Pronouns and Features

Eric Reuland

OTS, Utrecht University

Follow this and additional works at: https://scholarworks.umass.edu/nels

Part of the Linguistics Commons

Recommended Citation
Available at: https://scholarworks.umass.edu/nels/vol26/iss1/23
Pronouns and Features

Eric Reuland

OTS, Utrecht University

0. Background

A fundamental question, which is rarely raised, and has, to my knowledge, never been properly addressed, is why binding relations in language require special conditions. Surely, the null hypothesis is that the behaviour of anaphors and pronominals is fully determined by their lexical properties and general interpretive principles. In so far as there are gaps in their interpretive possibilities, these should follow from the interaction with other components of the language system. Ideally, no specific statements other than about their lexical make-up should be necessary. Due to space limitations, discussion in this paper will be limited to one subcase of the binding conditions. It will be shown that for that subcase the ideal is within reach. This result will be illustrative for an approach, which I believe can be extended so as to cover all of binding theory, virtually eliminating it as a specific module of the grammar. Note, that this does not imply that restrictions on binding can be entirely understood as reflecting interface conditions (see Chomsky 1995). In fact, the evidence put forward will show that explaining locality conditions on binding also requires reference to general properties of the computational system C_{HL}.

In their canonical form, binding conditions A and B are largely stipulative. To be able to address questions like the above, a finer grained analysis is necessary. A step towards a finer grained analysis is taken in Reinhart & Reuland (1993, 1995). In accordance with earlier work (e.g. Pica (1987, 1991), Hellan (1988), Thráinsson (1991)) it is argued that the binary distinction between pronouns and anaphors should be replaced by a system which differentiates between pronouns, simplex anaphors and complex anaphors, each with their own distribution. These distributions are shown to

1 This article reports on part of an ongoing research project including Peter Coopmans, Martin Everaert, Bill Philip and Tanya Reinhart. I am grateful to all the members of the OTS research group on anaphora, and to Norbert Hornstein and others who commented on these ideas. I am alone responsible for any errors.
result from the interaction between properties of predicates and properties of chains. The main points of this approach are summarized in I. and II. below.

I. The distribution of simplex anaphors (Dutch zich, Icelandic sig, etc.), henceforth SE-anaphors, versus SELF-anaphors (Dutch zichzelf, Icelandic sjálfan sig, English himself) reflects conditions on reflexive predicates and is governed by the revised binding conditions A and B in (1) (Reinhart & Reuland (1993), henceforth R&R):

(1)
A: A reflexive-marked syntactic predicate must be reflexive
B: A reflexive semantic predicate must be reflexive marked

A predicate of (a head) P is reflexive-marked iff either P is lexically reflexive, or one of P’s arguments is a SELF-anaphor

Informally, whenever a semantic predicate is interpreted as reflexive (two of its arguments are coindexed) this must be licensed (1B), and whenever a syntactic predicate is licensed as reflexive, it must be interpreted as reflexive (1A). This is illustrated in (2) and (3).

(2)
a. Jan, bewondert zichzelf/*zich,
John admires himself/*SE

b. Jan, schaamt zich/??zichzelf,
John shames SE/??himself

The verb bewonderen is not lexically reflexive. Hence, if two of its arguments are coindexed as in (2a), one of these must be a SELF-anaphor. Thus the option with just zich is ruled out. The verb schamen is lexically reflexive. So, in (2b) a SELF-anaphor is not required, therefore superfluous, hence rejected.

In ECM contexts matrix subject and complement subject are not arguments of the same semantic predicate. So, coindexing in (3) does not form a reflexive predicate.

(3)
Jan, voelde [p, zich, weggliden]
John felt SE slide away

Therefore a SELF-anaphor is not required.

II. The distribution of pronouns versus anaphors is not governed by the revised cond-

2 A head α forms a syntactic predicate iff it has a subject; this predicate includes both Θ- and Case marked arguments of α. The semantic predicate of α just includes the arguments of the relation α deix.

