target

f( t )r( t )f( t )
Figure 1.1. Radar Model.

These incorrect decisions may be in the form of failing to detect an actual target or

wrongly declaring the presence of a target (false alarm).

Our research problem is about the radars placed in the bumpers of automobiles.

Their task is to continuously check for other vehicles and to warn the car to slow

down in the case of a detection. Figure 1.1 explains how these radars work. The

radar system sends a signal, and, if there is another vehicle in the range, this vehicle

reflects the radar signal back. As soon as the radar detects the vehicle, it warns the

car to slow down to avoid collision. These radars are already in use; however, they

require an important enhancement. Although they are often successful in detecting

other vehicles, they sometimes give false alarms and slow the car unnecessarily. These

false alarms are mostly because of small objects around the road that reflect the radar

signal back.
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If we can find a way to improve their identification performance to minimize false

alarms, we can make this system a more reliable one. In other words, we want to make

these radars more intelligent ones which can distinguish vehicles from other objects.

The signals used in the radar systems we are working on are often selected as the

simplest one to generate, ignoring their potential effect on detection performance. In

our project, we try to answer the question of whether it is possible or not to increase

detection performance by altering the radar signal. If the answer to this question is

yes, the radar system in hand can be made a better one with just a simple change on

the signal generated.

Having explained all of this, we can now specify our problem as a radar target

identification problem. Here it should be noted that there has already been a lot

of work done for similar problems. See [1] for an example. A unique aspect of our

problem that makes it different than those works is the constraints determined by

the radar we are working on. In most of the radar target classification literature, the

reflected signal from a possible target is fully available to the algorithm. This enables

an easier study with the help of increased information. The radars used in the cars,

however, base their decision on the correlation of the sent and the received signal.

In other words, we have access to the information that can be derived only from the

result of this correlation. This makes the linear properties of the reflection process

inapplicable in our project.

One can view the target identification problem as hypothesis testing where the two

hypotheses are the targets of concern and the targets to ignore. Hypothesis testing is

a well studied subject and we can make use of its principles. Our problem, however,

is not a simple hypothesis testing problem. Every vehicle can have a completely

different reflection and, likewise, not all the small objects can be represented by a

single reflected signal. Thus, our hypotheses are the collection of all the possible

reflections from a large object against all the possible reflections from a small object.

3



This makes our problem fall into the area of robust hypothesis testing, where the

hypotheses are represented by uncertainty classes. Our aim is to maximize the worst

case performance.

Last of all, we should also mention a possible outcome of our study. As we stated

above, our ultimate goal is to choose the best signal to send. Along with comparing

the available signals in terms of their identification performances, we can also guess

what the optimal signal would be were we not constrained with the capabilities of

our radar. If this optimal signal significantly improves identification, we can even

propose a change to the radar circuit. Or, on the contrary, we might be able to state

that the signals in the available set are already sufficient and eliminate the question

whether we are losing optimality by being constrained to that set.

As in the first project, our aim in the second project is to lessen the adverse

effects of nonideal conditions of a particular type of system, namely a digital-to-

analog converter. DACs are used in every digital system where the output has to

be a physical analog signal. For example, the sound cards in computers take the

digital media file and process it, but, independent of what they do digitally, they

need to convert the final signal to analog so that we can hear it. Since DACs are very

important components of many electronic systems we use, their improvement has a

broad potential application area.

Ideally, DACs are built to generate the analog signal corresponding to its digital

counterpart. However, in real DACs, the analog output differs from the theoretical

one in the sense that the relation with the digital input is not linear. This can be seen

from Figure 1.2, where the dashed line shows the ideal input-output relation. The

solid curve is a typical input-output plot of a DAC and it deviates from the dashed

line and shows a nonlinear characteristic.

What we attempt to do is to build a predistorter system that will change the

digital input in such a way that the analog output is close to the ideal one. In other

4



Digital Input
Analog Output

Figure 1.2. DAC output vs. input plot in ideal (dashed) and practical (solid) cases.

words, we will precompensate for the nonlinearity of the DAC. That will enable us

to generate the required output without changing the DAC itself. Precompensation

for nonlinearity is not a new idea and is often used for power amplifier circuits. We

are going to try to apply this idea to DACs. With the help of the knowledge about

amplifier precompensation, we think we can understand what can be done for DACs.

Unlike for the amplifiers, however, the compensation system for a DAC has to be of

low-complexity because of the high sampling rate.

1.2 Background

Let us start with the radar target identification project. We have to know the

role of the radar signal in the detection to understand how changing it can help us.

So, we first explain the basic details of the radar we are working on. Second, we will

5



OR observation DecisionRule Decision: Target 1 or Target 2Target 1Target 2
Figure 1.3. Simple Hypothesis Testing

give the basics of hypothesis testing along with a specific area of such, namely robust

hypothesis testing.

Figure 1.1 shows the basic components of the radar system. As can be seen, the

radar is sending f(t). After sending this signal, the radar receives a signal, r(t). This

might be a reflection from a target or just a noise signal in the situation of no target.

What our radar does is simply correlate (multiply and integrate) f(t) and r(t) and

end up with a scalar r. Based on this scalar, the radar decides whether a target is

present or not. The basic idea is that, if a target is not present, the returned signal

will mostly consist of noise which does not give a large correlation. However, if there

is a target, the observed signal, r(t), will be a closer signal to f(t). This will give a

larger correlation than the first case.

Based on this model, let us rephrase our above mentioned goal. We are trying

to choose f(t) that results in the best detection. How the detection performance is

measured will be explained in Chapter 2.

Hypothesis testing is to decide between some choices (hypotheses) based on an

observation. Figure 1.3 explains how hypothesis testing works. Either target 1 or

6



OR observation DecisionRule Decision: Target 1 or Target 2Target 1Target 2
Figure 1.4. Hypothesis testing between uncertainty classes

target 2 is present, but our observation is not perfect. This means that, for example,

target 1 might lead to different observations each time we check. Based on this noisy

observation, we are trying to come up with the optimal decision rule. The optimal

decision rule is the one that minimizes the average cost of decision. When we come to

our problem, target 1 represents large objects and target 2 represents small objects.

The observation is the correlation we talked about above, and the decision is whether

to ignore the target or take action.

As we explained in the preceding section, this model is too simple for our particular

problem. Target 1 and target 2 cannot be described by a single representative. They,

instead, are instances from a large class of targets. In detection language, these are

called uncertainty classes. The situation is explained in Figure 1.4. Large objects

and small objects constitute two classes we are trying to distinguish between. Each

time, a member from one of these two classes is present and we try to decide based on

our observation from this representative. Thus, our aim here is to find a decision rule

7



DACPredistorterDigital inputx[n] p(x[n] ) d( p(x[n] ) ) = x(t )Analog output
Figure 1.5. DAC with predistorter.

that will minimize the cost over all possible pairs from these classes. Our problem

becomes robust hypothesis testing.

The success of the decision rule we find, of course, depends on our measure. In

our case, we desire our system to maximize its performance for the worst case. This

type of optimization is called minimax optimization. So, a more precise definition of

our problem is minimax robust hypothesis testing. There are works done in this area

of detection as well [2], [3], [4].

In our work, we first try to solve the simple hypothesis testing problem by assuming

fixed targets. Then we try to generalize our findings to family of targets. As we will

see, the properties of the target classes significantly affects the complexity of the

problem.

When it comes to the DAC enhancement project, the best way to explain the

problem is with the help of the input-output relation of a typical DAC.

Figure 1.2 explains this relation. In a digital-to-analog conversion, every digital

input level (i.e. code) corresponds to a different analog value. Most often every single

bit increase in the digital code results in a fixed amount of increase in the analog

output. This difference between successive codes are called LSBs for short (stands

for Least Significant Bit). This fixed difference leads to a linear relation between the

digital input and the analog output. This is shown by the dashed line in the plot.

In the implementation of DACs, however, it is very hard to realize equal amplitude

8



differences between successive codes. This results in a nonlinear input-output relation.

This nonlinearity causes distorted outputs which we are trying to fix.

The above mentioned relation is a good instructive example of a source of nonlin-

earity in DACs. However, it is far from being the only reason behind the nonlinearity.

There are other effects explained in Chapter 3 and they become more dominant under

common operating conditions. However, it is important to know that, in our project

we are not trying to change the nonideal performance of the DAC. We are accepting

it as a fact and modeling it as well as possible. After modeling, we try to find a way

to change the input so that it produces what is desired, i.e. we predistort the input

for nonlinearity compensation. Figure 1.5 shows how the predistorter mechanism is

implemented. Suppose we have the digital input x[n] which we are trying to convert

to x(t) = a(x[n]). However, the DAC produces d(x[n]) 6= a(x[n]). We precompensate

for this difference by first producing p(x[n]), where d(p(·)) = a(·). So, when p(x[n])

is passed through the DAC, the output is d(p(x[n])) = a(x[n]) = x(t), the desired

output.

It should be obvious that predistorter design heavily relies on modeling. Unfortu-

nately, DAC modeling is difficult in general [6]. The nonlinear behavior is caused by

many different imperfections present in the DAC circuit, and this prevents the exis-

tence of a comprehensive model. A natural way to overcome this modeling problem

is to use models of some of the most dominant nonlinear errors. In this project, we

use a model developed for dynamic DAC errors which are described in Chapter 3 [9].

We try to understand how this DAC model causes nonlinearity.

1.3 Contribution

The radar systems we are trying to improve have the capability to send different

kinds of signals. In terms of detection performance, however, it is not known whether

a particular type of signal is better than another. Our main contribution in this
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project is to find out whether sending a specific signal results in better detection.

This requires us to do a comparison study between these signals. The search for

the performance differences between the available signals also gives us signs about

the optimal signal to send, independent of its availability. We provide waveform

optimization results under several scenarios with varying complexity levels.

For the second project, our contribution is in terms of theoretical and simulation

analyses of the nonlinearity caused by certain types of DAC errors. These type of

errors are input-dependent and we use a model previously developed to describe them

[9]. However, how the dependence on the input affects nonlinearity is not immediately

obvious from a given input-output function provided by this DAC model. In this

thesis, we present nonlinearity analyses for different functions relating the input to

the error. We show that the nonlinearity observed at the output is significantly

dependent on how the DAC error is modeled. This provides insight to what kind of

output distortion one should expect for different definitions of error functions. This

insight should in turn help the design of a predistorter aimed to eliminate those

analyzed nonlinearities.
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CHAPTER 2

RADAR WAVEFORM DESIGN FOR TARGET
CLASSIFICATION

In this project, our objective is to find the optimal discrimination pulse for car

radars to distinguish between two families of targets under the constraints such as

the modulation type, energy, etc.

As with every engineering problem, we first need a model of the physical problem.

There are different concerns to be accounted for in the model design. These can be

listed as:

1. Constraints on the pulse generated by the car radar.

2. Imperfect observation of the reflected signal due to effects such as noise, fading,

etc.

3. Description of the target classes.

4. Definition of the detection performance measure.

We follow a path that starts with the simplest assumptions and gradually gets

more complicated. Starting with a simple performance measure, we compare the

detection performance of different signals generated with methods such as amplitude

modulation, phase modulation, etc. Our findings are given in Section 2.1.

After that, we add the noise and fading affects to our model. The reflected signals

now have unknown parameters. This also changes our performance measure. We

present our work in this new model in Section 2.2.
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Finally, we take into account the fact that the targets we are trying to classify

cannot be represented by single reflected signals. Our classification problem is indeed

between two families of targets rather than two distinct targets. The work for classi-

fication between families of targets is given in Section 2.3. We end the chapter with

a short summary presented in Section 2.4.

