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ABSTRACT

OPTIMIZING CONSUMER-CENTRIC ASSORTMENT
PLANNING UNDER CROSS-SELLING EFFECTS

SEPTEMBER 2014

AMEERA IBRAHIM

B.Sc., UNIVERSITY OF AIN-SHAMS

M.Sc., UNIVERSITY OF NANTES

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ahmed Ghoniem

Central to modern-time, consumer-focused retailing is the ability to provide at-

tractive and reasonably-priced product assortments for different customer profiles.

To this end, retailers can benefit from the use of data analytics in order to iden-

tify distinct customer segments, each characterized by their buying power, shopping

behavior, and preferences. Further, retailers can also benefit from a careful exami-

nation of alternative procurement options and cost levers associated with products

that are considered for inclusion in the assortment. Issues of assortment planning

lie at the interface of operations and marketing. Profitable planning trade-offs can

be identified using an optimization methodology and are simultaneously driven by

consumer preferences and supply cost considerations. This dissertation proposes and

investigates novel, integrated optimization models for assortment planning with the
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following overarching objectives: (i) To reveal insights into assortment decisions un-

der product substitutability or complementarity and multiple customer segments; (ii)

to improve the computational tractability of (nonlinear discrete) optimization mod-

els that arise in such contexts and to demonstrate their efficacy for large-scale data

instances.

In the first essay, we investigate the joint optimization of assortment and pric-

ing decisions for complementary retail categories with relatively popular products

having high and stable sales volumes, such as fast-moving consumer goods. Each cat-

egory comprises substitutable items (e.g., different coffee brands) and the categories

are related by cross-selling considerations that are empirically observed in marketing

studies to be asymmetric in nature. That is, a subset of customers who purchase a

product from a primary category (e.g., coffee) can typically opt to also buy from one

or several complementary categories (e.g., sugar and/or coffee creamer). We propose

a mixed-integer nonlinear program that maximizes the retailer’s profit by jointly opti-

mizing assortment and pricing decisions for multiple categories using a deterministic

maximum-surplus consumer choice model. A linear mixed-integer reformulation is de-

veloped, which effectively enables an exact solution to large, industry-sized problem

instances using commercial optimization solvers. Our computational study indicates

that overlooking cross-selling between retail categories can result in substantial profit

losses, suboptimal (narrower) assortments, and inadequate prices. The demonstrated

tractability of the proposed model paves the way for “store-wide” optimization of cat-

egories that exhibit significant complementarity, which retailers can infer from market

basket analysis.

The second essay addresses an assortment packing problem where a decision-

maker optimizes the assortment and release times of products that belong to differ-

ent categories over a multi-period planning horizon. Products in a same category

are substitutable, whereas products across categories may exhibit complementarity
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relationships. All products have a longevity over which their attractiveness gradu-

ally decays (e.g., electronics or fashion products), while being positively or negatively

impacted by the specific mix of substitutable or complementary products that the

retailer has introduced. Our proposed 0-1 fractional program employs an attraction

demand model and subsumes recent assortment packing models in the literature. We

highlight the effect of overlooking cross-selling and cannibalization on the profit using

an illustrative example. We develop linearized reformulation that afford exact solu-

tions to small-sized problem instances. Furthermore, a linear programming-based

heuristic approach is devised and is demonstrated to yield near-optimal solutions

for large-scale computationally challenging problem instances in manageable times.

Model extensions are discussed, especially in the context of the movie industry where

exhibitors have to decide on the assortment of movies to display and their optimal

display times.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Retail is a complex and ever-changing business environment that has contributed

to the economic growth of many nations. In the US, the retail industry is the highest

employer compared to other industries1. Figure ?? shows a growth chart of the levels

of retail sales in the US over the last 5 years2. Due to its importance, retail operations

management gained a lot of research attention recently.

Figure 1.1: US Retail Sales Data in Billion Dollars (Jan 2009 - Sep 2013)

One of the key revenue management challenges for a retailer is to determine the

set of products to carry in each store over time. The choice of a set that meets

consumers’ desires and preferences has a direct positive impact on sales and profits.

1“CPI Detailed Report Data for February 2013,” Bureau of Labor Statistics, US Department of
Labor, last retrieved from http://www.bls.gov/cpi/cpid1302.pdf on 11/1/13

2Source: Advance Monthly Retail Trade Report, United States Census Bureau, last retrieved
from http://www.census.gov/retail/marts/www/download/text/adv44000.txt on 11/1/13
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Thus, the goal of assortment planning is to find a set of products that maximizes a

retailer’s total profit.

Successful firms do appreciate the importance of assortment planning in today’s

retail marketplace. According to Aberdeen Group’s Precision Merchandising study3,

the two most important key drivers for the increased focus on assortment planning

solutions were the need to maximize margin (56%) and the need to maximize inventory

returns (48%). This study also suggests that 71% of the best-in-class companies are

able to create tailored specific assortments.

The challenge arises from the relationship between the number of products chosen

and the total profit. A narrower assortment may result in losing store traffic as

customers who seek more variety and competition may choose to shop elsewhere. On

the other hand, a broader assortment implies more fixed and handling costs, slow

inventory and poor product availability.

1.1. Background on Retail Management and Analytics

Retail management started thousands of years ago from the Mediterranean regions

and spread to Egypt and Babylonia. It flourished in Rome, then after the destruction

of the Roman Empire it spread across the globe. With the sophistication of modern

life, the increase in population, rise of big data and the evolution of technology,

retail management became more challenging. Focusing on the behavioral aspects of

consumers and using the right tools and techniques in analytics, retailers can manage

their business in a competitive market so as to attract the maximum number of

customers and thus maximizing their profits.

3“A Roadmap to Integrated Assortment Planning,” last retrieved from
http://www.popai.com/store/downloads/WhitePaper-Roadmap-To-Intergrated-Assortment-
Planning-2010.pdf on 11/1/2013
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Key decisions that are associated with retail management are vast. Variety, or the

assortment planning decision, is concerned with finding the best set of products to

display from a set of all candidate products. Replenishment and inventory planning

decisions are concerned with the optimal amounts of products to order at a certain

time period. The pricing decision defines how prices should be set in a way that en-

ables maximum profits while preserving customer satisfaction and loyalty. Shelf-space

allocation is another key decision that determines the amount of space that should be

allocated to each product. Forecasting, promotions and discounts management and

loss prevention are among many other decisions in retail management.

Analytics is the discovery and communication of meaningful patterns in data. It

is of special importance in fields that are rich in data such as retail business and bank-

ing. Analytics relies on the application of statistical analysis, computer programming

and operations research to quantify performance. What makes it a broader term

than analysis in a way that it extends the descriptive and predictive modeling of the

data analysis phase, into a prescriptive modeling phase that recommends an action

and guides the decision making process (see Cooper 2012, and van Harmelen and

Workman 2012 for more detailed information about analytics).

The advancement in technology plays an important rule in retail management. For

many years, transactional data was the only resource that retailers had. After the

rise of analytical data, retailers have been empowered with the ability to understand

their business better and make decisions once they had access to the point-of-sale

(POS) data. This type of historic customer transactions data opened new analytical

insights that has not been discovered before. Retail business became able to analyze

customer behavior and obtain useful patterns and trends that affect sales and profits

(see Davenport et al. 2010 for more discussion about analytics at work). Three

examples of such useful patterns that are used in this thesis are: (i) Cross-selling effect

between complementary categories and how it can significantly affect the retailer’s
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assortment and pricing decisions; (ii) cannibalization effects between substitutable

products; and (iii) attractiveness of a product that decays over time specially with

products like apparel or movies.

1.2. Consumer Choice Models

Consumer choice models, or demand models, serve as the fundamental base for

assortment planning optimization, and can be divided into two categories: (i) Utility-

based models, which assume that customers associate a utility value with each prod-

uct, and (ii) exogenous demand models that specify exactly the demand for each

product as well as the substitution behavior.

1.2.1 Utility-Based Models

Utility is the measure of satisfaction obtained from consuming a good or service.

Utility-based consumer choice models assume that each customer segment i has a

certain utility for each product j denoted by Uij. In addition, each customer segment

i has a utility for the no-purchase option as well that is denoted by Ui0. Anything

that makes the customer better off is assumed to raise her utility. Thus, given a

certain assortment of products, each customer makes a decision that is based on her

highest utility.

Several utility-based models were used in the literature. The deterministic maxi-

mum utility model used by Dobson and Kalish (1988), is one of the simplest models

which assumes that the customer chooses a product, from the given assortment, that

yields the highest positive utility. Utility here is sometimes called surplus and it is

calculated as the difference between the price that the customer is willing to pay or

what is called reservation price, and the actual price set by retailer. If such product

does not exist, or in other words, if all products yield a negative surplus, the customer

4



chooses not to purchase. In the treatment of the joint assortment and pricing problem

in Chapter 2, a deterministic utility-based choice model is utilized.

Deterministic utility models imply that a customer would make the same choice

over time when faced with the same set of alternatives. In practice, however, this

is not the case. Variations in choice were observed with similar customers similar

alternatives. Expected utility or probabilistic choice models take into account that

variation in behavior.

The Multinomial Logit (MNL) model is the most popular probabilistic utility-

based model in the literature (Ben-Akiva and Lerman 1985, Anderson et al. 1992).

Under the MNL, the utility for customer segment i for product j at time t is: Uijt =

uijt + εijt, where uijt is the deterministic expected utility for item j and the utility of

the no-purchase option is: Ui0t = ui0t + εi0t, where ui0t is the expected no-purchase

utility and εijt represent the random component of the utility and are independent

and identically distributed (i.i.d.) Gumbel random variables. A customer chooses the

item with the highest utility among the set of available choices. Thus, the probability

that a customer chooses item j is:

Πijt = Pr{Uijt = maxmk=0(Uikt)}

This probability together with the closed maximization property of Gumbel distribu-

tion lead to the closed form expressions for purchase probabilities, given by:

Πijt = euijt/µ∑n
k=0 e

uikt/µ
, ∀i, j, t,

where Πi0t, is the probability that the customer purchases nothing, ∀i, t.

The main drawback of the MNL model comes from a property that is referred to

as the Independence of Irrelevant Alternatives (IIA). This property holds if the ratio

of choice probabilities of two alternatives is independent of the other alternatives in

the choice process. IIA property would not hold in cases where there are subgroups

of products in the choice set such that the products within the subgroup are more

5



similar with each other than across subgroups. The Nested Logit Model, introduced

by Ben-Akiva and Lerman (1985), deals with the IIA property, in which a two-stage

nested process is used to model choice.

The locational choice model is yet another utility-based model that found its

roots from the study of pricing and location decisions by Hotelling (1929). Lancaster

(1966) extended the work and proposed a locational model of consumer choice. Each

product is assumed to be located as a vector on the characteristics space based on

its attributes. Each consumer is located in a point X in the same space, this point

represents the consumers most preferred set of product attributes. The utility of

product j to the consumer is: Uj = U − g(|X − bj|), where U represents the utility

of a product at the ideal location and g(.) is a function representing the disutility

associated with deviation from the ideal location, where |X − bj| is the euclidean or

rectilinear distance between the product and the consumers ideal location.

