
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

November 2015

Indoor And Outdoor Real Time Information Collection in Disaster Indoor And Outdoor Real Time Information Collection in Disaster

Scenario Scenario

Dongyi Yang
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Yang, Dongyi, "Indoor And Outdoor Real Time Information Collection in Disaster Scenario" (2015). Masters
Theses. 307.
https://doi.org/10.7275/7097402 https://scholarworks.umass.edu/masters_theses_2/307

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Figure.21.

The red polyline indicates the path generated by the commander application. It is the best

and the shortest path that the robot should follow. But the map has no representation of rocks or

trees, so the real moving path of the robot is different, shown as blue polyline on the map.

Figure.22.

The purple translucent polygons on map are set manually users, telling the robot those

areas are not reachable. This helps a l

polygons, users could simply call the sliding window on the left by first set the boundary of the

34

Figure.21. Robot Navigation and Image Retrieving

The red polyline indicates the path generated by the commander application. It is the best

and the shortest path that the robot should follow. But the map has no representation of rocks or

trees, so the real moving path of the robot is different, shown as blue polyline on the map.

Figure.22. Path Generation and Robot Movement

The purple translucent polygons on map are set manually users, telling the robot those

areas are not reachable. This helps a lot for the robot path generation algorithm. To set these

polygons, users could simply call the sliding window on the left by first set the boundary of the

Image Retrieving

The red polyline indicates the path generated by the commander application. It is the best

and the shortest path that the robot should follow. But the map has no representation of rocks or

trees, so the real moving path of the robot is different, shown as blue polyline on the map.

and Robot Movement

The purple translucent polygons on map are set manually users, telling the robot those

ot for the robot path generation algorithm. To set these

polygons, users could simply call the sliding window on the left by first set the boundary of the

polygon and then submit the setting. Polygons can also be modified or deleted. An SQLite

database is used to store the coordinates of each polygon.

A control panel is hidden in the sliding drawer at the bottom of screen. Users can set the

robot’s motion as controlled motion or autonomous motion. Users can also control the servo o

robot chassis. When the robot receives direct motion commands from control panel, it will discard

its current preset motion and execute the instant command from users.

35

polygon and then submit the setting. Polygons can also be modified or deleted. An SQLite

to store the coordinates of each polygon.

Figure.23. Reachable Area Setting

A control panel is hidden in the sliding drawer at the bottom of screen. Users can set the

robot’s motion as controlled motion or autonomous motion. Users can also control the servo o

robot chassis. When the robot receives direct motion commands from control panel, it will discard

its current preset motion and execute the instant command from users.

Figure.24. Remote Control Panel

polygon and then submit the setting. Polygons can also be modified or deleted. An SQLite

A control panel is hidden in the sliding drawer at the bottom of screen. Users can set the

robot’s motion as controlled motion or autonomous motion. Users can also control the servo on the

robot chassis. When the robot receives direct motion commands from control panel, it will discard

3.4.2. Communication with DIORAMA Web S

 As it is shown in Figure.2

robot commander application can get the robot’s real time location and media information of the

disaster area. The planned path and remote control commands are sent from

DIORAMA server.

Figure.25.

As shown on the UI, the preset moving path of robot is consisted of a series of critical

points along with the moving path. They are uploaded to server as a list of

After these information has been sent. A separate thread in the application will be started to

continuously monitor the status of these destination points. As soon as

changes, the change will be reflected on the UI. This is the reason why

automatically change its color while the robot is moving. The robot’s actual moving path is also

obtained by continuously retrieving the robot’s locations from server.

Similar with the robot path, the robot commands are also sent via the DIORAMA

server. Currently, the command set is consisted of 5 motion controls, 1 auto/control switc

servo controls.

3.4.3. Robot Path Generation

Path generation is a very important function of

efficiency of an autonomous ro

36

Communication with DIORAMA Web Server

As it is shown in Figure.25, by communicating with the DIORAMA web server, the

robot commander application can get the robot’s real time location and media information of the

disaster area. The planned path and remote control commands are sent from the

Figure.25. Communication with DIORAMA Web Server

As shown on the UI, the preset moving path of robot is consisted of a series of critical

moving path. They are uploaded to server as a list of coordinate

ion has been sent. A separate thread in the application will be started to

continuously monitor the status of these destination points. As soon as the status of a certain point

changes, the change will be reflected on the UI. This is the reason why the

automatically change its color while the robot is moving. The robot’s actual moving path is also

obtained by continuously retrieving the robot’s locations from server.