2.1 A Simple Performance Measure

First we try to find out what the optimal pulse would be if we had no constraints in

design. In order to find this theoretical optimal pulse, we work assuming two distinct

targets having given impulse responses. Let h1(t) and h2(t) be the impulse responses

of the two targets we try to identify. Let f(t) be the pulse we try to optimize for

the best identification. We start with the idea that we achieve the best identification

when the difference between the responses of these two targets is maximized. So, the

quantity we are trying to maximize (call K) can be given as:

K =

∫ ∞

−∞
(h1(t) ∗ f(t)− h2(t) ∗ f(t))2dt. (2.1)

Using Parseval’s Theroem, K can be rewritten as:

K =

∫ ∞

−∞
|H1(f)F (f)−H2(f)F (f)|2df

=

∫ ∞

−∞
|H1(f)−H2(f)|2|F (f)|2df. (2.2)

Because we have restrictions on our pulse, we cannot (in general) produce the

optimal pulse that will maximize K. What we should do is to try to maximize K

under our constraints, i.e. approximate the optimal pulse as much as possible. The

methods of signal generation can be various such as amplitude modulation, phase

modulation, etc.
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2.1.1 Unquantized Amplitudes

We first assume our pulse to be a sequence of signals (s(t)) weighted with some

real coefficients (ck). In general, we assume f(t) to be expressed as:

f(t) =
N−1∑

k=0

cks(t− kTs), (2.3)

where Ts is the signal duration. The Fourier transform of this signal and its magnitude

can be written as:

F (f) =
N−1∑

k=0

S(f)cke
−j2πfkTs ,

|F (f)| = |S(f)||
N−1∑

k=0

cke
−j2πfkTs|. (2.4)

Using the Euler identity, |F (f)|2 can be written as:

|F (f)|2 = |S(f)|2
(

(
N−1∑

k=0

ck cos 2πfkTs)
2 + (

N−1∑

k=0

ck sin 2πfkTs)
2

)

= |S(f)|2
(

N−1∑

k=0

c2
k +

N−1∑
m=0

N−1∑

n6=m,n=0

2cmcn cos 2π(m− n)fTs

)
. (2.5)

Then

K =

∫ ∞

−∞
|H1(f)−H2(f)|2|S(f)|2(

N−1∑

k=0

c2
k +

N−1∑
m=0

N−1∑

n6=m,n=0

2cmcn cos 2π(m− n)fTs)df, (2.6)

where |H1(f)−H2(f)| and |S(f)| are assumed given (In our calculations, we use s(t)

to be a rectangular function of duration Ts, and we try several |H1(f)−H2(f)|’s). We
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try to maximize K with respect to ck’s. When we equate the derivative with respect

to any coefficient ck to zero, we obtain the following expression:

∂

∂ck

K =

∫ ∞

−∞
|H1(f)−H2(f)|2|S(f)|2

(
2ck +

N−1∑
m=0

2ckcm cos 2π(k −m)fTs

)
df

= 0. (2.7)

So, we have N equations with N unknowns. When we write these equations in

matrix form, we get

Bc = 0, Bij =

∫ ∞

−∞
|H1(f)−H2(f)|2|S(f)|2 cos 2π(i− j)fTs, (2.8)

where B is an N × N matrix and c is the N × 1 vector of ck’s. In order to have

nonzero solutions, B should be singular. However, we realized that this was not

the case in general. Hence, the only solution is c = 0, which minimizes K rather

than maximizing it. So, we need to put the energy constraint into the calculation.

The constraint we choose is
∑N−1

k=0 c2
k = 1. We use the Lagrange Multipliers method

to optimize c under this constraint. So, a new variable λ is included and the new

equations are obtained by taking the derivative

∂

∂ck

(K + λ(1−
N−1∑

k=0

c2
k)) = 0 (2.9)

which produces N nonlinear equations. The equation
∑N−1

k=0 c2
k = 1 is the (N + 1)st

equation. So, we now have N + 1 nonlinear equations with N + 1 unknowns. Using

MATLAB we are now able to solve these equations and find a nonzero solution for

the optimum c vector.

2.1.2 Two Phases

In the previous section, the optimum coefficients found can be any real number,

which is not possible in practice. In this section, we allow our signals to have fixed

14



amplitude and one of two possible phases. In addition, we allow “no signal” for a

particular signal duration. As a result, we are constrained to use ck ∈ {−1, 0, 1}. So,

what we have to do is to calculate K for all the 3N permutations of c and pick the

one that corresponds to the largest K.

We can make a frequency interpretation at this point which will give us an idea

about what the optimal pulse would look like. Note that the theoretical optimal

waveform is the one that has nonzero frequency content constrained in the band

where |H1(f) − H2(f)| is also nonzero. This can be seen from Eq. 2.2. So, the

optimal waveform we find should be the one which is concentrated most in this band

compared to the other 3N − 1 alternatives.

We present our simulation results later in the section, however, two points should

be mentioned here.

1. Since K is a function of the magnitude of the Fourier transform of the pulse,

we always have two optimal c vectors, which differ by a minus sign.

2. For all the cases where |H1(f) − H2(f)| is lowpass, i.e. whenever it can be

defined as

|H1(f)−H2(f)| 6= 0, |f | ≤ f0

|H1(f)−H2(f)| = 0, else, (2.10)

the optimum coefficients are copt = [1, 1, 1, 1, 1, 1, 1]T ( and also −copt as men-

tioned). This is due to the fact that if |H1(f)−H2(f)| has this property, the co-

efficients of all the cmcn terms ( 2
∫∞
−∞ |H1(f)−H2(f)|2|S(f)|2cos(2π(m−n)fTs)

) in Eq. 2.6 become positive. This requires all cmcn products to be maximum.

More intuitively, the reason for this second observation is that |F (f)| acquires

the largest frequency content around DC only when all ck’s are 1 (or −1).
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2.1.3 Continuous Phase

In this section, we analyze the case where each signal in the pulse has a fixed

amplitude and can have any phase in [0, 2π). Under these assumptions, the lowpass

equivalent of our pulse becomes

f(t) =
N−1∑

k=0

e−jθks(t− kTs), θk ∈ [0, 2π). (2.11)

Let us start analyzing the continuous phase with the N = 2 case. When N = 2,

our pulse becomes

f(t) = e−jθ1s(t) + e−jθ2s(t− Ts)

with the Fourier Transform

F (f) = S(f)(e−jθ1 + e−jθ2e−j2πfTs)

|F (f)| = |S(f)|| cos θ1 + cos(θ2 + 2πfTs)− j(sin θ1 + sin(θ2 + 2πfTs))|.

We need the magnitude squared which is

|F (f)|2 = |S(f)|2((cos θ1 + cos(θ2 + 2πfTs))
2 + (sin θ1 + sin(θ2 + 2πfTs))

2)

= |S(f)|2(2 + 2 cos(θ1 − θ2 − 2πfTs)). (2.12)

Now K becomes

K =

∫ ∞

−∞
|H1(f)−H2(f)|2|S(f)|2(2 + 2 cos(θ1 − θ2 − 2πfTs))df.

Calling |H1(f)−H2(f)|2|S(f)|2 = A(f), where A(f) is a positive valued even function,

K = 2

∫ ∞

−∞
A(f)df + 2

∫ ∞

−∞
A(f) cos(θ1 − θ2 − 2πfTs)df. (2.13)

16



The first term in the summation above is a constant. What we are trying to

maximize is the second term. The first observation is that K is a function of θ1− θ2.

This means that we will try to find the optimum phase difference, and any two phases

with a difference of this optimum value will maximize K. Now let (θ1 − θ2) be φ.

Dropping the 2, the second term of this summation is then

C =

∫ ∞

−∞
A(f) cos(φ− 2πfTs)df

=

∫ ∞

−∞
A(f) cos(2πfTs)df cos(φ) +

∫ ∞

−∞
A(f) sin(2πfTs)df sin(φ)

= C1 cos(φ) + C2 sin(φ). (2.14)

Since A(f) is an even function of f , C2 = 0 and we are left with

C = C1 cos(φ)

to maximize. Obviously if C1 is positive, φ = 0 maximizes C and, if C1 is negative,

φ = π is the answer. So, any two phases such that θ1− θ2 = 0 or π will maximize K,

depending on what A(f) is.

When we generalize this case to N signals, Eq. 2.12 becomes

|F (f)|2 = |S(f)|2(N + 2
N−1∑
m=0

N−1∑

n 6=m,n=0

cos(θm − θn − 2(n−m)πfTs)). (2.15)

So, for the current case, K is given as:

K = N

∫ ∞

−∞
A(f)df

+

∫ ∞

−∞
A(f)

N−1∑
m=0

N−1∑

n 6=m,n=0

cos(θm − θn − 2(n−m)πfTs)df. (2.16)

17



Again the second part of K is the one to be maximized. Let us rewrite this part using

a trigonometric identity.

C =

∫ ∞

−∞
A(f)

N−1∑
m=0

N−1∑

n 6=m,n=0

cos(θm − θn) cos(2(n−m)πfTs)df

+

∫ ∞

−∞
A(f)

N−1∑
m=0

N−1∑

n 6=m,n=0

sin(θm − θn) sin(2(n−m)πfTs)df.

As in the previous case, the second term in this summation is zero since A(f) is even.

So, C is in fact

C =

∫ ∞

−∞
A(f)

N−1∑
m=0

N−1∑

n 6=m,n=0

cos(θm − θn) cos(2(n−m)πfTs)df. (2.17)

Now, it is a good idea to collect the terms with the same (n −m)’s. By doing this,

C can be rewritten as:

C =
N−1∑
i=1

∫ ∞

−∞
A(f) cos(2iπfTs)df

N−i∑
n=1

cos(θn − θn+i)

=
N−1∑
i=1

Ci

N−i∑
n=1

cos(θn − θn+i). (2.18)

It can be confirmed that this expression fits the one we found for N = 2. Again

we call phase differences φi’s, so we have (N − 1) φ values to solve for. As N gets

larger, C becomes more complicated. Unlike the N = 2 case, the dependence of

the optimum φi values on the Ci values is highly increased. The optimum values for

given Ci’s are easily found by simulation; however, it is difficult to come up with an

analytical solution.
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Figure 2.1. The functions used for the first numerical example.

2.1.3.1 Numerical Example 1

As an illustrative example, we find the optimum φi values for the N = 7 case.

For this purpose, first we need to assume some functions for |H1(f) − H2(f)|2 and

|S(f)|2. We assume the signals in Figure 2.1 to be the case for our simulation.

For N = 7, C in Eq. 2.18 can be expressed as:

C =
6∑

i=1

Ci

7−i∑
n=1

cos(θn − θn+i).

In order to gain more insight, let us write C in the open form.
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C = C1 (cos(θ1 − θ2) + cos(θ2 − θ3) + . . . + cos(θ6 − θ7))

+ C2 (cos(θ1 − θ3) + cos(θ2 − θ4) + . . . cos(θ5 − θ7)) + ...

+ C6 cos(θ1 − θ7). (2.19)

As for N = 2 case, if we assign

φi = θi − θi+1, (2.20)

C becomes

C = C1(cos(φ1) + cos(φ2) + . . . + cos(φ6))

+ C2(cos(φ1 + φ2) + cos(φ2 + φ3) + . . . + cos(φ5 + φ6)) . . .

. . . +C6 cos(φ1 + φ2 + φ3 + φ4 + φ5 + φ6). (2.21)

As we see, we have six variables to optimize in this case. Any seven phase values

having differences according to the optimum φ values will maximize C and hence K.