3 See the impossibility of *Jan schaamt Marie ‘John shames Mary’.
section B. Rather, it is governed by chain formation and the chain condition*:

(4)

a. C = (α₁, ..., αₙ) is a chain iff C is the maximal sequence such that for all j

\[1 \leq j < n \]

αⱼ governs αⱼ₊₁, and α₁ and α₁₊₁ are coindexed

b. **Condition on A-chains** (version of R&R 1995)

A maximal A-chain (α₁, ..., αₙ) contains exactly one link - α₁ - which is

fully specified for φ-features.

Informally, a sequence of coindexed elements as in (4a) obligatorily forms a chain (there is no restriction to one θ-role and one Case). The chain thus formed is ill-formed unless the head and only the head is fully specified for φ-features (person, number, gender, Case). It is important to realize that pure chain condition effects can only be observed in contexts where condition (1B) is satisfied independently. That is, either the coindexed elements are coarguments of a predicate that is lexically reflexive, or they are not coarguments of same semantic predicate. The canonical cases are illustrated in (5) and (6). In (5) the verb is lexically reflexive. In (6) Jan is an argument of the matrix predicate, zich and hem are arguments of an embedded predicate. Hence, in either case, regardless of whether the object is a pronoun or an anaphor, condition (1B) is not violated.

(5)

a. Jan, schaamt zich, 'John shames SE'

b. *Jan, schaamt hem, 'John shames him'

(6)

a. Jan, voelde [zich, wegglijden]

b. *Jan, voelde [hem, wegglijden]

John felt SE/him slide away

In order to see how the chain condition accounts for the contrast, consider the difference between SE (zich) and pronoun (hem): 3rd person pronouns show a number contrast (hem_msc, hem_plur, etc.), a gender contrast (hem_msc, haan_fem) and a Case contrast (hem_msc, hij_msc) (and of course a person contrast). SE is specified for person (3rd person), but not for gender and number (in Dutch, and the other languages under consideration). This is summarized in Table 1:

<table>
<thead>
<tr>
<th>Table 1</th>
<th>φ-features</th>
<th>person</th>
<th>gender</th>
<th>number</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd p. pronoun:</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SE:</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

SE's features are illustrated by the mismatch in (7a), and the grammaticality of (7b):

* In R&R it is argued in detail that the modified chain condition can replace the standard chain condition without unwanted consequences, and with some empirical advantage. So, it does not introduce an additional mechanism into the grammar.
According to (4a), both (Jan, zich) in (5a/6a) and (Jan, hem) in (5b/6b) are chains. Consider (5b/6b). Jan is fully specified, and hem is too. Therefore, the chain (Jan, hem) is ill-formed. The chain (Jan, zich) in (5a/6a), by contrast, is well-formed; Jan is fully specified, but zich is not. Thus, the contrast between SE-anaphors and pronouns falls out from the chain theory given in (4) on the basis of lexical properties alone.

The empirical coverage of this approach is substantial. Yet, two fundamental questions arise: i. Why do reflexive predicates need special licensing? ii. What is the rational of the chain condition given the conception of chains in (4)? For a discussion of i) I must refer to Reuland (1995). Here, I will limit myself to question ii). The next section will introduce a well-known paradigm which poses a empirical problem for any version of the binding theory I know of. Its solution will lead to an answer for our main question.

1. The Problem

Many Germanic and Romance languages show a contrast between local binding of i) 1st and 2nd person pronouns and ii) 3rd person pronouns; 1st and 2nd person pronouns allow it, 3rd person pronouns do not; instead an anaphor is required.