1.2.2 Exogenous Demand Models

In the exogenous demand model, every customer chooses a favorite product from

the set of all products Ω. Let pj is the probability a customer chooses product j, where∑
j∈Ω+{0} pj = 1. If the customers favorite product is not available, she chooses her

second favorite with probability δ or chooses not to purchase with probability 1− δ,

the same procedure repeats if the product is not available by choosing her third

favorite product and so forth. The probability of substituting product j with another

product k is αkj, which is defined by a substitution matrix.

The exogenous demand model is the most commonly used consumer choice model

in the literature on inventory management for substitutable products (see Yücel et al.

2009). It is more flexible than utility-based models, and can easily accommodate dif-

ferent substitution structures, but is sometimes difficult to estimate all its parameters

in practice.
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1.3. Assortment Planning

A category in retail business is a group of related products that share similar

attributes. For example, in grocery stores, coffee could be a category that includes

several subcategories like regular coffee and decaffeinated coffee.

Substitution is a term that is commonly related to a customer’s choice decision.

It can be defined as the willingness of customers to purchase another similar product

if their favorite product is not available at the time of purchase. Suppose there is

a customer with a particular product in mind (it could be a certain brand), and on

looking for that product in store she can not find it. If there is a probability that she

will pick another brand from the same category, then substitution occurs. Two types

of substitution exist, the first one is called dynamic (or stockout-based) substitution

and it occurs when the retailer originally carries this product in the assortment but

it stocked out at the time of purchase. The second is called static (or assortment-

based) substitution and occurs when the customer’s favorite product is not part of

the retailer’s assortment.

Two products are complementary if they relate to and complement each other.

Take for instance coffee and creamer or torch and batteries. With a negative cross-

price elasticity of demand between complementary products we know that the increase

in price of one of them would decrease the demand of the other and vice versa.

Assortment optimization research can be viewed under two main modeling styles:

(i) Stylized models, aimed at providing insights into structural properties of the opti-

mal solution, and (ii) optimization models, aimed at providing decision makers in the

retail business with techniques and insights that help the decision making process.

1.3.1 Stylized Models

In assortment planning, the work by van Ryzin and Mahajan (1999) is one of

seminal work in this stream. van Ryzin and Mahajan (1999) were the first to study
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assortment planning and inventory decisions under the MNL model and static substi-

tution. They provide insights into the structural properties of the optimal solution,

the main insight is that the optimal assortment consists of the most popular (or high-

est utility) products from the finite set of potential products to offer. The work in

Mahajan and van Ryzin (2001) studies the same problem under dynamic substitution.

The van Ryzin and Mahajan model acts as a basic model in assortment planning

under MNL and thus was extended in various ways. For example, Maddah and Bish

(2007) extend the van Ryzin Mahajan model by considering the pricing decisions as

well. The work by Cachon et al. (2005) study the same problem under the effect of

consumer search. Aydin and Porteus (2008), Maddah and Bish (2007), and Maddah

et al. (2013), who endogenize pricing. Caro and Gallien (2007) develop a stylized

model that formulates the dynamic assortment planning problem faced by apparel

retailers.

Related works on assortment planning within a newsvendor-type supply setting

are those adopting choice models other than logit such as locational choice by Gaur

and Honhon (2006) and exogenous choice by Smith and Agrawal (2000).

1.3.2 Optimization Models

Optimization models in the assortment planning literature provide the retailer

with either exact or approximation methods that help in solving the problem. That

stream began with the product line design problem by Green and Krieger (1985).

They formulated a problem where a firm chooses k products out of the set of all

potential products as to maximize both the consumers welfare and the firms profits.

Dobson and Kalish (1988, 1993) and Kohli and Sukumar (1990) extend the work

on product line design and suggest more heuristics. Other works include Kök and

Fisher (2007) who develop a heuristic for the joint assortment and inventory problem

and Anupindi et al. (2009) who formulate an integer programming problem for the
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variety and stocking decisions in retail category management, they added a penalty if

the consumers preferred item is not offered in the assortment, which affects the long-

term profits. Subramanian and Sherali (2010), propose MIP formulations to model

certain optimal pricing problems that arise within real-life analytic applications imple-

mented at Oracle Corporation, and Ghoniem and Maddah (2013) integrate three key

decisions by jointly optimizing assortment, pricing and inventory in a single category

setting.

Other works include practical considerations such as bundling (Hanson and Martin

1990), generalized choice models (Hanson and Martin 1996), shelf space elasticity

(Corstjens and Doyle 1981, Irion et al. 2011 and Mart́ın-Herrán et al. 2006).

Our work is this dissertation can be classified under the optimization models

stream. We use mathematical programming to design the problem and solve it using

exact methods highlighting managerial insights that guides the decision maker.

1.4. Integrated Decision Making

Recently, more complex retail problems started to emerge that are based on jointly

optimizing either one or several retail decisions under specific consumer behavior

observation that became available through analytics. Such models aim at capturing

a more realistic aspect of the problem. For instance, Cachon et al. (2005) study

the van Ryzin and Mahajan (1999) model of assortment planning in the presence of

consumer search. The paper by Maddah and Bish (2009) on “locational tying” does

consider some aspects of integrated decisions under cross-selling within a stylized

two-product, single-period, newsvendor-like framework.

Our work in this thesis is very related to that stream of literature as we investigate

the effect of cross-selling in a multi-category assortment planning and pricing problem

in the first essay. While on the second essay we investigate the effects of cross-
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selling and cannibalization, and integrate aspects of product attractiveness with the

assortment planning decision as well.

1.5. Organization of the Dissertation

The remainder of this document is organized as follows: Chapter 2 investigates

the joint optimization of assortment and pricing decisions for complementary re-

tail categories, where each category comprises substitutable items and the categories

are related by asymmetric cross-selling considerations. Chapter 3 examines a multi-

category, multi-period assortment packing problem where a firm seeks to determine

the optimal assortment and release times of products that decay over time. Finally,

Chapter 4 concludes the document by the findings from Chapter 2 and Chapter 3,

and discusses directions for future research.
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CHAPTER 2

OPTIMIZING ASSORTMENT AND PRICING OF
MULTIPLE RETAIL CATEGORIES WITH

CROSS-SELLING

This chapter investigates the joint optimization of assortment and pricing decisions

for complementary retail categories. Each category comprises substitutable items

(e.g., different coffee brands) and the categories are related by cross-selling considera-

tions that are empirically observed in marketing studies to be asymmetric in nature.

That is, a subset of customers who purchase a product from a primary category (e.g.

coffee) can opt to also buy from one or several complementary categories (e.g., sugar

and/or coffee creamer). We propose a mixed-integer nonlinear program that maxi-

mizes the retailer’s profit by jointly optimizing assortment and pricing decisions for

multiple categories under a classical deterministic maximum surplus consumer choice

model. A linear mixed-integer reformulation is developed which effectively enables

an exact solution to relatively large problem instances using commercial optimization

solvers. This is encouraging, because simpler product line optimization problems in

the literature have posed significant computational challenges over the last decades

and have been mostly tackled via heuristics. Moreover, our computational study indi-

cates that overlooking cross-selling between retail categories can result in substantial

profit losses, suboptimal (narrower) assortments, and inadequate prices.

2.1. Introduction and Motivation

Retailers face the challenging problem of selecting a subset of products to carry

in stores or online and setting prices over time in a manner that appeals to a variety
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of consumers and maximizes profit. This has motivated a rich literature on the so-

called product line optimization problem; a difficult combinatorial optimization prob-

lem that seeks to determine product selection and pricing strategies under anticipated

consumer behavior and choice rationales (Dobson and Kalish 1993). With the advent

of retail analytics, the focus of practitioners gradually shifted from single-product,

“brand management” to multi-product “category management” (CM), e.g. Basuroy

et al. (2001), Hall et al. (2010), and Zenor (1994). With growing interest in category

management and market basket analysis (e.g., Mild and Reutterer 2003 and Russell

and Petersen 2000), it has become apparent, however, that certain retail categories

are interdependent and, therefore, should not be planned in isolation. Despite this

industry trend, the effect of cross-selling on the optimization of interdependent retail

categories remains understudied in the academic literature (see Maddah et al. 2011

for a review of works on category optimization in retailing).

Marketing studies provide strong empirical support for the notion of “cross-category”

shopping or cross-selling (e.g., Mulhern and Leone 1991; Walters 1988, 1991). For ex-

ample, a price discount on a product category (e.g., spaghetti, cake mix, fabrics) can

substantially stimulate sales for a complementary product category (e.g., pasta sauce,

cake frosting, sewing tools). In addition, an asymmetric cross-selling effect is often

observed, whereby the sales of one “primary” category (e.g., cake mix) drive the de-

mand of another “secondary” complementary category (e.g., cake frosting), with the

opposite effect (secondary product driving the primary product demand) being rather

negligible. For example, Walters (1991) argue that price promotions of spaghetti re-

sulted in a significant increase in the sales of the spaghetti sauce, whereas the reverse

phenomenon did not occur with price promotions on spaghetti sauce. Mulhern and

Leone (1991) also report similar results indicating an asymmetric cross-selling effect

of cake mix over cake frosting (see also Manchanda et al. 1999 and Shankar and

Kannan 2014 for further discussion).
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Our research is prompted by the emerging topic of managing multiple retail cat-

egories using mathematical programming and makes the following conceptual and

computational contributions. First, as far as the marketing literature is concerned,

this chapter contributes to the notion of multi-category management under cross-

selling by proposing a mixed-integer nonlinear programing model. The developed

model jointly optimizes assortment and pricing decisions for multiple complementary

retail categories under a classical maximum-surplus consumer choice model. All retail

categories are composed of substitutable products that reflect the same need for the

consumer but differ in some minor attributes (e.g., different brands of coffee or sugar

of the same size). A fraction of shoppers of the primary category consider buying

from the secondary categories in a way that reflects asymmetric cross-selling effects.

The second contribution of this chapter is computational in nature. Specifically, the

proposed mixed-integer linear reformulation of the model is demonstrated to enable

exact solutions to large-scale instances, which suggests that integrated optimization

of multiple dependent categories is now computationally tractable. This is encour-

aging, because much of the extant literature on product line optimization examined

more simplified settings (e.g. Dobson and Kalish 1988, 1993) and, recognizing the

difficulty of such mixed-integer (nonlinear) programs, resorted to using constructive

and greedy heuristics.

The remainder of the chapter is organized as follows. Section 2.2 briefly reviews

the literature related to product line optimization and cross-selling. In Section 2.3,

the problem is formally stated along with our notation, the proposed mixed-integer

nonlinear programming model, and its linear reformulation. In Section 2.4, we present

an illustrative example, followed by a computational study that involves relatively

large problem instances. Section 2.5 concludes the chapter with a discussion of our

findings and insights.
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2.2. Literature Review

This chapter relates to the literature on retail category decision analysis and op-

timization. In particular, it involves the so-called product line optimization problem

(simultaneous product selection and pricing) and cross-selling – a phenomenon that is

identified by market basket analysis. These two aspects of the literature are discussed

in the remainder of this section with greater focus on data-driven optimization-based

approaches, as opposed to stylized models that investigate analytical results under

simplified assumptions. The more inquisitive reader is referred to Maddah et al.

(2011).