Also note that Ci’s are given by

Ci =

∫ ∞

−∞
A(f) cos(2iπfTs)df. (2.22)

With the functions given in Fig. 2.1, the Ci values are found to be

C1 = −8.0405, C2 = −1.5488, C3 = 1.198,

C4 = −0.83449, C5 = 0.60015, C6 = −0.54565.

After finding the Ci values for the given A(f) function, our task is to calculate C for

all possible φ combinations. Of course, when simulating, we cannot realize continuous
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phase. We have to assign φi values from a finite set of phases. If we let each φi to

take values from M discrete phases, the number of possible φ combinations is M6.

In our calculations, we try M values ranging from 2 to 16. For each M value,

φi’s take values from the set AM = {0, 2π
M

, 4π
M

, ..., 2(M−1)π
M

}. We evaluate C for each

possible 6-permutation of these values. The φ vector corresponding to the largest C

gives us the optimum phase differences. After finding φopt, we calculate K for these

optimal values. This value, Kmax, is the maximum possible K that can be achieved

using a finite phase set of size M . The values are given in Table 2.1. In addition to

the table, the graph depicting the dB loss in K with decreasing M values is given in

Fig. 2.2. The values on the graph are found by dividing the K value for the given M

to the K value for M = 16, namely

∆K(M) = 10 log
K(M)

K(16)
. (2.23)

2.1.3.2 Comments on the Results

First of all, it should be noted that the φopt values in Table 1 are not unique. In

some cases, there are more than one set that give the same Kmax. We just include one

of them in the table. Secondly, it should be kept in mind that, these are the optimum

values for φi’s, not θi’s. Any θi combination satisfying the optimum φi values will

maximize K.

When we look at our numerical results, the first observation is that no significant

increase in Kmax is achieved by increasing the number of phases. A second point is,

for some cases, increasing M even decreases Kmax. The change from M = 2 to M = 3

is an example. It should be noted that the set of possible φ values for M = 2 is not

a subset of the set for M = 3. So, φopt for M = 2 is not available for the case with

three distinct phases (and for any case where M is odd). Hence, increasing M does

not necessarily improve identification.
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Table 2.1. Optimal phase differences(φopt) and maximum K values that are achieved
using M discrete φ values.

M φopt Kmax M φopt Kmax

2 [π, π, π, 0, π, π] 194.07 10 [π, 4π
5

, 3π
5

, 4π
5

, 4π
5

, 4π
5

] 203.4

3 [2π
3

, 2π
3

, 2π
3

, 2π
3

, 2π
3

, 2π
3

] 185.34 11 [10π
11

, 8π
11

, 8π
11

, 8π
11

, 8π
11

, 10π
11

] 204.85

4 [π, π, π, 0, π, π] 194.07 12 [7π
6

, 7π
6

, 4π
3

, 4π
3

, 7π
6

, 7π
6

] 204.13

5 [4π
5

, 4π
5

, 4π
5

, 4π
5

, 4π
5

, 4π
5

] 203.12 13 [14π
13

, 16π
13

, 18π
13

, 16π
13

, 16π
13

, 14π
13

] 205.17

6 [π, π, 2π
3

, 2π
3

, 2π
3

, π] 200.08 14 [8π
7

, 8π
7

, 9π
7

, 9π
7

, 9π
7

, 8π
7

] 204.96

7 [6π
7

, 6π
7

, 6π
7

, 4π
7

, 6π
7

, 6π
7

] 203.01 15 [14π
15

, 4π
5

, 2π
3

, 2π
3

, 4π
5

, 14π
15

] 205.13

8 [π, 3π
4

, 3π
4

, 3π
4

, 3π
4

, π] 203.73 16 [7π
8

, 3π
4

, 3π
4

, 3π
4

, 3π
4

, 7π
8

] 205.35

9 [8π
9

, 8π
9

, 2π
3

, 2π
3

, 8π
9

, 8π
9

] 204.44
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Figure 2.2. Decrease in K (∆K) with decreasing number of distinct phases.
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When we compare the cases M = 2, 4, 8, 16, we see that Kmax values are the same

for the first two. In other words, adding π
2

and 3π
2

to the set does not change the

solution. However, for M = 8, we are able to obtain a higher K value. So, adding

the new values, π
4
, 3π

4
, 5π

4
and 7π

4
, to our set helps us to find a better solution. This is

confirmed by the fact that φopt includes 3π
4

for M = 8. A similar observation can also

be made for M = 16.

As a final remark, it is important to see that, these results are completely deter-

mined by the Ci values. So, if the assumed functions are changed, only the Ci values

have to be recalculated and the rest of the procedure is the same. As an interesting

side note, when all Ci’s are positive, the solution is trivial and all φi’s equal to zero

maximizes C (see Eq. 2.21).

Based on these results, let us try to confirm the frequency interpretation. In

Section 2.1, we had given our performance measure to be

K =

∫ ∞

−∞
|H1(f)−H2(f)|2|F (f)|2df. (2.24)

This result suggests that the optimal pulse is the one that has its frequency content

bounded to the nonzero region of |H1(f)−H2(f)|. This also means that the optimal

pulses we find must have the highest frequency content in this region compared to

the non-optimal alternatives. In order to check our results, let us compare two pulses

in terms of their frequency contents.

For M = 16, the optimal φ combination is found to be (see Table 2.1)

φopt = [
7π

8
,
3π

4
,
3π

4
,
3π

4
,
3π

4
,
7π

8
].

With these φ values, an optimal θ combination can be selected as:

θopt = [
19π

4
,
31π

8
,
25π

8
,
19π

8
,
13π

8
,
7π

8
, 0].
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Figure 2.3. |F (f)|2 plotted for two different phase values.

These θ values are sufficient to write the optimal pulse using Eq. 2.11. For compari-

son, let us choose another θ combination arbitrarily to be

θ = [
17π

16
,
12π

16
,
11π

16
,
7π

16
,
5π

16
,

π

16
, 0].

The Fourier transforms of these two pulses are given in Figure 2.3. The optimal

pulse has obviously higher frequency content in the region where |H1(f)−H2(f)|2 is

located. It is easy to see that when multiplied with |H1(f)−H2(f)|2 and integrated,

which results in K by definition, the optimal pulse will give a higher result.
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Figure 2.4. Impulse responses for the second numerical example.

2.1.3.3 Numerical Example 2

In this section, we repeat our simulations with different impulse responses. The im-

pulse responses are given in Figure 2.4. The first impulse response has two Gaussian-

like pulses located at Ts/4 and 4Ts. These two pulses are located at Ts/4 and 8Ts for

the second impulse response.

For these impulse responses, |H1(f) − H2(f)|2 becomes as given in Figure 2.5.

See that A(f) = |H1(f)−H2(f)|2|S(f)|2 changes accordingly. What we do is simply

recalculate the Ci values given by

Ci =

∫ ∞

−∞
A(f) cos(2iπfTs)df (2.25)
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Figure 2.5. Functions used for the second numerical example
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and calculate C using Eq. 2.21 for each possible φ combination. The Ci values for

this case are found to be

C1 = 81.007, C2 = 0.0011, C3 = −40.523,

C4 = −787.82, C5 = −40.523, C6 = −0.0011.

Again the optimal pulse is the one that achieves the maximum C value. φopt and

Kmax values for changing M are given in Table 2.2.

Table 2.2. Optimal phase differences(φopt) and maximum K values for the second
experiment where the functions in Fig. 2.5 are used.

M φopt Kmax M φopt Kmax

2 [0, 0, π, 0, 0, 0] 16728 10 [π
5
, π

5
, 2π

5
, π

5
, π

5
, π

5
] 16815

3 [0, 0, 2π
3

, 0, 0, 0] 14244 11 [2π
11

, 2π
11

, 4π
11

, 2π
11

, 2π
11

, 2π
11

] 16640

4 [0, 0, π, 0, 0, 0] 16728 12 [π
3
, π

3
, π

2
, π

2
, π

3
, π

3
] 16841

5 [0, 0, 8π
5

, 8π
5

, 0, 0] 15814 13 [2π
13

, 2π
13

, 4π
13

, 4π
13

, 2π
13

, 2π
13

] 16713

6 [0, 0, π, 0, 0, 0] 16728 14 [π
7
, π

7
, 3π

7
, 2π

7
, π

7
, π

7
] 16838

7 [0, 2π
7

, 2π
7

, 2π
7

, 2π
7

, 0] 16344 15 [2π
15

, 2π
15

, 2π
5

, 4π
15

, 2π
15

, 2π
15

] 16742

8 [π
4
, π

4
, π

4
, π

4
, π

4
, π

4
] 16787 16 [π

8
, π

8
, 3π

8
, 3π

8
, π

8
, π

8
] 16840

9 [16π
9

, 16π
9

, 16π
9

, 16π
9

, 16π
9

, 16π
9

] 16530
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In this second example, the results are even closer to each other compared to the

first numerical example. Again, increasing M did not result in a better performance.

An important comparison can be made with the case with no modulation, which

means having all θ values equal to zero, i.e. using only a rectangular pulse of duration

7Ts. The K value obtained in this case is 6789, which is significantly smaller than

the values in Table 2.2. In fact, this value is less than half of the smallest value in

Table 2.2, a 3.2 dB difference. This proves that by applying phase to our signals, we

can achieve better target identification.

Having seen the Kmax values so close to each other for different M ’s, we want to

know what the global maximum of the K function is, i.e. the Kmax value achieved

when any phase is allowed for each signal in the pulse. To find the answer, we need

to find the maximum value C in Eq. 2.21 can take. The numerically calculated

maximum of C is found to be approximately 2907. Using Eq. 2.16 to calculate K,

we find Kmax for continuous phase to be 16844. This is an interesting observation as

this value is very close to the values in Table 2.2. This means the values we achieve

with finite number of phases are already close to the global maximum. In fact, we

obtain a value very close to the global maximum with even 2 distinct phases. This

also explains why we cannot achieve improvement by increasing the number of phases.

Since we are already close to the limit, we cannot get higher values by increasing M .

Finally, in addition to the M phase values, we also allow the pulse to be OFF

for some signal durations. In other words, we allow a zero coefficient along with

the already existing M different coefficients. We investigate whether this makes any

changes in terms of reaching a larger K value. Previously, we were comparing M7

possible signals. With allowing signals to be OFF, we are now comparing (M + 1)7

possible signals. We observe that the Kmax values achieved remain the same. This

is somewhat expected since we are losing energy if some of the coefficients are zero.

So, for a fair comparison, we rescale the amplitudes for all the combinations with
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at least one zero coefficient. In this case, we have the same energy for all possible

(M + 1)7 signals. This time the Kmax values change. These values are achieved by a

combination of coefficients including zero.

The values achieved with the OFF case are given in Table 2.3 . The simulations

for this case take much longer because it is not possible to simplify the calculation of

K. So, we present here the values for M = 2, 3, 4 and 5 only.

Table 2.3. Maximum K values achieved for the second experiment with allowing
zero coefficient (OFF).

M Kmax

2 + OFF 17679

3 + OFF 14732

4 + OFF 17679

5 + OFF 16553
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2.2 Signals with Unknown Parameters

Up to this point, we have always assumed that the responses of targets to our

signal are completely known. In this part, we will consider the situation where this

is not true. We will be regarding the responses as having a random phase, random

amplitude and additive noise. For example, the response of the first target to our

radar signal will be modeled as:

r1(t) = αejθ(f(t) ∗ h1(t)) + n(t), (2.26)

where α and θ are random variables and n(t) is the additive noise.

It is important to state our understanding of the problem in the first place. We

consider the target identification as a binary detection problem. In this problem, we

try to choose between two targets each corresponding to a different signal waveform

with random parameters.