(8) and (9) give some illustrations from Dutch:

(8) Lexically reflexive verbs:
 a. Ik schaam mij 'I shame me'
 b. Jij schaamt je 'you shame you'
 c. Hij schaamt zich/*hem 'he shames SE'/*him)
 d. Wij schamen ons 'we shame us'
 e. Jullie schamen je 'you shame you'
 f. Zij schamen zich/*hen 'they shame SE/*them'

(9) ECM subjects
 a. Ik voelde [mij weggliden]
 I felt me slide away
 b. Jij voelde [je weggliden]
 you felt you slide away
 c. Hij voelde [zich/*hem weggliden]
 d. Wij voelden [ons weggliden]
 We felt us slide away
 e. Jullie voelden [je weggliden]
 you felt you slide away
 f. Zij voelden [zich/*hen weggliden]
 they felt SE/*them slide away
These are well-known problems for the standard binding theory. *Mij, je, ons* can be bound in their governing categories, yet they are not anaphors since they can unconditionally be free:

(10) Jan zag mij/je/ons komen 'John saw me/you/us come'

They are also problematic for R&R’s chain condition. They cannot count as -R, since clearly they can head a chain (as they must in (10) given the unaccusative nature of the complement verb). Hence, the chains in (11) should be ruled out, as containing two +R elements:

(11) (ik, mij), (jij, je), etc.

Observe, that the problem only arises in environments with pure chain condition effects. Condition B is always respected. Hence in cases such as (12) the tail of the chain is an anaphor (i.e. a SELF-anaphor), as expected:

(12) a. Ik bewonder mijzelf/*mij
b. Jij bewondert jezelf/*je (etc.)

Therefore, note once more, that discussion will be limited to contexts where condition B-effects do not interfere. The question is, then, how the apparent -R character of 1st and 2nd person pronouns in some environments can be reconciled with their +R character in others.5

2. Towards an analysis

In fact, two further questions arise: i) in what respects do 1st and 2nd person pronouns differ from 3rd person pronouns? ii) Why does local binding require a 3rd person SE-anaphor instead of a pronoun?

5 This phenomenon has been discussed earlier (for instance, by Luigi Burzio and by Maria-Luisa Zubizarreta (see, e.g. Burzio (1991))). One may conclude that the elements under discussion are ambiguous between being pronominal and anaphoric. Our aim is to explain, rather than stipulate this ambiguity. A conceivable alternative is that 1st and 2nd personal pronouns are necessarily interpreted as discourse entities, and are not syntactically bound. However, (i) shows that they can in fact be interpreted as bound variables (in addition to the strict reading); therefore, this is not a viable option.

(i) Ik voelde mij wegglijden en jij ook
 I felt myself slide away and you too =
 a) I \x (x felt (x slide away)) & you \x (x felt (x slide away))
 b) I \x (I slide away) & you \x (x felt (I slide away))

I am grateful to Norbert Hornstein for bringing this point to my attention.
We will start with ii). Note first, that the reason for ii) cannot be found in general principles applying at the CI interface. SE-anaphors translate as bound variables (see (13)), but pronouns do as well (see (14)):

(13) a. Jan voelde \[_{IP} \text{ zich wegglijden}\]
 b. Jan \(x\) (x felt (x slide away))

(14) a. Iedere jongen hoorde mij een lied voor hem zingen
 Every boy heard me sing a song for him
 b. Every boy \(x\) (x heard (me sing a song for x))

The same general principles operative in (14) should translate (15a) as (13b) = (15b).

(15) a. *Jan voelde \[_{IP} \text{ hem wegglijden}\]
 b. Jan \(x\) (x felt (x slide away))

Clearly, this is nothing new, but looking at it afresh reveals that it is quite puzzling. One might try to understand question ii. as implying some simple economy principle:

Use the element with the fewest features if there is an option.

However, the preference relation fails to be absolute in either direction; the following implications do not hold, as illustrated in (16) and (17):

i) NOT: SE-anaphor available \(\rightarrow\) *pronoun

ii) NOT: \(\alpha\) = free \(\rightarrow\) \(\alpha\) = pronoun

(16) ad i: Jón sagði [að ég hevði svikíð sig/hann] (Thránisson 1991)
 Jón said that I had betrayed SE/him

(17) ad ii: María var alltaf svo andstyggleg. pegar Olafur, kaemi segði hún séruð, áreiðanlega að fara … (Thránisson 1991)
 Mary was always so nasty. When Olaf would come, she would certainly tell himself [the person whose thoughts are being presented - not Olaf] to leave

Such examples involving logophoricity, make a very important point: no intrinsic property of (SE-)anaphors prevents their unbound interpretation. In fact, this reverses the approach to anaphor binding. Instead of looking for some special factor which allows logophoric interpretation in certain contexts, the logic of the enterprise forces us to look for a factor which blocks logophoric interpretation in all others. In the end, we will see that no special assumptions will be required.