2.2.1 Product Line Optimization

The product line optimization problem, which integrates product line selection

and pricing decisions, lies at heart of our work. Specifically, product line selection is

concerned with optimizing the assortment or variety of products or services offered

in a product line by a seller. In the context of our work, the seller is a retailer,

the buyer is a shopper, and product lines of interest are retail categories. Early

discussions of product line pricing with substitutable and complementary products

date back to Dean (1950). Seminal conceptualizations of product line optimization

problems appeared later and continue to motivate a great deal of research due to

their practical relevance. A key element of these studies is the adoption of an ad-

equate consumer choice model which captures the behavior of consumers and their

anticipated purchase decisions in reaction to assortments and prices set by a seller.

In particular, Zufryden (1977) and Green Krieger (1985) consider the “single-choice,

deterministic, behavior” whereby a consumer chooses a single product that yields a

greatest nonnegative surplus (if available). Furthermore, a consumer is assumed to

refrain from buying if all products yield negative surpluses. Here, the consumer sur-

plus for a product is defined as the difference between the consumer reservation price
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(or the maximum monetary value he/she is willing to pay for this product) and the

price set by the seller. To incorporate this consumer choice model in a mathemati-

cal program for planning purposes, it is necessary to estimate reservation prices for

different products across distinct customer segments. This can be achieved using dif-

ferent techniques, including conjoint analysis (see, for example, Zufryden 1977; Green

and Srinivasan 1978, 1990; Dobson and Kalish 1988, 1993; Hanson and Martin 1990;

Shioda et al. 2011; Smith et al. 2009, and references therein).

As noted in Kraus and Yano (2003), the deterministic single-choice consumer

model is employed in “most articles on product line optimization.” Zufryden (1977)

discusses justification for this choice model and refers to earlier studies that pro-

vide empirical evidence in support of this consumer behavior (Best 1976; Braun and

Srinivasan 1975; Pessemier et al. 1971). In particular, Johnson (1976) supports this

behavioral assumption for applications with a high degree of sensitivity to the surplus;

in this case, a customer commits to a product that yields a maximum surplus and

would consider switching only if a new product is introduced with a better surplus.

For other applications where the consumer choice may be less driven by surplus con-

siderations, and more by brand image or quality etc., then a stochastic model may

be more adequate. Ghoniem and Maddah (2013) also provide empirical support for

this deterministic consumer choice model based on Tuna data from a grocery store

in the Northeast US. The data spans a year and a half of transactions for a light

Tuna product line, whereby the demand distribution across substitutable products is

largely due to price discounts introduced by the retailer and is well-approximated by

the deterministic single-choice consumer model.

In Zufryden (1982), a 0-1 integer program is formulated in order to tackle the

joint product line selection and design problem with the objective of maximizing the

weighted sum of consumers choosing a product line, under the single-choice determin-

istic rule. Beyond the modeling contribution, no solution methodology is delineated.
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Green and Krieger (1985) examine two product line selection problem variants: The

first is a buyer-welfare problem that optimizes assortment decisions in a fashion that

maximizes the total consumer surplus, whereas the second is a seller-welfare problem

that maximizes the seller’s profit. Both variants are examined with the assumption of

a single-choice deterministic consumer model and are solved using heuristics, with a

dismissal of optimization-based approaches. McBride and Zufryden (1988), however,

re-examine the seller-welfare product line selection problem using integer program-

ming and argue that optimal solutions are attainable for their simulated instances on

mainframe and personal computers.

Dobson and Kalish (1988, 1993) consider the more challenging product line opti-

mization problem with simultaneous product selection (assortment) and pricing deci-

sions under the single-choice deterministic consumer model. The joint optimization of

assortment and pricing decisions prompts a 0-1 mixed-integer nonlinear programming

formulation that is shown to be NP-Complete. Due to the perceived intractability

of this formulation, the authors resort to using constructive heuristics (Dobson and

Kalish, 1993). Shioda et al. (2011) revisit the product line optimization problem

in Dobson and Kalish (1993) with the goal of enhancing its tractability via valid

inequalities and refined heuristics. They refer to the single-choice deterministic con-

sumer model as “the maximum utility or the envy-free pricing model.” The latter

designation is borrowed from the microeconomics literature (e.g., Walras 1954).

Describing the single-choice deterministic consumer model as a “max-surplus choice

rule,” Burkart et al. (2012) investigate product line pricing for services over a sell-

ing horizon with capacitated offerings. As consumers commit to products, these are

depleted and may become unavailable, in which case consumers dynamically substi-

tute and choose an available product that yields a maximum, nonnegative surplus.

Ghoniem and Maddah (2013) also examine an extension of the nonlinear MIP formu-

lation of the product line optimization problem in Dobson and Kalish (1993) whereby
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inventory considerations are integrated with assortment and pricing decisions over a

multi-period horizon. The authors propose an effective linear reformulation of the

model and develop several managerial and computational insights.

Although the deterministic consumer choice model has been widely used in the lit-

erature (Kraus and Yano 2003), several studies consider product line pricing problems

under probabilistic consumer choice models. For example, Chen and Hausman (2000)

examine the product line optimization problem under the logit choice model, discrete

price values, and lower and upper bounds on the size of the assortment. Kraus and

Yano (2003) investigate a similar problem under a so-called share-of-surplus choice

model. Here, the fraction of a customer segment that buys a positive-surplus prod-

uct is determined as the ratio of the surplus of this product over the total surplus

across products having a positive surplus for that segment. This ratio determines

the relative probabilities of customers buying products and involves positive-surplus

products only. This contrasts with the multinomial logit choice model, where a cus-

tomer can buy a negative-surplus product with a positive (albeit small) probability.

Subramanian and Sherali (2010) also model category pricing under logit demand and

propose a reformulation of a nonlinear fractional program using an effective lineariza-

tion scheme. They also take into account several common industry practices related

to targets on volume and sales levels, discrete prices exhibiting a ladder structure,

and relative pricing rules for store vs. national brands. In a recent paper, Keller et

al. (2014) investigate product line pricing problems under attraction demand models.

The authors identify conditions under which non-convexities that arise in the formu-

lation can be circumvented by recasting the model as a convex optimization problem,

thereby significantly enhancing the problem tractability.
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2.2.2 Cross-Selling Considerations

Although studies on using cross-selling to optimize product line planning is still

scarce, two research streams are emerging: The first considers two-product settings,

whereas the second addresses category optimization under cross-selling. Few works

consider asymmetric cross-selling within a two-product context whereby demand for

a primary product drives that for a secondary product, as in our present work. Aydin

and Ziya (2008) analyze an up-selling practice, where upon the purchase of a regular

product, whose price is exogenous, the buyer is offered to buy a promotional product,

possibly at a discount. They focus on utilizing dynamic pricing for clearing the

inventory of the promotional product. Beyond certain similarities in the consumer

choice model with Aydin and Ziya (2008), our work has a distinctive focus on static

pricing and assortment optimization for multiple complementary categories. Zhang

et al. (2011) consider the effect of cross-selling on inventory decisions within a joint

replenishment model of two products, a major and a minor one, with a common

ordering cycle. The authors capture the effect of reduction in the demand of the

minor product as a result of the major product planned stock-out (in a backordering

setting), with the classic economic order quantity (EOQ) setting.

Maddah and Bish (2009) also investigate a stylized model for the notion of lo-

cational tying of two retail products, a primary and a secondary one, where the

secondary product is offered in two distinct locations in a store, its own department

and the primary product’s department. This leads to two demand streams for the

secondary product, an indirect one (which depends on the primary product price) due

to cross-selling at the primary product location, and a direct one at its appropriate

department. The demand model in this chapter also considers two demand streams

for secondary products, even though secondary products are displayed in their own

department only.
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The second stream of literature, which relates to this chapter, is on category opti-

mization under cross-selling. Agrawal and Smith (2003) consider joint assortment and

inventory optimization under exogenous choice for substitutable sets. Each exogenous

set is a combination of complementary products. This, however, introduces the hur-

dle of explicitly enumerating all possible combinations of complementary products

for which consumer reservation prices need to be estimated. In contrast, we model

complementarity across categories and fewer parameters that reflect the cross-selling

potential of a customer segment need to be estimated (as detailed next in Section

2.3). Moreover, our focus is different than Agrawal and Smith (2003) as we consider

pricing and assortment decisions.

Also of interest is the work by Cachon and Kök (2007) where the assortments of

two categories offered simultaneously by two retailers are optimized under a compet-

itive duopoly setting. According to a nested logit choice, customers choose a store

first, and then choose to buy from one or both categories in the store. Three cus-

tomer segments are considered pertaining to the two categories and to the “basket”

composed of products from both categories. The distinctive feature of our model,

with respect to Cachon and Kök (2007), is that we consider multiple customer seg-

ments for each category with customer purchases being endogenously deduced from

asymmetric cross-selling effects. In addition, while Cachon and Kök (2007) consider

assortment decisions only with a cost which is convex in the assortment size (akin

to a newsvendor-type supply setting), we consider assortment and pricing decisions

with a variable linear cost and a fixed cost for offering a product in the assortment.

Rodŕıguez and Aydin (2011) consider assortment and pricing decisions for two

complementary categories, involving a required and an optional product, respectively,

in a newsvendor-type supply setting and under logit demand. The authors study a

stylized model with a single customer segment with two purchase scenarios: (i) Pur-

chase with a combined utility for both products or (ii) a sequential purchase approach,
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where a customer first buys a required product and then considers buying an optional

product. The demand model in the sequential setting bears certain similarities with

our setting, with the difference that we also consider a direct demand stream for

the secondary (optional) category. Our work focuses on developing an optimization

model with a maximum-surplus choice model, multiple customer segments, and pos-

sibly more than two categories.

2.3. Problem Statement and Formulation

This section provides a formal problem statement for multiple category optimiza-

tion with cross-selling and introduces our notation along with our proposed mixed-

integer nonlinear formulation. The model is then recast as a mixed-integer linear

reformulation and can, therefore, be solved using standard commercial optimization

solvers such as CPLEX.

2.3.1 Mixed-Integer Nonlinear Formulation

We examine the setting where a retailer seeks to jointly optimize assortment and

pricing decisions for multiple retail categories under asymmetric cross-selling. We

adopt the classical assumption that any customer buys at most one product from a

given category of substitutable products, as is common under the maximum-surplus

choice rule. Specifically, we consider L distinct categories, where the first category

is referred to as the primary category, whereas the remaining |L| − 1 categories are

secondary in that each complements the primary category. The chosen assortment for

any category, denoted by P`, shall comprise substitutable products that are selected

from a broader set of candidate products Ω`, with P` ⊆ Ω`, ∀` ∈ L, and Ω`1∩Ω`2 = ∅,

∀`1, `2 ∈ L, `1 6= `2. For clarity in the notation, we shall designate by j` the jth

product in Ω`. For example, products 11 and 32 respectively refer to the first candidate

product of the primary category and the third candidate of a secondary category. For
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any category `, let C` be the set of customer segments or direct customers interested

in buying from category `. It is assumed that customer segments in the same category

and accross different categories are disjoint. For example, Figure 1 represents a setting

with two categories (laptops and printers), where the first category has three distinct

customer segments and the second has two customer segments. For clarity in the

notation, let i` be the ith customer segment of category `. For example, customer

segments 21 and 32 respectively refer to the second customer segment of the primary

category and the third customer segment of the secondary category. Furthermore,

the retailer can estimate from experience and historical data (or anticipates based

on surveys and market analysis) that a fraction γki of customer segment i ∈ C1,

upon purchasing a product from the primary category (` = 1), would also consider

purchasing a product from a secondary category k ∈ L \ {1}. Such customers will

be referred to as cross-selling customers. For example, in Figure 1, only a fraction of

the three customer segments of the primary category would consider cross-selling.