Similar with the robot path, the robot commands are also sent via the DIORAMA

server. Currently, the command set is consisted of 5 motion controls, 1 auto/control switc

Robot Path Generation

Path generation is a very important function of the robot commander application. The

autonomous robot depends greatly on the robot’s moving path. If the path is

, by communicating with the DIORAMA web server, the

robot commander application can get the robot’s real time location and media information of the

the application to the

Web Server

As shown on the UI, the preset moving path of robot is consisted of a series of critical

coordinate instances.

ion has been sent. A separate thread in the application will be started to

status of a certain point

the markers could

automatically change its color while the robot is moving. The robot’s actual moving path is also

Similar with the robot path, the robot commands are also sent via the DIORAMA web

server. Currently, the command set is consisted of 5 motion controls, 1 auto/control switch and 2

robot commander application. The

on the robot’s moving path. If the path is

poorly planned, the robot could be easily blocked by obstacles. Even with effective obstacle

avoidance algorithm, the time for detecting obstacle and calculating detour is not negligible.

3.4.3.1 Path generation V1

The first path generation mechanism depends highly on human rescuer. Since human

rescuer have a better sense of the already known obstacles, such as building, he/she can manually

set the robot path free from collision to those obstacles. By

markers will appear on the

strictly the order that those destination markers are added, as it

3.4.3.2 Path Generation V2

But during a disaster search and rescue

to set a precise moving path for the robot to avoid large obstacle such as building. So an automatic

path generation mechanism is necessary for the robot

the target locations or areas.

In order to avoid buildings, it first must know where is the buildings. Unfortunat

Google Map doesn’t provide

solution -- asking user to select out buildings by drawing translucent polygons on map. Ideally,

37

poorly planned, the robot could be easily blocked by obstacles. Even with effective obstacle

avoidance algorithm, the time for detecting obstacle and calculating detour is not negligible.

The first path generation mechanism depends highly on human rescuer. Since human

rescuer have a better sense of the already known obstacles, such as building, he/she can manually

from collision to those obstacles. By tapping on map, a series of destination

the Google map in the commander application. The robot would follow

strictly the order that those destination markers are added, as it is shown in Figure.26

Figure.26. Path Generation Algorithm V1

Generation V2

disaster search and rescue process, the human rescuer might not have time

to set a precise moving path for the robot to avoid large obstacle such as building. So an automatic

path generation mechanism is necessary for the robot to quickly get to known which way to take to

target locations or areas.

In order to avoid buildings, it first must know where is the buildings. Unfortunat

Google Map doesn’t provide any API to tell the building’s location on map. So I come up with

asking user to select out buildings by drawing translucent polygons on map. Ideally,

poorly planned, the robot could be easily blocked by obstacles. Even with effective obstacle

avoidance algorithm, the time for detecting obstacle and calculating detour is not negligible.

The first path generation mechanism depends highly on human rescuer. Since human

rescuer have a better sense of the already known obstacles, such as building, he/she can manually

on map, a series of destination

Google map in the commander application. The robot would follow

Figure.26.

human rescuer might not have time

to set a precise moving path for the robot to avoid large obstacle such as building. So an automatic

to quickly get to known which way to take to

In order to avoid buildings, it first must know where is the buildings. Unfortunately,

location on map. So I come up with a

asking user to select out buildings by drawing translucent polygons on map. Ideally,

this should be done before

database.

Based on the presetting reachable and unreachable area, a path generation algorithm is

designed using Google direction API and visibility graph theory.

3.4.3.2.1. Google Direction API

The Google Directions API is a service that calculates directions between locations using

an HTTP request. User can search for directions for several modes of transportations, include

transit, driving, walking or cycling. In our case,

origins, destinations and waypoints either as text strings or as latitude/

Directions API can return multi

on existing path on Google map.

As we can see in

surrounding pavement and then

Figure.27.

But a path based on Google map is sometimes not the shortest path. And what is more, as

environment changes, Google map may be out of date,

some paths incorrect. As shown in Figure.

38

this should be done before the search and rescue procedure and information must

presetting reachable and unreachable area, a path generation algorithm is

Google direction API and visibility graph theory.

Google Direction API

The Google Directions API is a service that calculates directions between locations using

P request. User can search for directions for several modes of transportations, include

transit, driving, walking or cycling. In our case, I use walking mode. Directions may specify

origins, destinations and waypoints either as text strings or as latitude/longitude coordinates. The

Directions API can return multi-part directions using a series of waypoints. The direction is based

on existing path on Google map.

As we can see in Figure.27, the path usually starts by finding the nearest point on the

then follows the pavement to the desired destination.