In order to develop our understanding of this detection problem, we first present

the general simple binary hypothesis testing, then we pass to the composite hypothesis

case where unknown parameters come into play. After that, we explain the detection

problem where the hypotheses correspond to waveforms. We finish with presenting

our case where we decide between waveforms with unknown parameters.

2.2.1 Binary Hypothesis Testing

In the general problem of detection, we try to decide between choices which are

referred as hypotheses. In the binary detection case, we have two hypotheses to

choose from, namely H0 and H1. What we have to do is to develop a decision rule

based on our observations.

Our observations correspond to an observation vector, r. We develop a decision

rule based on the conditional probability densities of these observations.
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Here, we will not go into the detail of developing this decision rule. Assuming

that the a priori probabilities of the two hypotheses, P0 and P1, are known, a decision

based on the Bayes criterion can be made. Using the conditional probabilities of

our observation given the two hypotheses, we can decide on which hypothesis is true

based on the following decision rule:

fR|H1(r|H1)

fR|H0(r|H0)
≷H1

H0

P0(C10 − C00)

P1(C01 − C11)
, (2.27)

where Cij is the cost of claiming Hi under Hj. This decision rule can be simplified

as:

Λ(r) ≷H1
H0

η. (2.28)

Λ(r) is the likelihood ratio and η is the threshold. So, the binary detection problem

turns into a likelihood ratio test. For our present discussions, we will try to construct

the likelihood ratio and the threshold will be considered as given. In fact, as can

be seen, only Λ(r) depends on the observations and the calculation of the threshold

can be ignored in developing the decision rule from the observations. Here, it is

important to see that Λ(r) is one-dimensional regardless of what the dimension of r

is. The likelihood ratio test (LRT) is the basics of detection problems in general.

2.2.1.1 Composite Hypothesis

A composite hypothesis is one, for which the observation depends on a random

variable that we denote θ. As stated above, in any case, we try to write the likelihood

ratio Λ(r). For the case in which we know the probability density function of θ, we

can write the conditional probabilities using this density. For composite hypotheses,

the likelihood ratio is obtained as:
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Λ(r) =
fR|H1(r|H1)

fR|H0(r|H0)
=

∫
θ
fR|θ,H1(r|θ,H1)fΘ(θ)dθ∫

θ
fR|θ,H0(r|θ,H0)fΘ(θ)dθ

. (2.29)

Once this likelihood ratio is found, the LRT is completely defined and we are back to

the case in the previous section.

2.2.1.2 Detection of Signals

In the previous sections, we considered the observations as finite random vectors,

r. In the detection of signals, the observations are continuous random waveforms,

r(t).

In the simplest binary signal detection, the received waveforms under the hypothe-

ses can be written as:

H0 : r(t) = s0(t) + n(t),

H1 : r(t) = s1(t) + n(t), (2.30)

where n(t) is the additive noise. Here, our aim is again to write the likelihood ratio.

However, since the observations are waveforms, the extra step here is to reduce the

observations into a set of random variables. We will achieve this using basis functions

to represent the continuous waveforms. Once we do this, the problem will turn into

the same one in composite hypothesis case.

2.2.1.3 Detection of Signals with Unknown Parameters

Here, the observations are continuous waveforms depending on parameters which

are random variables. For this case, the received waveforms under the hypotheses

can be written as:
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H0 : r(t) = s0(t, θ) + n(t),

H1 : r(t) = s1(t, θ) + n(t), (2.31)

where θ is a random variable with known probability density. It is obvious that this

case is the continuous counterpart of the composite hypothesis case. Similar to that

case, what we have to do is to find the conditional probability densities assuming θ

is given. This task is the same for the previous section; it requires reduction of the

continuous waveform to a set of random variables. After that, using the probability

density of θ, we will try to write the likelihood ratio using Eq. 2.29.

2.2.2 Target Identification Problem

2.2.2.1 Problem Definition and Procedure

Having seen these binary detection problems in general, we can now identify our

problem. Our problem can be regarded as the detection of signals with unknown

parameters. This is the one covered in the previous section. For our particular

problem, the received waveforms under the two hypotheses can be given as (to avoid

confusion we will use the notation H1 and H2):

H1 : r(t) = s1(t, α, θ) = αejθ(f(t) ∗ h1(t)) + n(t),

H2 : r(t) = s2(t, α, θ) = αejθ(f(t) ∗ h2(t)) + n(t), (2.32)

where α and θ are random variables with given probability densities, h1(t) and h2(t)

are the given target impulse responses and f(t) is the radar waveform we attempt to

design.

Having defined our problem, we can determine the procedure to follow.

i. Assuming α and θ are given, reduce the observed waveform r(t) to a random

vector r.
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ii. Find the conditional probabilities fR|Θ,α,H1(r|θ, α, H1) and fR|Θ,α,H2(r|θ, α,H2).

iii. Using the given probability densities fα(α) and fΘ(θ), find the conditional prob-

abilities fR|H1(r|H1) and fR|H2(r|H2).

iv. Construct the likelihood ratio Λ(r) and find the decision rule.

v. Apply performance analysis on the decision rule found and extract the relation

of the performance to the radar waveform f(t).

vi. Using this relation, find the optimal waveform that will yield the best detection

performance.

2.2.2.2 Analysis

We start with a simplification that will make our calculations easier. Since α

and ejθ are random variables, their product is another random variable. We call this

random variable β. We assume that β is a complex-valued Gaussian with zero mean

and variance σ2
β.

We define

β = αejθ, (2.33)

u1(t) = f(t) ∗ h1(t), (2.34)

u2(t) = f(t) ∗ h2(t). (2.35)

The received waveforms under the two hypotheses are

H1 : r(t) = βu1(t) + n(t),

H2 : r(t) = βu2(t) + n(t). (2.36)
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When the signal r(t) is received, the radar correlates it with f(t). So, in fact what

we will use is the result of this correlation operation rather than the waveform itself.

Defining

r =

∫ T

0

r(t)f(t)dt, (2.37)

the random variables we will have under the two hypotheses are

H1 : r = βu1 + n, (2.38)

H2 : r = βu2 + n, (2.39)

where

u1 =

∫ T

0

u1(t)f(t)dt, (2.40)

u2 =

∫ T

0

u2(t)f(t)dt, (2.41)

n =

∫ T

0

n(t)f(t)dt. (2.42)

Here r(t) and n(t) are random waveforms, and, r and n are random variables. As-

suming n(t) to be white Gaussian noise, n is a Gaussian random variable. On the

other hand, u1(t) and u2(t) are deterministic signals, so u1 and u2 are not random.

Now we can try to find the probability density function of r under the two hy-

potheses. Under both hypotheses, r is the sum of two independent complex-valued

Gaussian random variables. So, r is also a complex-valued Gaussian random variable,

which we can write as:

r = rreal + jrimag. (2.43)

Here rreal and rimag are real-valued Gaussian random variables.
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We assume that β and n are complex-valued random variables for which real and

imaginary parts are independent and have the same Gaussian densities, with means

zero and variances
σ2

β

2
,

σ2
n

2
, respectively.

Let us have a look at the means and the variances of rreal and rimag under H1.

E[rreal|H1] = E[βrealu1 + nreal] = 0, (2.44)

E[rimag|H1] = E[βimagu1 + nimag] = 0, (2.45)

and the variances are

E[r2
real] = E[(βrealu1 + nreal)

2]

= E[β2
real]u

2
1 + 2u1E[βreal]E[nreal] + E[n2

real]

=
σ2

β

2
u2

1 +
σ2

n

2

, σ2
r1

2
. (2.46)

Similarly

E[r2
imag] = E[(βimagu1 + nimag)

2]

=
σ2

β

2
u2

1 +
σ2

n

2

, σ2
r1

2
. (2.47)

So, now we can write the pdf’s of rreal and rimag.

fRreal
(rreal) = fRimag

(rimag) =
1√
πσ2

r1

e


−

r2
real

σ2
r1



. (2.48)

So, r is also a complex-valued random variable whose real and imaginary parts are

independent and have the same zero-mean Gaussian distribution.
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Now, let us write the probability density function of r. It is easy since the real

and imaginary parts are independent.

fR(r) = fR(rreal + jrimag) = fRreal
(rreal)fRimag

(rimag)

=
1

πσ2
r1

e


−

r2
real

σ2
r1

−
r2
imag

σ2
r1




=
1

πσ2
r1

e


−

r2
real + r2

imag

σ2
r1




=
1

πσ2
r1

e


−
‖r‖2

σ2
r1



. (2.49)

Having the pdf’s, we can write the likelihood ratio and the decision rule. If we assume

that the hypotheses are equiprobable, the cost of correct decision is zero, and the cost

of failures in both ways are the same, the threshold η in Eq. 28 becomes 1.

Our decision rule is

Λ(r) =
fR|H1(r|H1)

fR|H2(r|H2)
≷H1

H2
1. (2.50)

Replacing the pdf’s,

1

πσ2
r1

e
−
‖r‖2

σ2
r1

1

πσ2
r2

e
−
‖r‖2

σ2
r2

≷H1
H2

1, (2.51)

σ2
r2

σ2
r1

e
(
‖r‖2

σ2
r2

−
‖r‖2

σ2
r1

)

≷H1
H2

1, (2.52)

38



ln(
σ2

r2

σ2
r1

) + ‖r‖2 (
1

σ2
r2

− 1

σ2
r1

) ≷H1
H2

0. (2.53)

Assuming σ2
r1

> σ2
r2

,

‖r‖2 ≷H1
H2

σ2
r1

σ2
r2

σ2
r1
− σ2

r2

ln(
σ2

r1

σ2
r2

) = γ. (2.54)

So, the only statistic that we use for detection, i.e. the sufficient statistic, is ‖r‖2.

The next step is to find the probability of error to evaluate the performance. If we

can manage to write the probability of error in terms of f(t), we will have a value to

minimize by selecting the optimal waveform.

Now let us try to write the probability of error, P (e). Under H1, we make an

error if ‖r‖2 is less than the threshold γ. So, the conditional probability of error can

be written as:

P (e|H1) = P (‖r‖2 < γ|H1). (2.55)

We know that r is a complex-valued Gaussian random variable. What we need to

know is the distribution of ‖r‖2. If ‖r‖2 = r2
real + r2

imag is divided by
σ2

r1

2
, then it has

a chi-square distribution with the degree of freedom equal to 2. So, we say that

‖r‖2

σ2
r1

/2
∼ X 2

2 . (2.56)

We can now write the conditional probability of error.
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P (e|H1) = P (‖r‖2 < γ|H1)

= P (
r2
real + r2

imag

σ2
r1

/2
<

γ

σ2
r1

/2
)

= F (
2γ

σ2
r1

), (2.57)

where F (·) is the cdf of the X 2
2 distribution. Likewise, under H2, the probability of

error is

P (e|H2) = P (‖r‖2 > γ|H2). (2.58)

Following the same procedure,

P (e|H2) = P (‖r‖2 > γ|H2)

= P (
r2
real + r2

imag

σ2
r2

/2
) >

γ

σ2
r2

/2
)

= 1− F (
2γ

σ2
r2

). (2.59)

We found the conditional probability of errors. Now we can calculate the total

probability of error.