We denote by α`ij the reservation price (or valuation) of customer segment i ∈ C`

for product j ∈ Ω`. Likewise, let βkij be the reservation price of a cross-selling customer

i ∈ C1 for a secondary product j ∈ Ωk, ∀k ∈ L\{1}. Reservation prices are assumed to

be known to the retailer and can be estimated using such techniques as those discussed

in Section 2. The adopted maximum-surplus consumer choice model stipulates that

a direct or a cross-selling customer would only buy a product that yields a maximum,

nonnegative surplus. The latter is measured as the difference between the exogenous

customer reservation prices and the endogenous prices set by the retailer. If prices are

set so that all surplus values turn out to be negative for a given customer segment,

the customer is priced out of the market and will opt not to buy from this retailer

in this planning horizon. The cost structure we consider involves variable wholesale

costs, as well as an additional fixed cost for offering a product in the assortment at the

beginning of the selling season, which is also typical in the literature (e.g. Dobson and
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Figure 2.1: Example of a Store Grid Layout

Kalish 1988, 1993; Agrawal and Smith 2003; Anupindi at al. 2009). The objective is

to maximize the retailer’s profit by selecting an optimal assortment for each category,

along with optimal pricing decisions.

Consider the following notation:

Input Parameters

• L: Set of distinct product categories.

• Ω` : Set of all potential substitutable products in category `, ∀` ∈ L.

• C` : Set of customer segments that are interested in purchasing from category

`, ∀` ∈ L. In Figure 1, C1 and C2 comprise 3 and 2 distinct customer segments,

respectively.
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• s`i : Number of customers in segment i for category `, ∀i ∈ C`, ` ∈ L. For

example, s1
1 refers to the number of customers in segment 1 for category 1,

whereas s2
1 designates the number of customers in segment 1 for category 2. In

Figure 1, s1
1 = 5 and s2

1 = 8.

• α`ij : Reservation price of customer segment i for product j in category `, ∀i ∈

C`, j ∈ Ω`, ` ∈ L. For example, α2
13 is the reservation price of customer segment

1, direct customer of category 2, for product 3.

• βkij : Reservation price of customer segment i of the primary category for a

secondary product j in category k, ∀i ∈ C1, j ∈ Ωk, k ∈ L \ {1}. For example,

β2
13 is the reservation price of customer segment 1, direct customer of the primary

category, for product 3 in category 2. This relates to a customer (of the primary

category) who buys from a secondary category by cross-selling.

• γki : Fraction of customer segment i of the primary category who, upon purchas-

ing a primary product from Ω1, considers purchasing a complementary product

from the secondary category set Ωk, ∀i ∈ C1, k ∈ L\{1}. For example, referring

to the first customer segment of the primary category in Figure 1, only 1 out

of 5 customers would consider cross-selling and, hence, γ2
1 = 0.2.

• f `j : Fixed cost for the inclusion of product j into P`, the chosen assortment

from category `, ∀j ∈ Ω`, ` ∈ L.

• c`j : Unit ordering cost for product j in category `, ∀j ∈ Ω`, ` ∈ L.

• u1
j : Upper bound on the price of product j in the primary category; u1

j ≡

max
i∈C1
{α1

ij}, ∀j ∈ Ω1.

• ukj : Upper bound on the price of product j in a secondary category k; ukj ≡

max{max
i∈Ck
{αkij},max

r∈C1
{βkrj}}, k ∈ L \ {1}, j ∈ Ωk.
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Decision Variables

• z`j ∈ {0, 1}: z`j = 1 ⇔ product j ∈ Ω` is offered in the assortment P`, ∀j ∈

Ω`, ` ∈ L.

• x`ij ∈ {0, 1} : x`ij = 1 ⇔ customer segment i of category ` purchases product

j ∈ Ω`, ∀i ∈ C`, j ∈ Ω`, ` ∈ L. The x-variables are used to account for direct

purchases.

• ykij ∈ {0, 1} : ykij = 1 ⇔ A fraction γki of customer segment i of the primary

category purchases product j in a secondary category k, ∀i ∈ C1, j ∈ Ωk, k ∈

L \ {1}. The y-variables are used to represent cross-selling.

• p`j : Price of product j on category `, ∀j ∈ Ω`, ` ∈ L.

• d`j : Demand for product j in category `, ∀j ∈ Ω`, ` ∈ L, calculated endogenously

as a function of purchase decisions and the size of customer segments.

The multi-category cross-selling (MCCS) problem can be stated as the following

mixed-integer nonlinear program. The objective function (2.1a) maximizes the re-

tailer’s profit over the selling horizon, that is, the difference between the retailer’s

revenue and variable ordering costs and fixed costs for including products in the as-

sortment. As is clear from the remainder of the model constraints, d`jp
`
j is a nonlinear

term that involves an endogenously predicted demand and retail prices.

Maximize
∑
`∈L

∑
j∈Ω`

(
d`jp

`
j − c`jd`j − f `j z`j

)
. (2.1a)

Constraints (2.1b) ensure that a customer segment would choose, from amongst

offered products, one that maximizes her surplus, provided that it yields a nonnegative

surplus as enforced by Constraints (2.1c).
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∑
k∈Ω`

(α`ik − p`k)x`ik ≥ (α`ij − p`j)z`j , ∀` ∈ L, i ∈ C`, j ∈ Ω` (2.1b)

∑
j∈Ω`

(α`ij − p`j)x`ij ≥ 0, ∀` ∈ L, i ∈ C`. (2.1c)

Note that Constraints (2.1b) are equivalent to the following (more aggregate) con-

straints where the right-hand-side considers the max-surplus choice:
∑

k∈Ω`
(α`ik −

p`k)x
`
ik ≥ max

j∈Ω`
{(α`ij − p`j)z`j}, ∀` ∈ L, i ∈ C`.

Likewise, Constraints (2.1d)–(2.1e) stipulate that a customer segment i ∈ C1

would buy a complementary product j ∈ Ωk provided that j yields a maximum,

nonnegative surplus among all complementary products included in the assortment

of this secondary category. The value for M in Constraints (2.1d) is set to ukj ≡

max{max
i∈Ck
{αkij},max

r∈C1
{βkrj}}, ∀k ∈ L \ {1}, j ∈ Ωk.

∑
h∈Ωk

(βkih − pkh)ykih ≥ (βkij − pkj )zkj −M(1−
∑
r∈Ω1

x1
ir), ∀k ∈ L \ {1}, i ∈ C1, j ∈ Ωk

(2.1d)∑
j∈Ωk

(βkij − pkj )ykij ≥ 0, ∀k ∈ L \ {1}, i ∈ C1. (2.1e)

Constraints (2.1f) ensure that, for a certain category, any customer segment will

purchase at most one product from amongst the substitutable products offered in the

assortment. Constraints (2.1g) guarantee that a customer segment i ∈ C1 would buy

some secondary product only if she is also purchasing a primary product. Constraints

(2.1h)–(2.1i) ensure that any product cannot be purchased by a customer or cross-

sold, unless it is included in the assortment.
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∑
j∈Ω`

x`ij ≤ 1, ∀` ∈ L, i ∈ C` (2.1f)

∑
h∈Ωk

ykih ≤
∑
j∈Ω1

x1
ij, ∀k ∈ L \ {1}, i ∈ C1 (2.1g)

x`ij ≤ z`j , ∀` ∈ L, i ∈ C`, j ∈ Ω` (2.1h)

ykij ≤ zkj , ∀k ∈ L \ {1}, i ∈ C1, j ∈ Ωk. (2.1i)

Constraints (2.1j) aggregate the demand for any product in the primary category

based on customer direct purchases and the size of the different customer segments.

Likewise, Constraints (2.1k) express the demand of any product in the secondary

category by aggregating direct sales and sales due to cross-selling. Note that demand

is price-sensitive in that it depends on the consumer choice variables (i.e., x- and

y-variables) which, in turn, depend on the assortment and pricing decisions and are

governed by the maximum-surplus consumer choice model.

d1
j =

∑
i∈C1

s1
ix

1
ij, ∀j ∈ Ω1 (2.1j)

dkj =
∑
i∈Ck

ski x
k
ij +

∑
r∈C1

bγkr s1
rcykrj, ∀k ∈ L \ {1}, j ∈ Ωk. (2.1k)

Constraints (2.1l) enforce upper bounds on prices based on the greatest reservation

prices across customer segments, with u`j ≡ max{max
i∈C`
{α`ij},max

r∈C1
{β`rj}}, ∀` ∈ L \

{1}, j ∈ Ω`, and logically relates the pricing and the assortment variables. Constraints

(2.1m) introduce logical binary and non-negativity restrictions on decision variables.

p`j ≤ u`jz
`
j , ∀` ∈ L, j ∈ Ω` (2.1l)

x,y, z ∈ {0, 1},p,d ≥ 0. (2.1m)

Model MCCS, which comprises (2.1a)-(2.1m), optimizes the retailer’s assortment

and pricing decisions, while predicting consumer decisions (maximizing their surplus)
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and the associated expected demand. To illustrate the rationale in the consumer

choice model, we give a numerical example. Consider the primary category (` = 1).

Suppose the model would like to introduce products 3 and 4 (∈ Ω1), i.e., z1
3 = 1,

z1
4 = 1, and z1

k = 0, for any product k ∈ Ω1 \ {3, 4}. Further, suppose the retailer

would like to set the prices to p1
3 = 10 and p1

4 = 25. Consider now customer segment

1, with α1
13 = 10 and α1

14 = 20. Noting that x1
1k = 0,∀k ∈ Ω1 \ {3, 4} because of

Constraints (2.1h), then Constraints (2.1b) reduce to:

(α1
13 − p1

3)x1
13 + (α1

14 − p1
4)x1

14 ≥ α1
13 − p1

3 (≡ 0)

(α1
13 − p1

3)x1
13 + (α1

14 − p1
4)x1

14 ≥ α1
14 − p1

4 (≡ −5)

Therefore, customer segment 1 is expected to buy product 3, i.e., x1
13 = 1. Likewise,

let customer segment 2 have α1
23 = 12 and α1

24 = 30, then Constraints (1b) for this

segment enforce:

(α1
23 − p1

3)x1
23 + (α1

24 − p1
4)x1

24 ≥ α1
23 − p1

3 (≡ 2)

(α1
23 − p1

3)x1
23 + (α1

24 − p1
4)x1

24 ≥ α1
24 − p1

4 (≡ 5)

Therefore, customer segment 2 is expected to buy product 4, i.e. x1
24 = 1. At last,

suppose that customer segment 3 had reservation prices α1
33 = 8 and α1

34 = 20 with

implied surpluses α1
33 − p1

3 (≡ −2) and α1
34 − p1

4 (≡ −5). In this case, segment 3 is

simply priced out of the market, and does not buy anything, i.e., x1
3j = 0,∀j ∈ Ω1.