My approach to the contrast between (13a) and (15a) will be based on the following idea: The contrast between a bound variable from a pronoun (15b) versus a bound variable from an anaphor (13b) is based on a competition between: i) processes
applying at the CI interface, and ii) processes applying within \(C_{HI} \).

Let us start with the latter. Within \(C_{HI} \) the admissible processes are extremely limited. The working hypothesis within Minimalist Program is that \(C_{HI} \) embodies the combinatorics of a strictly morpho-syntactic vocabulary. Specifically, \(C_{HI} \) cannot access indices. Interpretive dependencies can be represented within \(C_{HI} \), though, but only as a by-product of Move-Attract. Consider:

(18)
 a. e appears Charles to be happy
 b. Charles appears Charles to be happy

In (18b) matrix and complement subject are identical, but no recourse to the interpretation of these elements is necessary to establish this. The identity of Charles and Charles follows entirely mechanically: an automatic consequence of (18b) being derived from (18a) by Move/Attract, given the following assumption:

(19) A formal dependency established within \(C_{HI} \) is respected by the interpretive system.

\(C_{HI} \) provides the objects to be interpreted, leaving the interpretive system no choice in cases such as (18). In its generality, (19) is simply a necessary condition for a systematic form-interpretation correspondence to hold at all. However, there are dependencies that are not established within \(C_{HI} \), the by-dependency in (14) being a case in point. Thus, logically, it is possible that an overlap exists between the dependencies expressible within \(C_{HI} \) and the dependencies directly expressible by the interpretive system at the interface. If such cases exists, one dependency expressed at the interface, may be associated with more than one derivation: one derivation in which the same dependency was already encoded within \(C_{HI} \), and one derivation in which it was not. Let us, for the former situation, use the term 'preencoding'. Thus:

(20) A dependency expressed at the C-I interface may (or may not) have been preencoded within \(C_{HI} \).

\(C_{HI} \) is the home base of mechanical processes, the formal, automatic subroutines, insensitive to content. The guiding idea, then, is economy of routine selection:

Routine selection

Automatic routines cannot be bypassed. Whenever a preencoded routine can be accessed it will be selected.

This leads to a ranking of alternative derivations of bound variable structures:

Bound variable structures

If an operator-variable structure at the CI interface can either be obtained from

1. a structure which has dependency has been preencoded, or
2. a structure
without preencoding, option i. will be taken.6

In the case of i. content need not be accessed, in ii. it must. This leads to the following question:

Does chain formation provide a general model for the preencoding within C\textsubscript{HL} of interpretive dependencies, specifically A-binding?

The hypothesis to be explored is that the answer is Yes. The chain condition of R&R reflects a structural parallel between A-binding and movement:

(21) a. Felix was expected [t to be considered [t smart]]
 b. Felix expects [himself to consider [himself smart]]

Binding chains and movement chains share the following property:

(22) The head of the chain is always richer in grammatical/morphological features than any of the elements in the tail.

If there is a chain between \textit{zich} and \textit{Oscar} in (23), it conforms to (22).

(23) Oscar voelde [zich wegglijden]
 Oscar felt SE slide away

This leads to the following hypothesis:

\textit{zich}'s lack of phi-features for number and gender allows it to enter into a dependency with a potential antecedent already within C\textsubscript{HL}.