P (e) =
1

2
F (

2γ

σ2
r1

) +
1

2

(
1− F (

2γ

σ2
r2

)

)

=
1

2

(
1 + F (

2γ

σ2
r1

)− F (
2γ

σ2
r2

)

)
. (2.60)

Using Eq. 2.54 to replace the value of γ,

P (e) =
1

2


1 + F


 2σ2

r2

σ2
r1
− σ2

r2

ln(
σ2

r1

σ2
r2

)


− F


 2σ2

r1

σ2
r1
− σ2

r2

ln(
σ2

r1

σ2
r2

)





 . (2.61)
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So, in order to minimize P (e) we should have σ2
r1

as large as possible and σ2
r2

as small

as possible. In other words, we should maximize (using Eq. 2.47)

K =
σ2

r1

σ2
r2

=
σ2

βu2
1 + σ2

n

σ2
βu2

2 + σ2
n

. (2.62)

This is expected as under both hypotheses r is a Gaussian random variable with

the same mean. The only parameter that distinguishes the two hypotheses are the

variances. So, it would be better to have these as far apart as possible. This is more

easily seen if we write the probability of error in terms of K (plotted in Fig. 2.7).

P (e) =
1

2

(
1 + F

(
2

K − 1
ln(K)

)
− F

(
2K

K − 1
ln(K)

))
. (2.63)

Finally, replacing the values of u1 and u2,

K =

σ2
β

(∫ T

0

(f(t) ∗ h1(t))f(t)dt

)2

+ σ2
n

σ2
β

(∫ T

0

(f(t) ∗ h2(t))f(t)dt

)2

+ σ2
n

. (2.64)

So, we managed to figure out how to find the optimal f(t) to minimize probability

of error. The optimal waveform is defined as:

fopt(t) = argmax
f(t)

K. (2.65)

The next step is to find the way to come up with fopt(t) that maximizes K, given

h1(t), h2(t), σ2
β and σ2

n.

2.2.2.3 Discretization

It turns out that K with the continuous form in Eq. 2.64 is hard to maximize. It

is a functional of f(t), and is not easily worked on. To come up with an easier model,
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we decide to maximize the discretized version of it. The new definition we will work

on is

K =

σ2
β

(
N−1∑
n=0

f [n]
N−1∑
i=0

f [i]h1[n− i]

)2

+ σ2
n

σ2
β

(
N−1∑
n=0

f [n]
N−1∑
i=0

f [i]h2[n− i]

)2

+ σ2
n

. (2.66)

Here we think of K as a function of the sample values of f [n] and we try to find

the optimum f [0], f [1], ..., f [N − 1] values that maximize K.

The maximization of K with respect to these values are done with a computer

simulation. We have to assume discrete h1[n] and h2[n] to do the simulation. The

impulse responses assumed are given in Fig. 2.6. We also need to assume some values

for σ2
β and σ2

n in order to be completely able to write K. We assume them to be both

1.

We find the optimum f [n] sequences that maximize K, with changing energy

values. In Fig. 2.8 and Table 2.4 we give the calculated sequences with energies equal

to 1, 10, 20 and 50.

As can be seen, the maximum K values achieved are not so big and they somehow

converge to a limit. Even worse, the corresponding probability of errors are too large

for these K values. However, this also shows how large probability of errors would

be obtained when a non-optimal sequence is used. To see this, we also generate

random sequences and find their probability of errors with theoretical analysis and

simulation (with energy equal to 20). The results are given in Fig. 2.9. It can be

seen how bad probability of errors we get with randomly generated sequences. This

shows the difficulty of the problem of detection between same-mean, different-variance

distributions. In Fig. 2.10 the corresponding K values for the same sequences are

given.
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Figure 2.6. Discrete impulse responses used for the simulation
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Figure 2.7. P(e) vs. K.

Table 2.4. Maximum K values achieved with changing energy values.

energy fopt[n] K

1 [0.5618 0.0 0.4300 0.0 − 0.4293 0.0 − 0.5613]T 2.1178

10 [1.6906 0.0 1.4635 0.0 − 1.4635 0.0 − 1.6906]T 6.2224

20 [2.3883 0.0 2.0726 0.0 − 2.0726 0.0 − 2.3884]T 6.3745

50 [3.7753 0.0 3.2782 0.0 − 3.2786 0.0 − 3.7751]T 6.4187
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Figure 2.8. Optimum waveforms and the corresponding K and P (e) values for
different energy values.

2.2.2.4 More Practical Waveforms

In this section, we present the results calculated for more practical waveforms

where the samples, f [n], have the same fixed amplitudes. The resulting waveforms

are given in Table 2.5 and Fig. 2.11. It can be observed that a very slight decrease

in K happens with this new constraint.
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Table 2.5. K values achieved with more practical waveforms than in Table 2.4 with
various energy values.

energy f [n] K

1 [0.5 0.0 0.5 0.0 − 0.5 0.0 − 0.5]T 2.05

10 [
√

10/2 0.0
√

10/2 0.0 −√10/2 0.0 −√10/2]T 6.0481

20 [
√

20/2 0.0
√

20/2 0.0 −√20/2 0.0 −√20/2]T 6.1980

50 [
√

50/2 0.0
√

50/2 0.0 −√50/2 0.0 −√50/2]T 6.2416
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P(e) = 0.3707
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P(e) = 0.2039

K = 6.1980
P(e) = 0.2048

Figure 2.11. More practical waveforms which are alternatives to the ones in Fig.
2.8.

.
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2.2.2.5 Changing the Correlator Function

Up to this point, we assumed our radar transmitter sending f(t) and receiver

correlating the received signal with the same waveform. Now, we try to see whether

changing the correlating signal in the receiver to another waveform, call g(t), can

improve identification performance, or more directly, increase K.

First, let us write the new (discretized) definition for K, which is nothing but Eq.

2.66 with a slight change.

K =

σ2
β

(
N−1∑
n=0

g[n]
N−1∑
i=0

f [i]h1[n− i]

)2

+ σ2
n

σ2
β

(
N−1∑
n=0

g[n]
N−1∑
i=0

f [i]h2[n− i]

)2

+ σ2
n

. (2.67)

Now we try to maximize K with respect to the variables g[0],...,g[N−1],f [0],...,f [N−
1]. We use numerical calculations again to optimize K. We follow the same procedure

in Section 2.2.2.3 and find the optimum f [n] and g[n] sequences.

We give the results in Table 2.6, Fig. 2.12 and Fig. 2.13. Here the important

observation is that we are able to obtain dramatic increases in K, and accordingly

much lower probability of errors. It can be concluded that using different waveforms

for the transmitter and receiver can significantly increase our performance.

A detail about the values in Table 2.6 is that the waveforms for energy values

20 and 50 are not optimal in reality. Since the computer simulation gives unreliable

results for such a high value of energy, we just applied a scaled version of fopt[n] and

gopt[n] for energy = 10. Even for this case, the K values are much higher than the

case summarized in Table 2.4.
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Figure 2.12. P(e) for rectangular, optimal and random waveforms with energy=20,
with correlator g[n].

2.2.2.6 Using Phase Modulation

In this part, we repeat our simulations for the case where the samples of radar

signal f [n] and the correlator signal g[n] have the same amplitudes but changing phase

values. In order to optimize our signals for this new design constraint, we have to

review our model. Let us quickly remember our variables. Under the two hypotheses

the received waveforms were

H1 : r(t) = βu1(t) + n(t),

H2 : r(t) = βu2(t) + n(t). (2.68)
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Recalling that the correlator function g(t) is in general different than f(t), again we

define

r =

∫ T

0

r(t)g(t)dt, (2.69)

u1 =

∫ T

0

u1(t)g(t)dt, (2.70)

u2 =

∫ T

0

u2(t)g(t)dt, (2.71)

n =

∫ T

0

n(t)g(t)dt. (2.72)

With these definitions, the random variables we have under the two hypotheses are

H1 : r = βu1 + n, (2.73)

H2 : r = βu2 + n. (2.74)

The most important difference compared to the amplitude modulation case is that

u1(t) and u2(t) are now complex baseband signals. So, the calculation regarding the

moments of the random variable rreal and rimag changes slightly. Without going into

too much detail, we say that the only change is the expression of the variances of

these random variables. Their variances are now given by

σ2
r1 = σ2

β ‖u1‖2 + σ2
n, (2.75)

σ2
r2 = σ2

β ‖u2‖2 + σ2
n. (2.76)

Other than this change, all probability of error calculations are the same.

We make our simulations for the case where f [n] and g[n] are allowed to be

different. Our aim is to find the phase values that minimize the probability of error.

In our simulations, we assume f [n] and g[n] to be consisting of 7 pulses each. Hence,
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our purpose is to find the optimum 14 phase values. In the following simulation, we

allow the pulses to have either 0 or π as the phase value. The pulses are also allowed

to be OFF, meaning that there is no signal at all for that particular duration. So,

any pulse can have either of the values of {−A,A, 0}, A depending on the energy

constraint.

The results are given in Table 2.7. It can be easily seen that even with two phases

we can have K values close to the amplitude modulation case. f [n] and g[n] values

are the scaled versions of each other for the last 3 energy values. An interesting

observation is that these signals make the output for the second target zero. In other

words, when this radar and the correlator signal is used, the u2 value in Eq. 2.62

turns out to be zero which helps maximize K.
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Figure 2.14. Family of targets.

2.3 Family of Targets

In this project, we are trying to distinguish between two kinds of targets which

differ by their sizes, a coke can and a car for example. In reality, each of these two

target classes consists of a large number of impulse responses. But, formerly, we

were only able to find the optimal signals when each target class is assumed to be

consisting of a single impulse response. Of course, this is a too unrealistic assumption.

For instance, each coke can might have a different impulse response (or even a single

one can have different impulse responses depending on the angle of incidence). So,

the next goal is to distinguish between classes of targets that consist of a number of

impulse responses. Again, we are trying to find the optimal f(t) and g(t) based on

what ‖r‖ they correspond to.
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Figure 2.14 illustrates a simple model where both target classes constitute of three

impulse responses. The car and coke can class has three impulse responses each (h1(t),

h2(t), h3(t) are the cars, h4(t), h5(t), h6(t) are the coke cans). We know from the

last section that the statistic we use for the decision is the norm of the result of the

correlation. Let us assume that ‖r1‖, ‖r2‖, and ‖r3‖ correspond to the car responses.

Similarly, ‖r4‖, ‖r5‖, and ‖r6‖ are the coke can responses. What we would like is to

have the car and coke can responses as far apart as possible. This will decrease the

probability of error. Let us write our goal.

Maximize
(

min(‖r1‖ , ‖r2‖ , ‖r3‖)−max(‖r4‖ , ‖r5‖ , ‖r6‖)
)
.

We make this problem easier by assuming the coke can responses will be zero. Of

course, this means that we have to choose our signals from the ones that have zero

response from the coke can. Keeping this in mind, the new goal is

Maximize min(‖r1‖ , ‖r2‖ , ‖r3‖).

Let us explain the situation better. We first select an (f(t), g(t)) pair. When we

use it, it gives us some (‖r1‖ , ‖r2‖ , ‖r3‖) in return. The minimum of these values

tells us how good we did, because it corresponds to the worst case scenario.

This problem can be viewed as a game. The game we are playing here has the

following rules:

i. There are two players.

ii. We are the one who plays first.

iii. We select our playing card from the set of all (f(t), g(t)) pairs that have zero

coke can response.

iv. After we make our move, our opponent plays by choosing one of his car impulse

responses.

57



v. ‖r‖ is how much we gain from this game (payoff).

Since we do not know which move our opponent will make, we should be ready to

encounter an unfriendly opponent who tries to minimize what we gain. This means

that we should maximize our minimum gain. This problem is called a minimax

problem.

Now consider this situation: We know that for a given target impulse response we

can find the optimal signals. For our simple example, consider Table 2.8. Suppose we

want to maximize the minimum gain based on the values in this hypothetical table.