Figure.27. Path Generated by Google Direction API

But a path based on Google map is sometimes not the shortest path. And what is more, as

environment changes, Google map may be out of date, making some buildings

some paths incorrect. As shown in Figure.28, the robot should have not entered the shaded area,

search and rescue procedure and information must be stored in

presetting reachable and unreachable area, a path generation algorithm is

The Google Directions API is a service that calculates directions between locations using

P request. User can search for directions for several modes of transportations, include

use walking mode. Directions may specify

longitude coordinates. The

part directions using a series of waypoints. The direction is based

, the path usually starts by finding the nearest point on the

enerated by Google Direction API

But a path based on Google map is sometimes not the shortest path. And what is more, as

making some buildings unavoidable or

, the robot should have not entered the shaded area,

but the path is planned to directly go across

complement.

Figure.28.

3.4.3.2.2. Visibility Graph

A visibility graph is a graph of inter

obstacles in the Euclidean plane. Each node in the graph represents a point location and each edge

represents a visible connect

find Euclidean shortest path among a set of polygons. The shortest path between two obstacles

follows straight line segments except at the

Euclidean shortest path is th

destination points and the vertices

of finding a path within a set of obstacles.

Figure.29.

39

but the path is planned to directly go across it. This is why visibility graph is also integrated

Figure.28. An Error Path Generated by Google Direction API

Visibility Graph

A visibility graph is a graph of inter-visible locations, typically for a set of points and

obstacles in the Euclidean plane. Each node in the graph represents a point location and each edge

visible connection between them. In robot motion planning, visibility graph is used to

find Euclidean shortest path among a set of polygons. The shortest path between two obstacles

follows straight line segments except at the vertices of the obstacles, where it may turn, so the

Euclidean shortest path is the shortest path in a visibility graph that has as its nodes the start and

vertices of the obstacles [26]. Figure.29 and Figure.30 show

of finding a path within a set of obstacles.

Figure.29. Set of Obstacles between Origin and Destination

is also integrated as a

enerated by Google Direction API

visible locations, typically for a set of points and

obstacles in the Euclidean plane. Each node in the graph represents a point location and each edge

nning, visibility graph is used to

find Euclidean shortest path among a set of polygons. The shortest path between two obstacles

of the obstacles, where it may turn, so the

e shortest path in a visibility graph that has as its nodes the start and

and Figure.30 show an example

Destination

There are two steps to find the shortest path based on a visibility graph: first construct a

visibility graph and then use a short path algorithm, such as the Dijkstra shortest path algorithm, as

shown in Figure.30.

The algorithm for building a visibility graph is

Algorithm VISIBILITY

Input A list of Polygon, A set S of disjoint polygonal obstacles, start point location and

end point location

Output The visibility graph Gvis

1. Initialize a graph G = (V,

S plus two point and E = empty set.

2. for all vertices v

3. do W ←

4.

5. return G

Table.2.

Algorithm VISIBLE_VERTICES

Input A list of Polygon, A set S of polygonal obstacles and a point p that does not lie in the

interior of any obstacle.

Output The set of all obstacle vertices visible from p.

40

There are two steps to find the shortest path based on a visibility graph: first construct a

visibility graph and then use a short path algorithm, such as the Dijkstra shortest path algorithm, as

Figure.30. Find Path with Visibility Graph

The algorithm for building a visibility graph is shown in Table.2 to Table.4.

VISIBILITY_GRAPH (Plist, S, pstart, pdest)

A list of Polygon, A set S of disjoint polygonal obstacles, start point location and

The visibility graph Gvis (S).

Initialize a graph G = (V, E) where V is the set of all vertices of the polygons in

S plus two point and E = empty set.

for all vertices v V

← VISIBLE_VERTICES (Plist ,v,S) 

For every vertex w W, add the arc (v, w) to E .

Table.2. Algorithm: Building Visibility Graph

VISIBLE_VERTICES (Plist, p, S)

A list of Polygon, A set S of polygonal obstacles and a point p that does not lie in the

interior of any obstacle.

The set of all obstacle vertices visible from p.

There are two steps to find the shortest path based on a visibility graph: first construct a

visibility graph and then use a short path algorithm, such as the Dijkstra shortest path algorithm, as

shown in Table.2 to Table.4.

A list of Polygon, A set S of disjoint polygonal obstacles, start point location and

E) where V is the set of all vertices of the polygons in

Building Visibility Graph

A list of Polygon, A set S of polygonal obstacles and a point p that does not lie in the