This is illustrated in (24):

(24) Oscar\textsubscript{phi} voelde [zich\textsubscript{phi} wegglijden]
 Oscar felt SE slide away

This dependency is based on feature sharing. No indices are involved. The syntactic dependency in (24) yields an interpretive dependency at the interface. (24) is a syntactic preencoding of a dependency which, when interpreted, forces the translation (25):

(25) Oscar \textit{x} (x felt (x slide away))

6 Note, that this is reminiscent of Rule I in Reinhart (1983) and Grodzinsky & Reinhart (1993). Only, whereas Rule I governs the choice between coreference and variable binding (knowledge base versus interface), here we consider the different (however, indirect) representation within C\textsubscript{HL} versus at the interface only.
Consider next (26) with a pronoun:

(26) **Oscar voelde [hem weggljden]**
Oscar felt him slide away

hem is fully specified. Hence, a feature-based dependency with an antecedent is not possible: there is no preencoding within C_{HL}. At the interface, (26) is also represented as (25), but the derivation from (23) via (24) is cheaper, hence preferred.\(^7\)

(27) Summary: A feature dependency may preencode within C_{HL} an interpretive dependency to be reflected at the C-I interface; the possibility to derive an interface representation from a source with preencoding blocks a derivation from a source without preencoding that yields an equivalent representation.

3. **Preencoding anaphoric dependencies: an implementation**

We will now explore the consequences of implementing the informal account of the preceding section within the framework of Chomsky (1995). As we have already noted, this framework limits severely the means available to express dependencies within C_{HL}:

(28) i. A dependency can only be established by Move/Attract and checking
 ii. A dependency can only be forced by checking grammatical features in a checking configuration.

The antecedent-antecedee relation by itself does not involve a checking configuration.

We will base our analysis on the following assumptions (adopted from Chomsky (1995)):

1. Lexical items are associated with a set of grammatical features (formal features);
 a) in the lexicon lexical items are listed with inherent features (e.g. person and gender for N);
 b) upon insertion into the numeration optional features are added (e.g. number and Case for N; person and number for V);
2. features come in two kinds: interpretable (e.g. number for N) and uninterpretable (e.g. Case for N, all phi-features for V);
3. at the interface the uninterpretable features must have been erased;
4. movement is triggered by an attracting feature;
5. covert movement moves formal features only;
6. the features of a complement move at most as far as (the features of) its head.

\(^7\) The following points are crucial for a proper understanding:

i) A derivation of (25) from (26) does not crash, but is blocked by (23/24);

ii) A logophoric interpretation of an anaphor is obtained only when it cannot enter a chain (see footnote 15 for some more discussion).
The following assumptions are modifications of Chomsky (1995) (they do not affect Chomsky’s line of argumentation):

7. checking is optional, even if α has moved to be in a checking configuration with β (if checking doesn’t take place and an uninterpretable feature is not erased, the derivation crashes);
8. if a feature bundle is checked, inherent (originally: interpretable) features are retained after checking, optional (originally: non-interpretable) features are erased;
9. checking relations reflect the spec-head asymmetry. Thus, a phi-feature dependency can be implemented, as will be shown below.

The relevant aspects of (23/24) are represented in (29). Antecedent-trace relations are indicated by subscripts. (29) abstracts away from V-to-C and from overt object movement (scrambling), assuming that the LF’s are identical throughout, and that all objects check at least some feature by covert adjunction to I.

(29) \[\text{Oscar} \left[I \left[t_{\text{Oscar}} \left[\text{voelde}_+{\text{fin}} \left[\text{zich}_I \left[\text{wegglijden}_-{\text{fin}} \ t_{\text{zich}} \right] \right] \right] \right] \right] \]

Oscar has moved to Spec-IP to check I’s strong D-feature. So has zich in the lower clause. Covertly, triggered by I’s (weak) V-feature the verb’s formal features Fv adjoin to I, yielding (30).

(30) \[\text{Zich} \left[I I_{\text{Fv}} \left[t_{\text{Oscar}} \left[\text{voelde}_+{\text{fin}} \left[\text{zich}_I \left[\text{wegglijden}_-{\text{fin}} \ t_{\text{zich}} \right] \right] \right] \right] \right] \]

Zich’s Case is checked by the matrix verb; its formal features Fz adjoin to the I-complex. Of the phi-features, Fz contains only the person feature for 3rd person.