Nonlinear solvers such as KNITRO and LINGO did not show success in finding

a near-optimal solution to the MCCS problem even for very small instances. This

motivated the investigation of linearized reformulation that can be tackled using linear

solvers such as CPLEX as discussed in the next subsection.
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2.3.2 Mixed-Integer Linear Reformulation

Model MCCS is a mixed-integer nonlinear formulation that jointly optimizes as-

sortment and pricing decisions with cross-selling considerations. The simpler product

line optimization problem under a maximum-surplus choice model is a special case

of our problem and is shown to be NP-Complete in Dobson and Kalish (1993). This

is indicative of the difficulty of our problem which poses computational challenges

due to the discreteness of key decision variables (e.g., assortment and customer pur-

chase decisions) and nonlinearities that arise in the expression of the revenue (with

price-sensitive demand) and in the customer choice and cross-selling constraints. The

computational intractability of MCCS can, however, be greatly alleviated by devel-

oping an equivalent mixed-integer linear reformulation. To this end, the following

proposition shows that p`jz
`
j = p`j:

Proposition 1. It is valid to substitute p`jz
`
j ≡ p`j in Model MCCS.

Proof.

• If z`j = 0, then p`jz
`
j = 0 and p`j = 0 by Constraint (2.1l), and thus p`jz

`
j ≡ p`j.

• If z`j = 1, then p`jz
`
j = p`j. �

The result established in Proposition 1 is intuitive in that a product j that is not

selected in the assortment will not be priced by the retailer. Note, however, that a

similar result does not necessarily hold for pjxij, i.e., xij = 0 does not necessarily

imply that pj = 0. In fact, a product that is not selected by one customer segment i

could indeed be purchased by another segment and ought to be priced by the retailer.

We first linearize the objective function (2.1a). To this end, we introduce the

following auxiliary nonnegative continuous variables (2.2a-2.2b) in lieu of nonlinear

terms in the objective function, as in (2.3a), along with the linearizing constraints

(2.3b)-(2.3g):
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g`ij ≡ p`jx
`
ij, ∀` ∈ L, i ∈ C`, j ∈ Ω` (2.2a)

qkij ≡ pkjy
k
ij, ∀k ∈ L \ {1}, i ∈ C1, j ∈ Ωk. (2.2b)

Maximize
∑

k∈L\{1}

∑
r∈C1

∑
h∈Ωk

bγkr s1
rcqkrh +

∑
`∈L

∑
i∈C`

∑
j∈Ω`

s`ig
`
ij −

∑
`∈L

∑
j∈Ω`

(
c`jd

`
j + f `j z

`
j

)
(2.3a)

g`ij ≤ u`jx
`
ij , ∀` ∈ L, i ∈ C`, j ∈ Ω` (2.3b)

g`ij ≥ p`j − u`j(1− x`ij) , ∀` ∈ L, i ∈ C`, j ∈ Ω` (2.3c)

g`ij ≤ p`j , ∀` ∈ L, i ∈ C`, j ∈ Ω` (2.3d)

qkij ≤ ukjy
k
ij , ∀k ∈ L \ {1}, i ∈ C1, j ∈ Ωk (2.3e)

qkij ≥ pkj − ukj (1− ykij), ∀k ∈ L \ {1}, i ∈ C1, j ∈ Ωk (2.3f)

qkij ≤ pkj , ∀k ∈ L \ {1}, i ∈ C1, j ∈ Ωk. (2.3g)

The model linearization is completed by substituting constraints (2.3h)-(2.3k) in

lieu of constraints (2.1b)-(2.1e) as follows:

∑
k∈Ω`

(α`ikx
`
ik − g`ik) ≥ α`ijz

`
j − p`j, ∀` ∈ L, i ∈ C`, j ∈ Ω` (2.3h)

∑
j∈Ω`

(α`ijx
`
ij − g`ij) ≥ 0, ∀` ∈ L, i ∈ C` (2.3i)

∑
j∈Ωk

(βkijy
k
ij − qkij) ≥ 0, ∀k ∈ L \ {1}, i ∈ C1 (2.3j)

∑
h∈Ωk

(βihy
k
ih − qkih) ≥ βkijz

k
j − pkj −M(1−

∑
r∈Ω1

x1
ir), ∀k ∈ L \ {1}, i ∈ C1, j ∈ Ωk.

(2.3k)

29



Note that in constraint (2.3h), the nonlinear term p`jz
`
j is replaced by p`j, as a

result of Proposition 1.

Model L-MCCS can be stated as follows:

L-MCCS: {Maximize (2.3a): (2.3b)-(2.3k), (2.1f)-(2.1l), and x,y, z ∈ {0, 1},p,d,g,q ≥

0}.

For completeness, the following proposition establishes the validity of L-MCCS:

Proposition 2. Model L-MCCS is a valid reformulation of Model MCCS.

Proof.

Consider the substitution relationships g`ij ≡ p`jx
`
ij,∀`, i, j, and note that:

• If x`ij = 0, then p`jx
`
ij = 0, and we need to verify that g`ij = 0. By (2.3b) and

the non-negativity restriction on the g-variables, we have that g`ij = 0. Under

this condition, constraints (2.3c) and (2.3d) hold true, and g`ij = p`jx
`
ij.

• If x`ij = 1, we need to verify that g`ij = p`j, which is jointly enforced by constraints

(2.3c) and (2.3d).

Consider the substitution relationships qkij ≡ pkjy
k
ij,∀k, i, j, and note that:

• If ykij = 0, then pkjy
k
ij = 0, and we need to verify that qkij = 0. By (2.3e) and the

non-negativity restriction on the q-variables, we have that qkij = 0. Under this

condition, constraints (2.3f) and (2.3g) hold true, and qkij = pkjy
k
ij.

• If ykij = 1, we need to verify that qkij = pkj , which is jointly enforced by constraints

(2.3f) and (2.3g). �

As a consequence of linearization, the linear model L-MCCS contains an six addi-

tional sets of constraints (2.3b) - (2.3g) and two additional variables, namely g`ij and

qkij.
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2.4. Computational Study

In this section, we present an illustrative example followed by our computational

results for large-scale instances. The illustrative example discusses the planning of a

primary category and a single secondary category. The computational study demon-

strates the tractability of the proposed model reformulation and the usefulness of

adopting an integrated approach that incorporates cross-selling considerations. The

larger instances considered are scaled with respect to different parameters, namely,

the number of candidate products in each category, |Ω`|,∀` ∈ L, and the number

of direct customer segments for each category, |C`|, ∀` ∈ L. All runs were performed

with AMPL/CPLEX 12.4.0.0 on Microsoft Windows 7 Professional with an Intel Core

i7-2600, 3.40 GHz processor and 12 GB RAM.

2.4.1 Illustrative Example: A Single Secondary Category

This illustrative example involves optimizing assortment and pricing decisions for

a primary category and a secondary category. For each of the two categories, the

retailer may select from among three substitutable products, i.e., |Ω1| = 3 and |Ω2| =

3. Further, the retailer has identified two direct customer segments for each category,

that is, |C1| = 2 and |C2| = 2. Table 2.1 summarizes other input parameter values

pertaining to customer segment sizes, customer reservation prices (or valuations),

cross-selling parameters, and fixed and variable costs for the different products. Table

2.2 reports the solution obtained under two policies: (i) Our proposed integrated

approach that optimizes both categories under cross-selling as in Model MCCS and

(ii) a disjoint approach where each category is planned in isolation, thereby ignoring

cross-selling effects by setting all γ values to zero.

The results demonstrate the importance and usefulness of the proposed integrated

model. Under the integrated approach, the optimal assortments for the primary and

secondary categories, respectively, are P1 = {11, 31} and P2 = {22, 32} (where the
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Table 2.1: Data for Illustrative Example with a Single Secondary Category

Primary category Secondary category
α1
ij α2

ij βij
i ∈ C1 s1i j = 1 j = 2 j = 3 γ i ∈ C2 s2i j = 1 j = 2 j = 3 i ∈ C1 j = 1 j = 2 j = 3
i = 1 880 95 97 90 0.2 i = 1 600 115 120 125 i = 1 115 120 125
i = 2 1020 80 83 85 0.4 i = 2 800 110 115 120 i = 2 110 115 115

f1j 620 1082 1000 f2j 1035 748 633

c1j 79 82 83 c2j 96 100 98

Table 2.2: Solution for Illustrative Example with a Single Secondary Category

Integrated Solution with Cross-Selling Effects
Primary category Secondary category

i ∈ C1 x1ij i ∈ C2 x2ij i ∈ C1 y2ij
j ∈ Ω1 j = 1 j = 2 j = 3 j ∈ Ω2 j = 1 j = 2 j = 3 j ∈ Ω2 j = 1 j = 2 j = 3
i = 1 1 0 0 i = 1 0 0 1 i = 1 0 0 1
i = 2 0 0 1 i = 2 0 0 1 i = 2 0 1 0

z1j 1 0 1 z2j 0 1 1

Total Profit = 48,234.6d1j 880 0 1020 d2j 0 408 1576

p1j 90 0 85 p2j 0 115 120

Disjoint Solution without Cross-Selling Effects
Primary category Secondary category

i ∈ C1 x1ij i ∈ C2 x2ij i ∈ C1 y2ij
j ∈ Ω1 j = 1 j = 2 j = 3 j ∈ Ω2 j = 1 j = 2 j = 3 j ∈ Ω2 j = 1 j = 2 j = 3
i = 1 1 0 0 i = 1 0 0 1 i = 1 0 0 1
i = 2 0 0 0 i = 2 0 0 1 i = 2 0 0 0

z1j 1 0 0 z2j 0 0 1

Total Profit = 42,872.6d1j 880 0 0 d2j 0 0 1400

p1j 95 0 0 p2j 0 0 120
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superscript of a product identifies its category). In particular, product 3 in the pri-

mary category was introduced at an affordable price for customer segment 2 (∈ C1),

which resulted in profitable cross-selling transactions and the inclusion of product 2

in the secondary category. When cross-selling was overlooked, the retailer did not

perceive benefit in including product 3 in primary category and product 2 in the

secondary category, thereby yielding suboptimal, narrower assortments denoted by

P̃1 = {11} and P̃2 = {32}. Such suboptimal assortment and/or pricing decisions are,

of course, accompanied by a significant profit loss of around 13%. Further, it results

in a reduced business volume whereby 3,884 transactions are anticipated under the

integrated approach as opposed 2,280 transactions under the disjoint approach. This

can have two damaging consequences for the retailer. The first is the risk of under-

estimating demand and, therefore, having to lose or backorder certain transactions.

The second, as a result of narrower assortments, can cause an overall reduction of

customer footprint (Hess and Gerstner 1987; DeGraba 2003) – a major concern to

retailers.

2.4.2 Results for Larger Instances

In this section, we report in Table 2.3 results for large-scale instances that we

randomly generated using the data generation scheme in the appendix. Central to

our computational study is a comparison between our proposed integrated approach

which accounts for cross-selling and a disjoint approach that overlooks cross-selling

and optimizes each category in isolation, as explained in Section 2.4.1. Each of the

18 instances reported in Table 2.3 is identified by its number and is characterized by

the number of candidate, substitutable products in each category. All instances in

our computational study involve one primary category and two secondary categories

(i.e., |L| = 3). For the integrated approach, Table 2.3 reports |P1|, |P2|, and |P3| –

the size of the optimal assortments for the primary category and the two secondary
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categories. It also reports the profit as a percentage of the total revenue and the CPU

time (seconds) to solve the instance to optimality. For the disjoint approach, we also

report the size of selected assortments, |P̃1|, |P̃2|, and |P̃3|. For each category, we

also report the number of products under the disjoint approach that are common to

the optimal assortment, i.e., |P`∩P̃`|,∀` ∈ L. The last two columns report the profit

loss and the CPU time (secs) under the disjoint approach.