Let us try to choose the best signal pair. If we choose (f1(t), g1(t)) or (f3(t), g3(t)),

our minimum gain will definitely be smaller than 5 since the best we can gain with

the second target is 5. So, in order to solve our problem, it seems we should choose

(f2(t), g2(t)) since it is the best choice in the worst situation. In order to see what

happens when we make that decision, let us look at Table 2.9 where we choose

(f2(t), g2(t)) as the signal pair to be used.

As can be seen, the minimum gain we get is 4. If (f2(t), g2(t)) performed better

than 5 for h1(t) and h3(t), it would definitely be the minimax optimal signal pair.

Unfortunately, in this case, the optimal signal pair for the worst case does not work in

the general minimax sense. So, the optimal signal pair may be some other (f4(t), g4(t))

which remains to be found. This example shows how minimax optimization for family

of targets can be harder compared to the optimization for a given target. However,

the good news is that there are certain conditions a problem may carry where the

optimal signal for the worst case is guaranteed to be the minimax optimal. If the

particular problem in hand carries these conditions, the solution is easily found.

In [3], the authors discuss the conditions under which the optimal signal set for

the worst case also works in general. When the sufficient conditions explained there

are met, we can just find the optimal signal pair for the worst-case target and be

sure that they are the best signals we can use. This type of solution is called a
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Table 2.8. Optimal signals and their corresponding ‖r‖ values.

Target impulse response Optimal Signals ‖r‖

h1(t) (f1(t), g1(t)) 6

h2(t) (f2(t), g2(t)) 5

h3(t) (f3(t), g3(t)) 9

Table 2.9. The corresponding ‖r‖ values when the optimal signal pair for target 2
is used.

Target impulse response Used Signals ‖r‖

h1(t) (f2(t), g2(t)) 4

h2(t) (f2(t), g2(t)) 5

h3(t) (f2(t), g2(t)) 7
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saddle point solution. In order to be able to check whether our problem accepts a

saddle point solution, we should define the target classes explicitly. However, this

requires the knowledge of physical characteristics of the responses by small and large

objects. Thus, modeling of the classes is the largest step to be taken towards a

solution. When appropriate modeling is done, radar waveforms giving more robust

classification performances can be found.

2.4 Summary

In this chapter, we present our work on waveform design for car radars. We at-

tempt to find the best waveform that distinguishes large objects from small ones.

Several optimal waveforms are calculated under different constraints regarding how

the waveform is generated and how the reflecting signal is processed. We also inves-

tigate the case in which the responses from the targets are assumed to be random

signals. For this case, we calculate a new performance measure and find the optimal

waveforms. In all these scenarios, the results are found under the assumption of two

distinct responses representing large and small objects. However, for more realistic

results, these targets should be assumed to be forming two “classes of responses”.

With this more realistic assumption, the problem turns into the problem of classifi-

cation between two families of targets. This is a more difficult problem in general,

and needs to carry certain conditions in order to be solved easily. At this point, a

physical model of the problem becomes crucial to the solution. Once this model is

obtained, a realistic performance measure can be found and the optimal waveform

can be calculated.
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CHAPTER 3

DIGITAL-TO-ANALOG CONVERTER LINEARIZATION

Most of the current systems employ digital processing of signals. Digital sig-

nal processing has many advantages over its analog counterpart some of which can

be listed as flexibility of design, accuracy, ease of storage and lower cost. These

advantages make digital signal processing the natural choice for countless practical

applications. Because the signals to be processed and/or the signals to be produced at

the output are often inherently analog, a digital signal processor needs to include an

analog-to-digital converter (ADC) at the input end and a digital-to-analog converter

(DAC) at the output end. In order to fully exploit the above-mentioned advantages

of working in the digital domain, the distortion caused by these converters has to be

minimized.

Like all practical systems, DACs show some nonideal behavior. This often shows

itself as a nonlinear input-output characteristic. Linearization is the process of re-

versing this effect. In our problem, we will use the method of precompensation.

Precompensation (or predistortion) means changing the input to the system to get

the desired output. This way we compensate for the nonlinearity.

The important question is how to change the input. Answering this question

requires the knowledge of the nonlinear characteristic of the DAC. The nonlinearity

of the DAC comes from many different phenomena present in the DAC architecture.

Some of the sources of nonlinearity may be more dominant than the others depending

on the operating conditions. In order to design a predistorter for the DAC, we need a

DAC model in the first place. The DAC model needs to account for at least the most
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significant sources of nonlinear behavior. Once we have the model, i.e. the input-

output relation of the DAC, we can analyze its nonlinear effect on the input. This

analysis is crucial as it gives insight to what can be done at the input to compensate

for the nonlinearity.

In this chapter, we first give a general description of DAC errors, some of which

cause nonlinearity. In Section 3.2, we explain what predistortion is and what it means

for the special case of DAC linearization. We present the DAC model we use in Section

3.3. The important nonlinearity analysis of this DAC model for different scenarios is

given in Section 3.4. We end the chapter with the summary in Section 3.5.

3.1 DAC Errors

Digital-to-analog converters map the digital input to the corresponding analog

output. The input to a DAC is a digital signal from a finite set of levels (or codes).

Every input code corresponds to an analog value. The input-output function of a

theoretical 3-bit DAC is plotted in Figure 3.1. Based on this input-output relation,

an example of an ideal time domain response of this DAC can be plotted as in Figure

3.2.

Real DAC input-output relations and time domain responses, however, deviate

from these ideal curves in several ways. These deviations may be referred to as

simply errors. A certain type of error may or may not be of nonlinear nature. Often

nonlinear errors are the ones causing the undesired response. An important reason

why nonlinear errors are unwanted is the fact that they cause spectral regrowth.

When a signal is passed through a nonlinear system, the bandwidth it occupies is

broadened. This can be mostly harmful in communication applications where the

output signals need to be strictly confined to the predefined frequency interval.

DAC errors are usually categorized as static errors and dynamic errors. Very

shortly, static errors can be described as the deviations from the ideal function in
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Figure 3.1. Ideal DAC input-output function.

Figure 3.1. Dynamic errors are the ones that show themselves during the transition

from one digital code to another which make the real response look different than the

ideal one given in Figure 3.2.

Static Errors

Static errors of DACs are the differences between the settled real response and the

ideal response. They can be listed as offset error, gain error, differential nonlinearity

and integral nonlinearity. In order to explain these errors in the simplest way, let us

consider the input-output function of a real 3-bit DAC in Figure 3.3.

Offset error is the value where the real DAC input-output function crosses the

y-axis. It is the response of the DAC to the digital input word corresponding to zero.

For the example in Figure 3.3 the offset error is 0.2A. This error does not contribute

to the nonlinearity of a DAC.

Gain error is the error in the slope of the line connecting the zero-scale and full-

scale output of a DAC. Ideally, for uniform quantization, this line should make 45◦
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A3A
uT

t
Figure 3.2. Ideal response of the DAC in Figure 3.1 to the digital sequence
[001,011,010]. Tu is the update period of the DAC.

with the x-axis. Like the offset error, gain error does not contribute to the nonlinearity

of a DAC. As the name implies, the error is just in the overall gain.

The only static errors that cause nonlinearity are the differential and integral

nonlinearity. To understand these errors, first note that for an ideal DAC, every one

bit increase in the code corresponds to the same amount of analog output increase.

This amount (A in Figure 3.1) is called a one LSB (least significant bit) difference,

or just one LSB for short. If the DAC is not able to fix this value, the input-output

relation will be different.

For the simple 3-bit DAC example, the real input-output relation is given in Figure

3.3. As can be seen, the difference between successive analog outputs are not equal to

1 LSB. They differ for different successive code pairs. For example, between code 000

and 001 the difference is 1.1A although it is supposed to be A. This 0.1A difference

is defined as the Differential Nonlinearity (DNL). As these DNLs accumulate over

codes, every analog output level deviates from the ideal. This deviation is called

Integral Nonlinearity (INL). For our example, INL for 001 is 0.3A. An INL figure for

a commercially available 16-bit DAC is given in Figure 3.4 [10].
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Figure 3.3. A nonideal 3-bit DAC input-output function example.

Figure 3.4. Plot of INL versus the digital input measured for a commercially avail-
able DAC [10].
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Figure 3.5. Example of a real DAC time-domain response.

Dynamic Errors

Unlike static errors, dynamic errors involve the nonideal behavior of the analog

DAC output during the transition from one digital code to the next one. We will

explain these errors again by referring to a typical DAC time-domain response given

in Figure 3.5 [6]. The dynamic errors of a DAC can be listed as glitches, slewing and

clock feedthrough. There are also other effects like switch memory and timing jitter

that we will assume to have negligible impact.

Glitches are the unwanted impulsive changes in the output amplitude at the

start of the transition period. Glitches occur due to lack of exact synchronization

of switches in DACs. Consider a transition from the code 01111 to 10000 for a 5-bit

DAC. Let us assume each bit is controlled by a switch. For this code transition, one

switch (MSB) needs to be closed and the remaining four of them need to open all

at the same time. If, however, the MSB switches faster, we will temporarily see the

full-scale output corresponding to 11111. As can be deduced from this explanation,

glitches depend on the input signal and one can expect higher glitch errors with in-

creasing switch activity [5]. For example, high output signal frequency leads to larger

step sizes and more switching activity. Although glitches are signal-dependent er-
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rors, we will assume they will only increase the noise floor in the frequency spectrum

instead of exciting some harmonics [5]. Note that, for eliminating nonlinear effects,

reducing the harmonics power is more of a concern.

Slewing effect comes from the fact that the DAC cannot change its output value

instantaneously. The output value ramps up from the previous level to the current

one. In other words, there is a nonzero settling time for the output to reach the

desired value. Slewing effect is one of the reasons of frequency distortion and is likely

to create undesired harmonics [5]. In fact, what really causes nonlinearity is the

nature of slewing being code-dependent [6]. We will see later why this is the case.

One can expect the slewing effect to be higher for larger step sizes. Hence, larger

output signal frequency creates larger slewing error.

Clock Feedthrough (CFT) is a dynamic error caused by the capacitive coupling

between the clock signal controlling a switch and the output signal [7]. CFT occurs

when the switches turn on and off. This means CFT happens twice for a given update

period, Tu [5]. Because of that, CFT is assumed to produce a harmonic only at half

the update frequency fu/2 [6]. CFT may also cause an error in the settled value [7],

but for current-steering DACs the effect is expected to be transient like the glitch

effect [5].

Having seen the static and dynamic errors, let us shortly comment on their rel-

ative importance. Generally for small DAC speeds and low signal frequencies static

errors tend to dominate. The situation reverses for higher update rates and signal

frequencies. Dynamic errors are the dominant cause of distortion in this case [6].

3.2 Predistortion

In general we can count two ways of combating nonidealities of systems. The first

and maybe the most obvious way would be to make the system a better one. This

may be in terms of redesigning the system, replacing the components, etc. However, if
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we are constrained to work with the given system, we have to admit the situation and

do our best. The second method then would be to put additional systems that make

the overall input-output relation closer to the ideal one. Although the cancelation of

the nonidealities makes the perfect solution, this may not be easy, if not impossible.

Predistortion is a method of the second type mentioned above. What we do in

predistortion is to give the “wrong” input to get the “right” output. Let us explain

what we mean. In general, because we do not have an ideal system in hand, the

output will be different than what we intended. However, a different input this time

can give an output closer to ideal one. So, we predistort the input, i.e. change the

input before it enters the system. As explained in the Introduction, predistortion

involves an additional system between the input and the nonideal system in hand.