8. Chomsky (1995) argues on conceptual grounds against asymmetry in checking relations. However, no empirical claims are attached. The asymmetry postulated here is to make it possible for a DP with optional number features to check the Φ-features of the verb without unwanted consequences (for the relevance of this, see the discussion below), or to raise, triggering agreement via intermediate specifier positions it passes through. (Thanks to Norbert Hornstein for urging me to be explicit here.)

The following alternative formulation of 8. also seems to have the required effect with symmetry retained:

8’. If α and β are feature bundles in a checking relation, and fα and fβ are matching features, then if either of fα or fβ is an inherent feature, it is retained after checking, if they are optional one is erased.

Conceptual support for the shift from interpretability to optionality in the erasure convention is that optionality is a property formally reflected in C_m. If f is an optional feature of a lexical item α, α without f is a licit element of the grammatical system. One may conceive of a property of C_m favouring the smallest licit representation of α. Interpretability, however, is not formally reflected within C_m. Thus its proper role in the system is rather that of a condition on output. The current alternative is consistent with that role.

9. Abstraction away from V-to-C is in line with Chomsky’s current position that the V2-phenomenon in Germanic is part of the PF-component, and irrelevant to LF.

Note, that the label α,β in a configuration [α,β] α represents that β has been adjoined to α.
Oscar must check and erase the verb's phi-features. These are sublabels of 1. One of the verb's features is the feature for 3rd person. The same feature is in Fz. Checking applies blindly: the 3rd person feature of Oscar may check any occurrence of 3rd person it is in a checking configuration with. Thus, also the person feature of zich may get checked. Checking of the phi-features of zich gets a free ride on/is a side effect of the erasure of the phi-features of the verb. Thus, a formal dependency between Oscar and zich results.

In order to formally represent this dependency, we define CHAINs formed by checking, in addition to chains:

(32) \((\alpha, \beta)\) form a CHAIN iff i) \(\alpha\) checks a feature of \(\beta\), and ii) \((\alpha, \beta)\) meets standard conditions on chains such as uniformity, c-command, and locality.

(33) if \((\alpha, \beta)\) is a CHAIN, and both \(\alpha\) and \(\beta\) are in A-position, \((\alpha, \beta)\) is an A-CHAIN.

Thus, \((Oscar, Fz)\) in (31) is an A-CHAIN. The uniformity condition is met, just as for the pair \((Fz, zich)\). C-command and locality are satisfied. Just as \((Fz, zich)\) is an A-Chain, \((Oscar, Fz)\) is an A-CHAIN. This leads to the question of how CHAINs compare to chains. I will assume that A-CHAINs form linked chains with A-chains, along the lines of Chomsky (1995), as in (34):

(34) If \((\alpha_1, \alpha_2)\) is a CHAIN and \((\beta_1, \beta_2)\) is a chain and \(\alpha_2 = \beta_1\) then \((\alpha_1, \alpha_2/\beta_1, \beta_2)\) is a linked chain.

At the C-I interface intermediate (defective) chain members are invisible (Chomsky (1995)). Chains and CHAINs reduce to the same objects. Given (34) the object to be interpreted is (35)\(^{11}\):

(35) \((\alpha_1, \beta_2)\)

While SE-anaphors may enter into a formal dependency with their antecedents, pronouns cannot. Consider (36):

(36) Oscar voelde hem wegglijden

Up to checking, the derivation is equivalent to (31). Consider (37) with Fh representing the formal features of hem:

(37) [Oscar \([1,1, Fz \ [1,1, Fv \ I]]\) \([t_{\text{o}} \ [v] \ [\text{voelde} \ [\text{hem} \ [\text{weggelijden} \ [\text{Fz} \ [t_{\text{Fz}}]]]]]]\)]]
Fh contains person, gender and number. Gender and person are inherent; number is optional. An optional feature is erased if it is checked. But number as a nominal feature is interpretable; a derivation in which an interpretable feature is erased is cancelled. So, number, and hence all of Fh cannot be checked with impunity. Since checking is optional, Oscar may check Fv without checking Fh (otherwise, there would be no derivation at all). If checking is limited to Fv, no CHAIN between Oscar and hem is formed. Hence, a potential dependency between Oscar and a variable translating hem cannot be preencoded. So, deriving (25) from (23/24) (with an anaphor) is preferred.