From a computational viewpoint, it is worthwhile to note that the linear MIP

reformulation, L-MCCS, solved to optimality all instances, with up to 5 customer

segments for each category and over 75 substitutable products in each category. For

most instances in our test-bed, the solution effort required less than one CPU minute.

For the larger and more difficult instances, the CPU time ranged between 2 and 11

CPU minutes. This empirically observed computational tractability of the proposed

MIP reformulation is encouraging and bears the potential of benefiting retailers for

large-scale, industry-sized problem instances. The disjoint approach confirms that

optimizing single-category decisions, when pertinent, is computationally very man-

ageable with the available computing power.
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From a managerial point of view, the following observations and insights are in

order.

1. Profit reduction. Over the 18 instances in our test-bed, the disjoint approach

coincidentally yielded an optimal solution for only one instance (Instance 5).

This atypical situation arises when direct customers are more profitable than

cross-selling customers and it is optimal for the retailer to plan assortment

and pricing decisions without consideration for cross-selling. For all the other

instances, the profit reduction caused by the disjoint approach ranged from 5.6%

to 65.4%.

2. Suboptimal, narrower assortments. One recurrent disadvantage of the disjoint

approach is that it tends to yield suboptimal (and often narrower) assortments.

For Instance 18, the primary category comprises two products under the in-

tegrated approach, whereas only a single product forms the primary category

under the disjoint approach. Further, the latter product is not part of the pair

of products chosen in the integrated approach. Likewise, the three products

selected in the first secondary category (` = 2) do not overlap at all with the

three products selected under the integrated approach. The larger assortments

observed under the integrated approach are often due to the introduction of

a primary product as an incentive for attractive cross-selling customers. This,

in turn, may result in the inclusion of additional secondary products that can

secure profitable cross-selling transactions. A more aggressive version of this

phenomenon relates to the concept of “loss-leaders’ (Hess and Gerstner 1987)’

whereby a retailer would sell a product at loss with the anticipation that cus-

tomers who purchase it would also buy secondary products that are more lu-

crative.
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3. Suboptimal pricing. The disjoint approach is also observed to yield suboptimal

prices. Of particular interest are the prices of products that are selected under

both the integrated and disjoint approaches. This comparison is pertinent when

the entire assortment of a category is common to both approaches.

• Over-pricing products. When the product valuations by cross-selling cus-

tomers are relatively lower than those by direct customers for secondary

categories, there is a risk of over-pricing under the disjoint approach. In

fact, here, the retailer overlooks cross-selling and chooses higher prices

based solely on direct customers. When cross-selling customers visit the

store, they may find the assortment relatively interesting, but would per-

ceive the prices of secondary products as expensive (yielding negative util-

ity). This would result in lost sales opportunities for the retailer.

• Under-pricing products. When, on the contrary, cross-selling customers

have relatively high product valuations for secondary categories, they would

perceive the prices set by the retailer under the disjoint approach as quite

attractive. This will generate a substantial stream of cross-selling pur-

chases which will accelerate the depletion of the secondary products or-

dered by the retailer and are likely to cause stock-outs.

2.5. Conclusion

We have examined the multi-category cross-selling (MCCS) problem, where a re-

tailer seeks to jointly optimize assortment and pricing decisions for a primary category

and several related secondary categories – each of which is composed of substitutable

products. We developed a novel mixed-integer nonlinear formulation that maximizes

the retailer profit under a maximum utility consumer choice model. We highlight

that the nonlinearity of this model can be circumvented by introducing auxiliary

variables and accompanying linearization constraints. The linear MIP reformulation
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is empirically observed to afford exact solutions to large-scale, industry-sized prob-

lem instances in manageable times (ranging from a few CPU seconds to a few CPU

minutes). We have demonstrated the importance of jointly planning retail categories

that are related by cross-selling. In fact, failing to do so results in substantial profit

losses (ranging from 5% to 65% in our computational experience), suboptimal (and

often narrower) assortments, and inadequate prices. When such retail categories are

planned in isolation, price inadequacy is evidenced by over-pricing certain secondary

products, which can cannibalize cross-selling transactions, or under-pricing which

stimulates cross-selling purchases that were unaccounted for to extent of causing

stock-outs.

The approach articulated in the chapter can help overcome computational diffi-

culties noted in the literature, e.g. in the work by Dobson and Kalish (1993). In

the latter, only heuristics approaches were devised for a single product selection and

pricing problem under a maximum surplus consumer choice model. Our work can

also serve as a cornerstone for future research on the integration of additional de-

cisions related to inventory holding and shelf space allocation. Another direction

that we recommend for future research is to analyze the effect of promotional cam-

paigns. Finally, we recommend examining product line optimization problems with

probabilistic consumer choice models, especially to address applications for which the

deterministic consumer choice model may not be adequate.
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CHAPTER 3

A MULTI-CATEGORY ASSORTMENT PACKING
PROBLEM UNDER CROSS-SELLING AND

CANNIBALIZATION EFFECTS

Central to the management of product variety in retail is the issue of dynamically

“refreshing” product assortments. In doing so, retailers seek to project an attractive

image of their business in a competitive market by meeting customers’ expectations

and by sparking their interest for new(er) products. In this chapter, we examine an

assortment packing problem where a decision-maker optimizes the assortment and

the market entry time of products that belong to multiple interdependent categories

over a multi-period planning horizon. It is assumed that products in the same cat-

egory are substitutable, whereas products across categories may exhibit asymmetric

complementarity relationships. Products are also assumed to have a limited longevity

over which their attractiveness gradually decays (e.g., electronics or fashion products).

Upon its introduction, the decaying attractiveness of a product can be further posi-

tively or negatively impacted by the specific mix of substitutable or complementary

products that the retailer introduces. We propose a 0-1 fractional optimization model

that employs an attraction demand model and subsumes recent assortment packing

models in the literature. We develop a linearized reformulation that affords exact so-

lutions to small-sized problem instances. Furthermore, a linear programming-based

heuristic approach is devised and demonstrated to yield near-optimal solutions for

large-scale computationally challenging problem instances in manageable times. A

model extension in the context of the movie industry is discussed, where exhibitors

decide on the assortment of movies to display and their optimal display times.
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3.1. Introduction and Motivation

To maintain a competitive edge, firms need to carefully manage the life cycles

of their products which encompass four main stages, spanning their introduction,

growth, maturity, and decline. The latter ends with the product being withdrawn

from the market or its production discontinued, as newer versions of it or substi-

tutable options become available. The management of product variety over time is

grounded in a firm’s ability to strategically plan the introduction and withdrawal of

products. Such planning issues arise in a broad spectrum of applications, including

the management of movie theaters, DVD rentals, automotive industry, high fashion,

and electronic devices to name a few. In such applications, products have a limited

life cycle that may be measured in weeks (e.g., movies) or a few years (e.g., cars). The

dynamic planning of product assortments is further complicated by two key factors.

The first is the inherent decline of a product attractiveness over time, as it “ages.”

This phenomenon, henceforth referred to as a product decay, is further complicated

by the additional impact of other products in the assortment. The introduction of

more attractive substitutable items (e.g., new version of a smart-phone) can be detri-

mental to and further accelerate the decay of a (cannibalized) product. In contrast,

the decaying attractiveness of a product can be invigorated, to some extent, by the

introduction of certain complementary items that increase the utility or the appeal

of the former and create the opportunity of cross-selling. This requires a strategic

planning of the specific mix of products that are made available for customers in order

to meet, but also spark, their interest in new(er) products. Given the combinatorial

nature of such assortment decisions, it is judicious to develop optimization models

that capture the relative market share of decaying products as different subset of

products get introduced into the assortment over time.

Firms, especially in the apparel business, are particularly interested in dynamically

refreshing their stores with new products over different selling seasons. However, as
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indicated in Caro et al. (2014), they usually employ a manual, ad hoc strategy based

on their own experience and subjective judgment. Such approaches typically lack

integration and can benefit from business analytics and optimization. In this regard,

Caro et al. (2014) suggest that even simple constructive or greedy heuristics can

produce assortments that outperform those constructed by retailers using manual

approaches.

We consider the general case of multiple interdependent categories with product

substitutability in a given category and complementarity between products across

categories. We also consider a multi-period horizon whereby subsets of products are

dynamically introduced over time and their relative market shares are represented

using an attraction demand model (Bell et al. 1975). Each product attractiveness

decays over time, until its complete decline and withdrawal at the end of its longevity.

After its introduction, an item decay may be strategically accelerated or slowed down

due to cannibalization or cross-selling effects. This model extends the extant literature

on assortment packing. It subsumes the special case of a single-category, single-

period model with an attraction demand model (Talluri and van Ryzin 2004; Kök et

al. 2008). It also extends the recent work by Caro et al. (2014) which examines a

single-category, multi-period problem with decaying attractiveness but without any

cannibalization or cross-selling effects. The special case addressed in Caro et al.

(2014) was shown to be NP-hard and the intractability of their proposed (nonlinear)

0-1 fractional program motivated the use of several constructive heuristics.

As in Caro et al. (2014), we model demand in the form of market shares fol-

lowing the attraction model by Bell et al. (1975). In its original form, a demand

attraction model defines a competitive market share for n sellers following the rela-

tionship (us)/(us+them). It expresses the individual market share, m(si), of a given

seller, si ∈ S, as a function of the attraction value for each seller a(si) in the form:

m(si) = a(si)/
∑n

j=1 a(sj). Our model uses a similar relationship to express the mar-
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ket share of the retailer as a function of the different attraction values for each product

that decays over time.

The remainder of the chapter is organized as follows. Section 3.2 briefly reviews the

related literature. In Section 3.3 the problem is formally stated along with notation

and our 0-1 fractional program is introduced. We also discuss some features and

assumptions of the model and highlight parameter estimation methods. Section 3.4

presents two solution approaches. In Section 3.5, we present an illustrative example,

followed by a computational study. Section 3.6 provides an extension of the model

in the movie industry. Section 3.7 concludes the chapter with a discussion of our

findings.

3.2. Literature Review

The work presented in this chapter is generally related to the assortment planning

literature, where the retailer decides on the set of products to be carried in store.

Kök et al. (2008) present an extensive review of the literature in this area which can

be classified into two main streams: i) Static assortment planning, and ii) dynamic

assortment planning.

Static assortment planning problems seek to determine a fixed assortment selection

for the entire season. The stylized model by Talluri and van Ryzin (2004) provides an

analysis of the single-period revenue management problem of deciding which subset

of fare products to offer. Their analysis provides a characterization of optimal policies

under a general choice model of demand and shows that the optimal assortment is a

set comprising of highest-margin products.

Dobson and Kalish (1988, 1993) proposed early studies of static assortment and

pricing problems. The authors proposed several modeling contributions but no exact

solution methodology was presented. Instead, the authors opted to use heuristics

to cope with the intractability of their models. Van Ryzin and Mahajan (1999)
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and Smith and Agrawal (2000) also consider the static assortment problem with a

stochastic demand model and static product substitution. In contrast, Mahajan and

van Ryzin (2001) capture the dynamic substitution due to stockouts in the assortment

planning problem. Kök and Fisher (2007) estimated demand under substitution where

their assortment decision is followed by an inventory decision. Honhon et al. (2010)

find the optimal stocking levels under random demand, and Rodŕıguez and Aydin

(2011) solve for assortment and pricing decisions for configurable products under

uncertain demand. The more complex problem of jointly solving for pricing and

inventory decisions for an assortment is studied by Maddah and Bish (2007), Aydin

and Porteus (2008), and Ghoniem and Maddah (2013).