In our case, the nonideal system is the DAC and the predistorter system is the one

we are trying to design. So, the question to be answered is: What is the predistorter

mechanism which makes the overall DAC system closest to the ideal? By “ideal” here,

we mean “linear”. We will see later that a system’s linearity is usually inspected by

means of frequency spectrum analysis. We will be hoping to see a clean frequency

spectrum at the output end when designing our predistorter.

A predistorter can be implemented as an online or an offline one. An online

predistorter adapts itself as the system continues running. Offline predistorter, on

the other hand, will require a calibration period before the overall system starts

operating. Once the predistorter is set, it will be used as a fixed (not adaptive)

system. In this project, we are trying to linearize DACs with offline predistorters.

Before ending the description of predistortion, it should be noted that the success

of the predistorter depends on the quality of the model assumed, i.e. how well it

matches reality. On the other hand, a good model is likely to be a complex one,

which in turn complicates the predistorter design. This is an important trade-off in

choosing a model. DACs in general are hard to model, and most probably there is
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no model that covers the complete input-output relation of a DAC, let alone having

a simple one [6]. As a matter of fact even a single type of error, e.g. glitches, can

be extremely hard to model [5]. In conclusion, we are constrained to work with an

incomplete DAC model and we will be seeking a model that covers most dominant

nonlinearities under our assumed operating conditions.

3.3 DAC Model

As mentioned in the previous section, the success of linearization is closely tied to

what is selected as the DAC model. In fact, modeling of the system can be thought

of as the starting point to the linearizer design. This is because the crucial nonlinear

input-output relation is given by the model.

A DAC model has to be architecture-dependent. In other words, how the actual

DAC is implemented as a circuit determines the model in the first place. DACs can be

implemented in several different architectures. In this project, we assume the DAC to

be of current-steering architecture, as most high-speed DACs are this type [7]. Upon

the selection of the architecture, a convenient DAC model can now be looked for.

Unfortunately, the literature is not rich in DAC modeling, at least when compared

to modeling (and compensation) of ADCs. However, there are some relatively recent

works in modeling of the dynamic errors of DACs [8, 9]. As mentioned in Section

3.1, for high update rates and/or high output signal frequencies, dynamic errors tend

to dominate the DAC behavior. This allows us to use a model which is focued on

the dynamic errors. In this project, we assume the DAC will have the nonlinear

input-output relation given by the model developed in [9].

The model we assume is developed by some component-wise simplifications to an

actual current-steering DAC circuit. Every nonideal component, like current sources,

switches, output wires, etc., is represented by an approximate equivalent circuit.

After that, the combination of all these components gives us an overall DAC model.
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This approximate DAC circuit is given in [9] as in Figure 3.6. This circuit is further

simplified and represented as the input-dependent circuit in Figure 3.7. Of course,

for our purposes, what matters is the nonlinear equation deduced from the finalized

DAC model. The circuit in Figure 3.7 has the following input-output relation:

y(t) = y(0) + (I(x)R− y(0))


1− e

−
t

RC(x)


 , 0 < t ≤ Tu, (3.1)

where we assume the output to be defined as the voltage value taken at the designated

node. I(x) is the ideal current produced for the code x on the interval (0, Tu], where

Tu is the update period of the DAC. The most interesting point in this model is the

code-dependent capacitor C(x). We had mentioned in Section 3.1 that the code-

dependence of the slewing effect is the main reason behind the nonlinearity rather

than its existence alone. This can be easily seen from the equation. If the capacitor

C(x) was a constant for all possible codes, then this would still be a linear input-

output relation although it does not produce the desired sample-and-hold output.

In order to have a general understanding of what kind of an output we would see

according to this equation, consider the plots in Figure 3.8. The two curves are the

different outputs to the discrete-time input x[·] = [0, 2, 5, 1, 4]. The black curve is the

ideal sample-and-hold signal while the blue one is the slewed output calculated by

Equation 3.1 (for this plot C(x) is assumed to be proportional to 1/|x| ). The first

obvious difference between the curves is the finite rate of state change in the slewed

curve. However, also notice that for every period there is a different time constant.

This is most evident on (3T, 4T ] where the change is so slow that the value at 4T

cannot even come close to the ideal value y(4T ) = 1.

Assuming that C(x) is given explicitly, the time domain relation given in Equa-

tion 3.1 is enough to describe the nonlinear input-output function of this DAC model.

However, frequency spectrum analysis is a more convenient method to explore in what
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Figure 3.6. Simplified current-steering DAC circuit [9].
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Figure 3.7. DAC model used in this project [9].
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Figure 3.8. Ideal sample-and-hold output of the DAC to the input x = [0, 2, 5, 1, 4]
(black curve) and the output according to Equation 3.1 (blue curve).

ways this function effects a given input signal. For nonlinearity analysis, it is common

to use a sinusoid as the input and investigate the harmonics present in the output

spectrum. The locations, strength or number of harmonics can give valuable informa-

tion about the system under concern. As a matter of fact, some specifications used

to assess DAC performance are obtained using this kind of spectrum analysis. For

example, a common DAC specification called Spurious Free Dynamic Range (SFDR)

is defined as the difference in the powers of the fundamental and the largest harmonic

in the output spectrum when a sinusoid is applied to the DAC. In the analysis of our

model given by Equation 3.1, we study the DAC nonlinearity by means of frequency

spectrum analysis.

3.4 Nonlinearity Analysis of the DAC Model

In order to come up with a linearizer, we should first understand what kind of a

nonlinear effect Equation 3.1 implies. But this equation is incomplete as long as C(x)
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is not clearly defined. In this section, we explain how different definitions of C(x)

affect the nonlinearity. However, we first do some simplifications on Equation 3.1 to

make it easier to work on. Let us first rewrite the output for an arbitrary instant of

time:

y(nTu + t) = y(nTu) + (x[n]− y(nTu))


1− e

−
t

RC(x[n])


 ,

0 < t ≤ Tu. (3.2)

Notice that we replaced I(x)R by x[n] because they are both equal to the ideal output

value for the interval (nTu, (n + 1)Tu]. The above equation shows that y(nTu + t)

depends on x[n] and y(nTu). y(nTu) itself is determined by an equation similar to

Equation 3.2:

y((n− 1)Tu + Tu) = y((n− 1)Tu) +

(x[n− 1]− y((n− 1)Tu))


1− e

−
Tu

RC(x[n− 1])


 .

As can be seen, y(nTu) depends on y((n − 1)Tu) and x[n − 1]. As we take these

dependencies back to the output value corresponding to the first input code, we see

that the value of the output at any instant is dependent on all the previous input

values. This complicates the analysis because in order to write the output as a

function of the input only, we should have a very long equation which involves the

repeated application of the same relation given in Equation 3.2. We can make an

approximation here to simplify Equation 3.2. If we assume a big time constant, we

can say y(nT+
u ) ≈ x[n− 1]. The equation becomes
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Figure 3.9. DAC output to the input x = [0, 2, 5, 1, 4] according to Equation 3.3.

y(nTu + t) = x[n− 1] + (x[n]− x[n− 1])


1− e

−
t

RC(x[n])


 ,

0 < t ≤ Tu. (3.3)

Equation 3.3 is simpler because this time the value of the output depends only on the

current and the previous input value. Notice that, here, we do not ignore the error

made in the value of y(nTu), but rather we ignore the fact that in the next period,

the output will rise from the value it just reached. More clearly, this modification

makes the output discontinuous. Figure 3.9 shows the output for the same input as

in Figure 3.8 but now calculated using Equation 3.3.

It is clear that, as long as RC(x) 6= 0, the value of y(·) will fall short to reach

the intended value at the update instants. In other words, if we sample y(·) at those

instants we will see nonzero error values. Let us explain this by rewriting Equation

3.3 by considering the output as the discrete-time signal y[·] generated by samples of

y(·) at multiples of Tu.
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y[n + 1] = x[n− 1] + (x[n]− x[n− 1])


1− e

−
Tu

RC(x[n])


 , (3.4)

where y[n] , y(nTu).

The error made at the n + 1st sample is the difference between y[n + 1] and its

ideal value, x[n]. Using Equation 3.4, we can define the discrete-time error signal e[·]
as:

e[n] = y[n]− x[n− 1] = x[n− 2] + (x[n− 1]− x[n− 2])


1− e

−
Tu

RC(x[n− 1])




−x[n− 1]

= (x[n− 2]− x[n− 1])e
−

Tu

RC(x[n− 1]) .

With this definition, now the real output can be thought of as an error signal added to

the ideal output. The error signal e[·] is the part causing nonlinearity. The source of

the nonlinearity is not the existence of e[·], but its nonlinear dependence on x[·]. We

need to explore how the definition of C(x) effects the nonlinearity. In the following

sections we analyze what happens in different scenarios.

3.4.1 C(x) independent and identically distributed in x

In Equation 3.4, we know that C(x) implies there is a different capacitance for

every update period. As a starting analysis, we first consider the extreme case where

the capacitance is a random variable independent of the input signal. This analysis

will provide a good basis for the more realistic situations where C(x) is assumed to

be a random variable whose statistics depend on x.

We start by some definitions to make the analysis easier. We can define a new

discrete-time signal z[n] , x[n− 2]− x[n− 1]. With this definition,
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e[n] = z[n]e
−

Tu

RC(x[n− 1]) .

Now, we define a discrete-time random process rn, such that rn = Tu/RC(x[n− 1]).

This makes z[n] a random process and it can be more appropriately denoted as zn.

Finally, with all these definitions, e[·] also becomes a random process and can be

defined as:

en = zne−rn . (3.5)

As mentioned above, we will do the nonlinearity analysis by means of frequency

spectrum calculation. en is a random process and we need to calculate its power

spectral density (psd). If we assume the input process to be wide-sense stationary,

zn will also be a wide-sense stationary process. If we consider rn to be a white noise

process independent of zn, then the autocorrelation function of en can be calculated

as:

Re[n1, n2] = E{en1en2} = E{zn1zn2e
−rn1e−rn2}

= E{zn1zn2}E{e−rn1e−rn2}

=





Rz[0]E{e−2rn1} if n1 = n2

Rz[n2 − n1]E{e−rn1}E{e−rn2} if n1 6= n2

=





Rz[0]c1 if n1 = n2

Rz[n2 − n1]c2 if n1 6= n2

Re[m] =





Rz[m]c1 if m = 0

Rz[m]c2 if m 6= 0

= Rz[m](c2 + δ[m](c1 − c2)).
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In the above equations, c1, c2 are constants defined by c1 , E{e−2rn1} and c2 ,

E{e−rn1}E{e−rn2}. Observe that en is also a wide-sense stationary process (in fact

it is also necessary to show en has a constant mean which is an easy task). The

power spectral density of en can be calculated by taking the Fourier transform of its

autocorrelation function Re[m]. Then,

Se(ω) = F{Re[m]} = F{Rz[m](c2 + δ[m](c1 − c2))}

= c2Sz(ω) + (c1 − c2)Rz[0].

From the above description, we see that multiplying zn by e−rn has the effect

of scaling Sz(ω) and adding a constant function to it. If the input is a sinusoid,

Sz(w) will only have the fundamental harmonic. Then, this process will produce no

additional harmonics, but instead, it will increase the noise floor in the spectrum.

In order to check this analysis, we simulate a DAC using Equation 3.2, with the

replacement of rn = 1/RC(x[n]) with a white Gaussian random process. We assume

the DAC update rate to be fu = 1/Tu = 100 MHz. For the input, we use a sampled

cosine at 13 MHz, x[n] = cos(2π 13
100

n). The output spectrum is seen in Figure 3.10.