(38) Summary: Fh is not checked, no CHAIN is formed and the derivation with zich is preferred.

(Note that with zich checking is also optional, but the derivation with checking blocks the derivation without.)

4. Local binding of 1st en 2nd person pronouns

The question of why a 3rd person SE-anaphor is preferred over a 3rd person locally bound pronoun has now been answered. This leaves question i): In what relevant respects do 1st and 2nd person pronouns differ from 3rd person pronouns? We will see that this difference resides in number. The facts are summarized below:

Gender Not relevant: The third person plural pronoun zij does not show a gender contrast, yet it cannot be locally bound.

Person Not relevant: 1st, 2nd, and 3rd person pronouns all have a person feature.

Case Not relevant: There is no evidence that the Case system in the languages considered differentiates between the several types of pronouns and anaphors.

Number Relevant: In 1st and 2nd person pronouns number has a different status than in 3rd person pronouns.

A difference in the status of number has been argued for in BENVENISTE (1966) (see also KAYNE (1995)). In current terms, BENVENISTE's insight is that 1st and 2nd person pronouns have inherent, but not grammatical/optional number. 3rd person pronouns have grammatical/optional number. For concreteness sake I will propose one tentative implementation of this idea that has the required results.

Consider a binary feature system for 'person' based on the lexical features [+/-speaker], [+/-addressee]. This yields the following possibilities:

12 For the benefit of the reader I quote one of BENVENISTE's statements:

(i) "...Le problème central est celui de la première personne. ... Il est claire en effet que l'unicité et la subjectivité inhérentes à je contredisent la possibilité d'une pluralisation. ... non est non pas une multiplication d'objets identiques mais une fonction entre je et le non-je, quel que soit le contenu de ce non-je."
Table 2

i) [+speaker, -addressee] --> 1st person

ii) [-speaker, -addressee] --> 3rd person

iii) [-speaker, +addressee] --> 2nd person

Let [-speaker, -addressee] abbreviate as [other]. Now, i) is an inherent singular, but [+speaker, +addressee] yields a plural: inclusive we. This is not 'the plural of 1. Plurality is determined by the lexical feature composition, not grammatically marked. Exclusive we is [+speaker, [other]]. Again, plurality follows from the lexical features, and is not an optional grammatical feature.

Conclusion: For 1st person pronouns number is specified inherently, not by an optional feature.

On the other hand, number is in no way determined by the values [-speaker, -addressee] for 3rd person in ii). Therefore, for 3rd person pronouns number is an optional (interpretable) feature. This has immediate consequence for CHAIN/chain formation. In the framework described, inherent features can be checked with impunity (note, that the 1st person pronouns must be really singular and plural, otherwise the corresponding uninterpretable features of the verb could not be erased). Hence, in the case of 1st person pronouns a CHAIN/chain can be formed:

(39) [lk/wij [[F_mij/ons [Fv 1]]] [t_welde [mij/ons I [weggliJden -fijn]]]]

This effectively answers our question. The contrast w.r.t. local binding of 1st and 3rd person pronouns now follows without stipulation from general conditions on feature checking and chain formation.