In the aforementioned studies, even when the problem is in a multi-period set-

ting, the assortment in all periods tends to be static. Dynamic assortment planning

addresses the need to revise or change the assortment selection over the time. Fash-

ion and apparel retailers would benefit from such ability to revise their assortment

specially after the reduction that some companies have recently made in their sup-

ply chain response time. Traditionally, the design-to-shelf lead time for the apparel

supply chain is 6-9 months. However, innovative retailers redesigned their supply

chain architecture, and reduced the lead time to 2-5 weeks. Raman et al. (2001)

describe the organizational changes in the supply chain that allowed the Japanese

apparel company “World Co.” to achieve much shorter lead times. The work by Caro

and Gallien (2007) develop a stylized model that formulates the dynamic assortment

planning problem faced by fashion retailers. Bernstein et al. (2013) dynamically cus-

tomizes the assortment over time, depending on customer’s preferences and inventory

levels.

Research in assortment planning has primarily focused on single category problem

decisions. Single category models overlooks the dependency and relationships across

multi-category items that can affect the key retail decisions (see Russell et al. 1997
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for a review). In contrast, our work is related to the stream of research that examines

multi-category effects on retail decisions. Work on this stream includes the paper

by Manchanda et al. (1999) that introduced co-incidence and heterogeneity along

with complementarity as factors affecting items dependency in the shopping basket.

They argue that not accounting for these three factors simultaneously could lead

to erroneous inferences of the problem. Van den Poel et al. (2004) measure the

complementary effects of retail promotions for a large number of product pairs using

the market basket analysis. Akçura and Srinivasan (2005) study the role of customer

information on cross-selling and risks accompanied by obtaining these information.

They show that by a firm’s commitment on a cross-selling level, it can obtain customer

intimacy and benefit from detailed customer information, resulting in higher profits

and lower prices.

The work by Caro et al. (2014) is the first to tackle the assortment packing

problem, deciding on the optimal introduction timing of products to the assortment.

Their model follows the attraction model by Bell et al. (1975). Their formulation

was deemed intractable and heuristic approaches were presented. Our work extends

the problem by Caro et al. (2014) and proposes a multi-category assortment packing

model where cross-selling and cannibalization effects between products are observed.

In contrast to Caro et al. (2014), our approach to solve the problem is based on exact

methods. As such, our proposed model is, to the best of our knowledge, the first

approach to solve the multi-category assortment packing problem to optimality and

reveal important managerial insights.

3.3. Mathematical Programming Formulation

This section provides a formal problem statement for the multi-period multi-

category assortment packing problem under cross-selling and cannibalization effects.

We introduce the notation along with a 0-1 fractional program.
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3.3.1 Binary Fractional Model

Consider the multi-period multi-category assortment packing problem where a

firm seeks to optimize the release times of new products into the market, in a way

that maximizes its market share over the entire planning horizon. Products belong

to a set of categories, where two types of relations exist between pairs of products:

i) Cross-selling relations between a pair of complementary products from two dis-

tinct categories, ii) cannibalization relations between a pair of substitutable products

within the same category.

We consider a set of n candidate products of multiple categories. The assortment

planning is dynamic, in the sense that there is no one fixed assortment that is adopted

over the whole time horizon T . Each product i is characterized by its attractiveness

vi when it is first introduced into the market, its gross margin ri, and a decay factor

kid that determines the longevity `i of the product in the market.

The cross-selling effect is the increase in market share of one product as a result

of introducing a complementary product, while cannibalization is the reduction in

the market share of one product as a result of introducing a substitutable product.

Thus, these two phenomenon can be modeled in the assortment packing problem

as either an increase or reduction in the decay function’s intensity of the existing

product. More specifically, the matrix γij reflects the change fraction that should be

applied to the decay function. The matrix γij is defined in a way that captures the

effects between each pair of products whether they belong to the same category or

not. That allows us to capture cross-category effects (such as cross-selling) as well as

inter-category effects (such as cannibalization). The difference between cross-selling

and cannibalization effects in the matrix is that cross-selling values range from 0 to 1,

while cannibalization values range from -1 to 0. We further assume, for computational

simplicity, that products are introduced to the market once and are not withdrawn
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from the market before they decay. This assumption will be further relaxed in the

model extension in Section 3.6 where product removal is allowed.

Consider the following notation:

Parameters

• I = {1, . . . , n}: Set of all n candidate products in all the categories that the

firm can introduce over the planning horizon.

• T = {1, . . . , T}: Set of all T periods in the planning horizon.

• αt: Discount (or seasonality) factor at period t, ranging between 0 and 1, ∀t ∈ T .

• ri: Unit gross margin of product i, ∀i ∈ I.

• vi: Weight, or attractiveness, of product i when it is first introduced into the

market, ∀i ∈ I.

• v0: Weight, or attractiveness, of the outside option due to competition.

• `i: Longevity of product i (in periods), ∀i ∈ I.

• kid: Decay factor for product i after d periods of its initial introduction, ranging

between 0 and 1. As such, ki0 = 1, since the product did not start decaying

yet, and kid = 0,∀i ∈ I, d ≥ `i.

• γij : Fraction of the increase (decrease) in the decay value of product i if product

j is introduced within its life cycle as a result of cross-selling (cannibalization)

effects, with the assumption that
∑

j:γij<0

γij ≥ −1,∀i ∈ I.

• h = max{1, t− `i + 1}, a pointer to whether product i is active (did not decay)

at period t.
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Decision Variables

• xit ∈ {0, 1}: xit = 1 if and only if product i is introduced in period t, ∀i ∈ I, t ∈

T .

The multi-period multi-category Assortment Packing Problem with Cross-Selling

and Cannibalization effects, denoted by APPCS, can be stated as the following 0-1

nonlinear fractional model:

APPCS: Maximize:
T∑
t=1

αt

n∑
i=1

ri


vi

t∑
u=1

[ki,t−uxiu +
∑
j 6=i

t∑
h

ki,t−uγijxjhxiu]

v0 +
n∑
s=1

vs
t∑

u=1

[ks,t−uxsu +
∑
j 6=s

t∑
h

ks,t−uγsjxjhxsu]


(3.1a)

subject to:
T∑
t=1

xit ≤ 1, ∀i ∈ I (3.1b)

x binary. (3.1c)

The objective function in (3.1a) is the sum of the discounted (gross) profits over

all products in all categories for all periods. The expression between parentheses

is the market share of product i at period t. Constraint (3.1b) ensures that each

product is introduced at most once. Constraint (3.1c) imposes binary restrictions on

the decision variables.

Building on the single category model (Caro et al. 2014), our model is also

based on the attraction demand model (Bell et al. 1975), where the contribution

of each product’s market share is proportional to its attractiveness in each period.

Let zit ≡
t∑

u=1

[ki,t−uxiu +
∑
j 6=i

t∑
h

ki,t−uγijxjhxiu] denote the contribution of product i

to the attractiveness of the assortment in period t. The first term in zit, ki,t−uxiu,

refers to the decay effect of the normal life cycle of the product, while the second

term,
∑
j 6=i

t∑
h

ki,t−uγijxjhxiu, refers to the delayed or accelerated decay effect due to
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cross-selling or cannibalization respectively. Then, let zt ≡
n∑
i=1

vizit denote the total

attractiveness load of all products in period t, and φt ≡ zt
v0+zt

represents the firm’s

total market share at period t.

3.3.2 Model Discussion and Parameter Estimation

In this section we discuss our model, its key features and assumptions, and param-

eter estimation. The model formulated above is a generic model, however, it can be

customized to fit specific applications by adding more constraints and/or customizing

its variables and parameters as illustrated in Section 3.6. The model is assumed to

run once, at the beginning of the season, and thus all release dates are specified in

advance and cannot be adjusted later in the season. Motivation to this assumption

is derived from applications with long production lead times, such as electronics and

fashion products. On the other hand, for applications with short production lead

times, one can adjust the model to include a learning phase. This can be done by

running the model at the beginning of the season, implementing its optimal decision

for the first few periods, get feedback from those periods and use them to adjust pa-

rameters (learning phase), and then rerun the model for the rest of the season. This

learning process can be repeated again during the season when needed.

Another assumption in the model is that each product is introduced into the

assortment at most once, and remains in the assortment until the end of the season.

Given that it is not usual in retail settings to introduce a product and then remove

it from the assortment and then re-introduce it again (due to associated costs like

logistics, handling, and merchandising costs), this assumption in the generic model

is realistic. However, in some applications, like movie scheduling, a product (movie)

can be introduced to the assortment of “now displaying” movies, then discontinued

for some reason, and re-introduced again for a few more weeks. This assumption can
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therefore be relaxed according to the application as shown in the model extension in

Section 3.6 which allows for product removal.

An important characteristic of the model is the adoption of the attraction demand

model by Bell et al. (1975). Following the same adoption made by Caro et al.

(2014) in the single category assortment packing problem, we utilize the concept that

marketing model builders frequently use. Where relationships of the form (us)/(us

+ them) are used to express the effects of “us” variables on purchase probability

and market share. This form is a commonly used demand model in the marketing

literature that captures assortment-based substitution (see Kök et al. 2008).

For the single category assortment packing problem, Caro et al. (2014) prove that

the problem is NP-hard even for two periods only. Thus, building over the complexity

of the single category problem by expanding it to a multiple category setting, and

consider inter-related product effects, makes our optimization problem an NP-hard

problem.

The data used in this chapter is a realistic randomly generated data. However, we

have developed an understanding of how the different parameters of the model APPCS

are estimated. Estimating the initial attractiveness vi and the decay parameter ki,d of

a product is done by identifying a matching product from the database of previously

displayed products. From which an estimate of the attractiveness can be made based

on the number of units sold in the first period after the product’s introduction, and

an estimate of the decay parameter can be made based on the change in the number

of units sold in subsequent periods. Sawhney and Eliashberg (1996), Eliashberg et

al. (2001) and Ainslie et al. (2005) illustrates the process with application to movie

release dates. The way we realistically estimate the decay parameter ki,d in our

computations is that we follow an exponential decay pattern illustrated as follows:

randomly assign ki,d a fraction that is uniformly distributed between 0 and 1. For

each period t ∈ 1..T we raise that fraction to the power of d = t − 1. For example
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for a three period problem, d = 0, 1 and 2, and ki,d = 0.8, then k1,0 = 0.80 = 1,

k1,0 = 0.81 = 0.8 and k1,0 = 0.82 = 0.64.

Estimating cross-selling and cannibalization matrix γij is the process of measuring

the positive/negative effect seen when a product is introduced at the same period

where a complementary/substitutable product is active. That type of parameters

needs analysis of previous situations in previous years. Amount of sales in overlapping

periods are compared to non-overlapping ones so as to measure the percent of increase

in decay if any. Krider and Weinberg (1998) discuss the rationale of avoiding the

competition in the general context of product introduction timing.