The spectrum is clean in terms of harmonics, but the overall noise floor is definitely

increased which is consistent with our theoretical analysis.
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Figure 3.10. Input (a) and output (b) signal power spectra for a DAC simulated
according to Equation 3.2. 1/RC(x[n]) is replaced by a white Gaussian random
process rn. The input is a cosine signal at 13 MHz and the DAC update rate is 100
MHz.
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3.4.2 C(x) as a deterministic function

In the above discussion, we observed that if the output capacitance is a random

variable independent of the input, the only effect on the input spectrum is in terms

of adding some constant noise. This is consistent with the claim that nonlinearity

comes from the dependence of the slewing on the input. Here, we explore a special

case of this dependence where C is a deterministic function of x.

In order to make our analysis look better we first define the function

f(x) =
Tu

RC(x)
. (3.6)

This implies the following relation for the error signal:

e[n] = z[n]e−f(x[n−1])

= (x[n− 2]− x[n− 1])e−f(x[n−1]). (3.7)

Here, it should be noted that our focus is on how this relation affects nonlinearity.

The main question regarding the relation in Equation 3.7 is: How does a signal

change when it is multiplied by an exponential function which has the signal in its

exponent? To answer this question, it is much more convenient to work on the

following continuous signal. The discussion that follows can be easily extended to the

discrete-time case. Let e(t) be defined as:

e(t) , x(t)e−f(x(t)). (3.8)

We need to find the relation between E(f) and X(f). If we define g(t) , f(x(t)),

and use Taylor series expansion,
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e(t) = x(t)e−f(x(t))

= x(t)e−g(t)

= x(t)(1− g(t) +
g2(t)

2
− g3(t)

3!
+ ...).

In order to understand what happens in the spectrum we need to know what g(t)

is. For example if g(t) = x(t),

e(t) = x(t)(1− g(t) +
g2(t)

2
− g3(t)

3!
+ ...)

= x(t)(1− x(t) +
x2(t)

2
− x3(t)

3!
+ ...)

= x(t)− x2(t) +
x3(t)

2
− x4(t)

3!
+ ... .

Looking at this relation above, if x(t) is a sinusoid, E(f) will contain all the harmonics

with decreasing amplitudes. Now, let us look at another g(t) definition. This time

suppose g(t) = cos(x(t)).

e(t) = x(t)(1− g(t) +
g2(t))

2
− g3(t)

3!
+ ...)

= x(t)(1− (1− x2(t)

2
+

x4(t)

4!
+ ...) +

1

2
(1− x2(t)

2
+

x4(t)

4!
+ ...)2 + ....).

If x(t) is a sinusoid, it is obvious that this time we will not see the even harmonics

in E(f). In order to check the validity of these statements, we repeat the simulation

in Section 3.4.1 with the only change that we replace the random variable rn with

g[n] = f(x[n]). The results are given in Figures 3.11 and 3.12. The spectrum plots

reveal that when we have f(x) = x, we see all the harmonics, while f(x) = cos(x)

does not excite the even numbered harmonics. These are all consistent with our

theoretical findings.
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Figure 3.11. Input (a) and output (b) signal power spectra for a DAC simulated
according to Equation 3.2. 1/RC(x[n]) is replaced by x[n] + 1 (not x[n], because it
would have produced negative time constants). The input is a cosine signal at 13
MHz and the DAC update rate is 100 MHz. Observe that there are many harmonics
present with changing amplitudes.
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Figure 3.12. Input (a) and output (b) signal power spectra for a DAC simulated
according to Equation 3.2. 1/RC(x[n]) is replaced by cos(x[n]). The input is a cosine
signal at 13 MHz and the DAC update rate is 100 MHz. Observe that even numbered
harmonics are not present.
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3.4.3 C(x) increasing with |x|
In the previous sections, we studied what could happen for different definitions of

the time constant in Equation 3.2. These cases, covered in Section 3.4.1 and 3.4.2,

involve general definitions and the results presented give an idea about of what type

of distortion each scenario would lead. If we want to see what a realistic error function

could cause, we should go back to our circuit model and try to relate C(x) to x in a

reasonable way.

Consider the circuit models given in Figures 3.6 and 3.7. The capacitance C(x)

in Figure 3.7 is a combination of the capacitances present in the DAC circuit. If we

assume that the only capacitances in the DAC are the output capacitances of the

current sources (denoted by Ci’s in Figure 3.6) and the load capacitance (denoted

by C), we can write C(x) in terms of these capacitances. Before doing that, we first

neglect the resistances of the current sources (Ri’s) and switches (Rsi
’s). This makes

the equivalent circuit a very simple one, where all the capacitances come in parallel.

Of course, for every digital input, there is a different equivalent circuit due to varying

combinations of open and close switches. Let us define the set of indices of the closed

switches by S = {i| Switch i is closed }. Then we can write C(x) as:

C(x) = C +
∑
i∈S

Ci. (3.9)

Here we defined C(x), but we are not done yet to start our nonlinearity analysis. The

last thing remaining is to relate the digital input to the set S. A first observation may

be that we should have more switches closed for higher amplitude inputs. This would

be a true assumption if we assume all the current sources in Figure 3.6 to be unit

current sources and each current source is controlled by a switch. This assumption

would be true for thermometer DACs, where the number of switches and unit current

sources are both equal to the number of input levels [7].We further assume the output

capacitance of the current sources to be equal, i.e. Ci = C0, ∀i. If we assume the
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DAC to be unity-gain, then C(x) can be written as C(x) = C + C0
|x|

LSB
. Here, LSB

is the amount of change in the output value corresponding to one bit change in the

input (note that x is a quantized value).

Now we refer to Equation 3.8. In the previous discussion, we had found the

relation between the output distortion and the time-constant by using this error

signal definition. In this specific case,

f(x(t)) =
1

R(C + C0
|x(t)|
LSB

)
. (3.10)

Remember that the Taylor expansion of f(x(t)) had helped us to understand what

type of distortion we would have in the output spectrum. When the input to the

DAC is a sinusoid, based on what powers are present in the Taylor approximation

of e(t), we can predict the harmonics that would be seen in the spectrum. We now

repeat the same analysis here. Note that f(x(t)) in Equation 3.10 is an even function.

This means the Taylor expansion of f(x(t)) will not contain odd powers.

f(x(t)) = a0 + a2x
2(t) + a4x

4(t) + ... . (3.11)

Then

e(t) = x(t)
(
1− (a0 + a2x

2(t) + a4x
4(t) + ...)

+
1

2
(a0 + a2x

2(t) + a4x
4(t) + ...)2 − ...

)
.

As can be seen, e(t) does not contain any even powers of x(t). Like in the case

analyzed in Section 3.4.2, where f(x) = cos(x), the even numbered harmonics will

not be present in the output spectrum. As a conclusion, we were able to do the

nonlinearity analysis for a more realistic situation. This analysis can be repeated for
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less simplified cases, e.g. with the switch and current sources resistances also taken

into account.

We check this analysis with a DAC simulation. As in previous sections, the input

signal is a cosine at 13 MHz. The 10-bit DAC is assumed to be have an update rate of

fu = 100 MHz. We assume the circuit elements to have values R = 70 Ω, C = 20 pF

and C0 = 5 fF. The input and output signal spectra are given in Figure 3.13. The

simulation results agree with our calculations as the output spectrum does not have

even numbered harmonics.

Considering the simulation results in this chapter, it is important to note that,

we worked on approximate functions in our theoretical analyses but used the exact

model in simulations. For example, in both the random and the deterministic case,

we used Equation 3.3 instead of Equation 3.2 for simplification. Further, we neglected

the fact that the error signals were written in terms of the modified input sequence,

x[n−2]−x[n−1], not the exact input sequence, x[n]. These simplifications -although

they do change the output signal- were not expected to disturb the nonlinearity

analysis. For example, if an operation on x[n] does not produce any harmonics, then

the same should be true for the operation on x[n − 2] − x[n − 1] as well. On the

other hand, we used the exact model given by Equation 3.2 in the simulations. The

simulation results justified our assumption that the nonlinearity analysis still remains

to be correct despite the above-mentioned simplifications.
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Figure 3.13. Input (a) and output (b) signal power spectra for a 10-bit DAC simu-

lated according to Equation 3.2. C(x[n]) is replaced by C + C0
|x[n]|
LSB

where R = 70Ω,
C = 20 pF and C0 = 5 fF. The input is a cosine signal at 13 MHz and the DAC
update rate is 100 MHz. Even harmonics are not present.
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3.5 Summary

In this chapter, we present our work on digital-to-analog converter (DAC) lin-

earization. We attempt to achieve a more linear input-output relation by modifying

the input to a DAC. This method, called predistortion, requires a good understanding

of the DAC errors contributing to the nonlinearity. We present the most prominent

DAC errors by explaining their effects on the DAC output. In order to be able to

modify the input accordingly, a DAC model needs to be adopted. Based on the

most dominant of the DAC errors, we choose a simple DAC model and we explain

how it is extracted from the actual DAC circuit. This model gives us a mathematical

expression of the input-output relation which can be used to understand how the non-

linearity occurs. The error function, i.e. how the error depends on the input signal,

determines the type of the nonlinearity observed at the output. Through theoretical

analyses and computer simulations, we investigate how different error function def-

initions lead to different types of nonlinearities. We present our results in terms of

frequency spectrum calculations.
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CHAPTER 4

CONCLUSION

We present our work on two research projects. In the radar target classification

project, we tried to enhance the detection performance of car radars. Our aim was

to find the best signal to send to maximize classification between small and large

objects. We obtained the results given in Chapter 2. Having these results in hand,

we have the following conclusions.

Once given a performance measure, it is a rather trivial task to compare the signals

from the available set. However, the essential part of the problem is the modeling to

define this measure. As long as our model assumes two distinct impulse responses

representing targets of concern and targets to ignore, we are able to find the best

signal to send. As the constraints on the available signals get more relaxed we are

able to achieve better classification performance. In addition, using a different signal

for correlation helps us improve this performance. These findings suggest changes on

the car radar system for better detection.

Once we leave the assumption of two distinct impulse responses, the problem gets

more complicated. Now we have to do classification between classes of targets. Our

objective becomes maximizing the worst case performance. This makes the problem

a minimax robust optimization problem. This type of optimization is more difficult

and needs special conditions to be easily solved. However, because of the lack of a

model of the physical targets, we are not able to check whether these conditions are

satisfied. Measurements on real targets are needed to be done to model the target
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behavior for small and large objects. This way, we can make a more reliable choice

of signal.

For the second project, we worked on a predistorter design for digital-to-analog

converters (DACs). Although the main goal is to eliminate nonlinearities of DACs,

the big challenge showed itself in understanding why these nonlinearities happen in

the first place. As the predistorter design significantly depends on the DAC model

assumed, a crucial first step has to be finding a behavioral model of a DAC. Unfortu-

nately, a DAC is not easy to model. DAC errors causing nonlinearity originate from

a wide range of factors and even a single selected type of error is very hard to model.

So, we resorted to models of DAC errors we found to be most dominant. We inves-

tigated how this model would affect a given input signal by several theoretical and

simulated analyses. These analyses constitute our main contribution in this project.

We observed that the type of dependence the errors have on the input significantly

affects how the nonlinearity shows itself.
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ies in Science and Technology, Dissertation No. 667, Linköping, 2001.
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2002.

[10] AD9776A/AD9778A/AD9779A, Datasheet, Analog Devices, Norwood, MA,
2007.

[11] F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation
for analog-to-digital converters,” IEEE Transactions on Circuits and Systems,
vol.38, no.8, pp. 958-961, Aug. 1991.

90


	Radar Waveform Design for Classification and Linearization of Digital-to-Analog Converters
	

	Radar Waveform Design for Classification and Linearization of Digital-to-Analog Converters