What about 2nd person pronouns? Following Benveniste (1966), one may assume that [-speaker, +addressee] counts as singular. Yet, there is a contrast with 1st person pronouns. Whereas a plurality of I's is difficult to conceive (see fn. 7), a plurality of you's is not inconceivable. However, for present purposes it suffices if an inherently plural 2nd person is possible. In fact, in the feature system discussed here it is: [+adressee, [other]] yields an inherent plural. Again, checking and chain formation take place with impunity. The possibility of grammatical number marking on 2nd person pronouns, gives us an explanation of the puzzle in the following paradigm:

(40) a. Jij schaamt je

b. Jullie schamen je

c. *Jij schaamt jou

b. Jij/jullie voelde(n) [IP je/*jou wegglijden]
Although in the 1st person singular both phonologically weak me and strong mij are allowed, and the only object form of 1st person plural is strong ons, locally bound jou is ill-formed. Instead, weak je is required. Since strength must be irrelevant, given the facts in 1st person, what blocks jou? As (40c) shows, jou is not only strong, but also explicitly singular. Here, singularity must be marked by an optional feature (optional, since je is an alternative for both singular and plural). Thus no chain can be formed tailed by jou. So, je is preferred in accordance with the facts in (40).14

5. Logophors and chains

If no CHAIN/chain can in principle be formed, preencoding is impossible. This has two consequences: i) a pronoun is licit; ii) C_{HL} does not override a free interpretation of the anaphor and, given suitable discourse conditions, a logophoric interpretation is possible. It has always been an intriguing question why and how subjunctives license logophors. By way of conclusion I will argue that in all probability subjunctives license logophors by preventing a chain. The argument is based on Manzini (1993)'s result that subjunctives are licensed by an operator. I will not go over the argument, but simply show what it implies. Consider (41):

\begin{equation}
(41) \quad \text{OP} [\text{Oscar} \left[\text{Fsig} \left[i_{1,1} \text{ Fv I} \right] \right] \left[t_{\text{oscar}} \left[V1_{+\text{subj}} \left[\text{sig} I \left[V2_{\text{fin}} \ t_{\text{sig}} \right] \right] \right] \right]]
\end{equation}

Let OP be some operator licensing the subjunctive. Suppose this licensing can/must be reflected within C_{HL}. If so, the licensing operator OP must attract the V-I complex. If the V-I complex is attracted, F_{sig} is moved along. F_{sig} is crucial for a linked chain containing both Oscar sig. Once moved it is no longer c-commanded by Oscar, hence no linked chain is formed, and using sig to preencode the dependency is in principle impossible. Thus, logophoric interpretation is possible.15

14 In fact, 2nd person pronouns merit some more discussion than I can present here. For instance, one might question whether there is independent support for the [other] feature (which abbreviates 3rd person) in inherently plural 2nd person pronouns, as it is not immediately obvious what it contributes to interpretation. For the beginning of an answer, note that in many languages and cultures 3rd person elements are used for polite address. Moreover, if a language has a polite form of the 2nd person pronoun, the strategy of choice is to use a plural. Perhaps what facilitates this use is precisely the [other] feature. Thus both types of polite address could be understood as based on the oblique use of a 3rd person feature.

15 Note, that we must distinguish between the impossibility to realize the structural conditions for a chain to exist, and the impossibility to create a well-formed chain. The former allows logophors, the latter gives just a crashed derivation. So, in (41) no chain can be formed in principle. In (i) a chain can be formed, but it is ill-formed:

\begin{equation}
(42) \quad \text{Ik} \left[\text{Fz} \left[i_{1,1} \text{ Fv I} \right] \right] \left[t_{\text{sig}} \left[\text{voelde}_c \text{cs} \left[\text{zich I} \left[\text{weggliijden}_c \text{cs} \ t_{\text{sig}} \right] \right] \right] \right]
\end{equation}

Here we have a feature mismatch between prospective antecedent and anaphor, the antecedent being 1st person and the anaphor 3rd person. Checking is possible, no interpretable feature gets erased. So, it wins out over non-checking. An ill-formed object results, hence a crash. So, checking is only discounted as an option to be evaluated, if its application would violate a fundamental principle of C_{HL}.14
References

Research Institute for Language and Speech (OTS)
Utrecht University
Trans 10
3512-JK Utrecht
Netherland
reuland@let.ruu.nl

Published by ScholarWorks@UMass Amherst, 1996