3.4. Exact and Heuristic Solution Approaches

This section describes and examines different solution approaches to the multi-

category assortment packing problem. We first reformulate the problem as a linear

mixed integer program that is capable of solving small-size instances and discuss

the implications of using traditional integer program solver to computationally solve

the problem. We then describe a heuristic solution approach that is based on the

continuous relaxation solution of the APPCS problem.

3.4.1 Linearization Scheme

Model APPCS is a 0-1 nonlinear formulation that optimizes assortment and en-

try timing decisions over the planning season with cross-selling and cannibalization

considerations. The problem is NP-hard and poses computational challenges due to

the discreteness of key decision variables and nonlinearities that arise in the objec-

tive function in the fractional expression of the market share. The computational

intractability can, however, be largely alleviated by developing a linear reformulation

of APPCS.
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The objective function of APPCS has two types of nonlinearities: i) Existence of

a quadratic term as a result of multiplying two x variables ( xiuxjh), and ii) fractional

expression of the market share. To overcome the nonlinearity of the quadratic term

we first introduce the following auxiliary binary variable in lieu of the nonlinear term

in the objective function:

qijuh ≡ xiuxjh, ∀i ∈ Ω, j ∈ Ω \ {i}, u, h ∈ T . (3.2a)

The variable qijuh is set to 1 if and only if both variables xiu and xjh equal to 1.

The following linearizing constraints are added for all i ∈ Ω, j ∈ Ω \ {i}, u, h ∈ T :

qijuh ≤ xiu, (3.3a)

qijuh ≤ xjh, (3.3b)

qijuh ≥ xiu + xjh − 1. (3.3c)

As a result, APPCS can be reformulated as follows:

Maximize
T∑
t=1

αt

n∑
i=1

ri


vi

t∑
u=1

[ki,t−uxiu +
∑
j 6=i

t∑
h=max{1,t−`j+1}

ki,t−uγijqijuh]

v0 +
n∑
s=1

vs
t∑

u=1

[ks,t−uxsu +
∑
j 6=s

t∑
h=max{1,t−`j+1}

ks,t−uγsjqsjuh]


(3.4a)

subject to:
T∑
t=1

xit ≤ 1, ∀i ∈ Ω (3.4b)

qijuh ≤ xiu, ∀i ∈ Ω, j ∈ Ω \ {i}, u, h ∈ T (3.4c)

qijuh ≤ xjh, ∀i ∈ Ω, j ∈ Ω \ {i}, u, h ∈ T (3.4d)

qijuh ≥ xiu + xjh − 1, ∀i ∈ Ω, j ∈ Ω \ {i}, u, h ∈ T (3.4e)

x binary, q ≥ 0. (3.4f)
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To overcome nonlinearity due to fractional expression, we first apply the Charnes

and Cooper (1962) transformation technique to the objective function in (3.4a), then

we introduce new variables to substitute for the resulting nonlinear terms. An expla-

nation of the transformation method is discussed next. We denote by

wt ≡
1

v0 +
n∑
s=1

vs
t∑

u=1

[ks,t−uxsu +
∑
j 6=s

t∑
h=max{1,t−`j+1}

ks,t−uγsjqsjuh]

, ∀t ∈ T (3.5a)

where v0 is assumed to be greater than or equal to 1 and where wt is a continuous

variable between 0 and 1, ∀t ∈ T . We also let

yit ≡
t∑

u=1

[ki,t−uxiu +
∑
j 6=i

t∑
h=max{1,t−`j+1}

ki,t−uγijqijuh]wt, ∀i ∈ Ω, t ∈ T (3.5b)

The nonlinear terms in the objective function are linearized using substitutions from

(3.5a) and (3.5b) as follows:

Maximize
T∑
t=1

αt

n∑
i=1

riviyit (3.5c)

We also append the following linear constraints:

v0wt +
n∑
i=1

viyit = 1, ∀t ∈ T (3.5d)

yit ≤
t∑

u=1

[ki,t−uxiu +
∑
j 6=i

t∑
h=max{1,t−`j+1}

ki,t−uγijqijuh], ∀i ∈ Ω, t ∈ T (3.5e)

yit ≤ ki,t−uwt +
∑
j 6=i

t∑
h=max{1,t−`j+1}

ki,t−uγijxjhwt + 1− xiu,

∀i ∈ Ω, t ∈ T , u ≤ t (3.5f)
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Where constraint (3.5d) represents and introduces the relationship in (3.5a) into

the model in a linear format, and constraints (3.5e) and (3.5f) are linearizing con-

straints to ensure that yit carries the correct value of the market share in each iteration.

The last step in this procedure is to substitute the nonlinear term in (3.5f) with the

following auxiliary variable:

pjht ≡ xjhwt, ∀j ∈ Ω, h ∈ T , t ∈ T . (3.6a)

Because the x-variables are binary and the w-variables are continuous between 0

and 1, the following constraints are added to complete this linearization scheme for

all j ∈ Ω, h, t ∈ T :

pjht ≤ xjh, (3.6b)

pjht ≤ wt, (3.6c)

pjht ≥ xjh + wt − 1. (3.6d)

Where constraint (3.6b) forces pjht to be equal to zero if xjh = 0, while constraints

(3.6c) and (3.6d) ensures that if xjh = 1, then the value of pjht will be set to wt and

thus the substitution pjht ≡ xjhwt is valid.

The complete linear reformulation of APPCS is denoted by L-APPCS and is stated

as follows:

L-APPCS: Maximize:
T∑
t=1

αt

n∑
i=1

riviyit (3.7a)

subject to:
T∑
t=1

xit ≤ 1, ∀i ∈ Ω (3.7b)

qijuh ≤ xiu, ∀i ∈ Ω, j ∈ Ω \ {i}, u, h ∈ T (3.7c)

qijuh ≤ xjh, ∀i ∈ Ω, j ∈ Ω \ {i}, u, h ∈ T (3.7d)
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qijuh ≥ xiu + xjh − 1,

∀i ∈ Ω, j ∈ Ω \ {i}, u, h ∈ T (3.7e)

v0wt +
n∑
i=1

viyit = 1, ∀t ∈ T (3.7f)

yit ≤
t∑

u=1

[ki,t−uxiu +
∑
j 6=i

t∑
h=max{1,t−`j+1}

ki,t−uγijqijuh],

∀i ∈ Ω, t ∈ T (3.7g)

yit ≤ ki,t−uwt +
∑
j 6=i

t∑
h=max{1,t−`j+1}

ki,t−uγijpjht + 1− xiu,

∀i ∈ Ω, t ∈ T , u ≤ t (3.7h)

pjht ≤ xjh, ∀j ∈ Ω, h, t ∈ T (3.7i)

pjht ≤ wt, ∀j ∈ Ω, h, t ∈ T (3.7j)

pjht ≥ xjh + wt − 1, ∀j ∈ Ω, h, t ∈ T (3.7k)

x binary,q,w,y,p ≥ 0. (3.7l)

L-APPCS is a linear mixed-integer program that enables optimal solutions using

standard commercial optimization solvers such as CPLEX. The model is capable of

solving small-size instances to optimality. However, a downside of this linearized

model is the increased number of variables and constraints compared to APPCS,

thus solving large store-wide instances is still intractable. In the following section, we

propose a heuristic that solves large instances in convenient time with a very small

optimality gap.

3.4.2 RelaxMax Heuristic

We introduce an approximation algorithm to solve the APPCS problem. The

algorithm, which we refer to as the RelaxMax heuristic, is based on the continuous

relaxation solution of the problem. The procedure is as follows: solve the continuous
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relaxation, then introduce each product at the period with the highest fraction. The

heuristic is formally introduced in Algorithm 1. In the following section, results of

the heuristic will be compared against other solution approaches discussed in this

chapter.

Algorithm 1 RelaxMax Heuristic

solve continuous relaxation
for all products i ∈ 1..I do
xmax ⇐ maxTt=1 x[i, t]
if xmax 6= 0 then
for all periods t ∈ 1..T do
if x[i, t] = xmax then

fix x[i.t]← 1
break

end if
end for

end if
end for

3.5. Computational Study

In this section, we use simulated data to illustrate the proposed multi-category

assortment packing problem and then test the tractability of the different solution

approaches. All mathematical programs are coded in AMPL on a Dell XPS 8300

workstation having Intel Core(TM) i7-2600 CPU 3.40 GHz processor and 12 GB of

RAM.

3.5.1 Illustrative Examples

We analyze an illustrative example to obtain insights regarding the effects of com-

plementarity and substitution on the optimal assortment selection and the expected

profit. The instance consists of five products introduced over the range of ten periods.

Products 1 and 2 belong to the same category while products 3, 4 and 5 belong to a

different category. Cannibalization effect is observed between products 1 and 2, due

to substitutability, with γ2,1 = −0.2, meaning that decay of product 2 is accelerated
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by 20% faster if product 1 is introduced within its life cycle. Moreover, cross-selling

effect is observed between products 2 and 4, due to complementarity, with γ2,4 = 0.3,

meaning that current decay of product 2 is delayed by 30% if product 4 is introduced

within its life cycle. All five products have equal margins (ri = 1, ∀i ∈ 1, ..., 5) and

product attractiveness v1 = 10, v2 = 50, v3 = 20, v4 = 30 and v5 = 10, while the

attractiveness of the outside option v0 = 40. An exponential decay function is used

with parameters: k1 = 0.9, k2 = 0.8, k3 = 0.3, k4 = 0.2 and k5 = 0.7.

To show the consequences of ignoring substitution and complementarity effects, we

first solve this instance without accounting for the substitution and complementarity

effects by setting γij = 0,∀i, j. We refer to this case as the disjoint approach. This

approach is enabled by deactivating the cross-selling and cannibalization matrix γij,

thus setting γij = 0 ∀i, j. Table 3.1 shows the results where the two substitutable

products 1 and 2 are introduced close to each other in the first two periods, while

the two complementary products 2 and 4 are introduced far away from each other at

periods 1 and 9 respectively. The optimal objective value calculated in this case is

$83.44.

Table 3.1: Solution of the Disjoint Approach

Solution xit
i, t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
i = 1 0 1 0 0 0 0 0 0 0 0
i = 2 1 0 0 0 0 0 0 0 0 0
i = 3 0 0 0 0 0 0 1 0 0 0
i = 4 0 0 0 0 0 0 0 0 1 0
i = 5 0 0 0 0 1 0 0 0 0 0

By activating the γij values of the instance (i.e., set γ2,1 = −0.2 and γ2,4 = 0.3),

the solution to the integrated approach is given in Table 3.2 with an objective value

of $82.73.
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Table 3.2: Solution of Integrated Approach

Solution xit
i, t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
i = 1 0 0 0 0 0 1 0 0 0 0
i = 2 0 1 0 0 0 0 0 0 0 0
i = 3 0 0 0 0 0 0 0 0 1 0
i = 4 1 0 0 0 0 0 0 0 0 0
i = 5 0 0 0 0 0 1 0 0 0 0

The following insights are in order:

• Knowledge of the cannibalization effect between products 1 and 2 encouraged

the model to increase the gap between their introductions to the market to

minimize the negative impact of cannibalization on sales of product 2.

• Knowledge of the cross-selling effect between products 2 and 4 encouraged the

model to decrease the gap between their introductions to the market to maxi-

mize the positive impact of cross-selling on sales of product 2.

Although having less gross profits with the integrated model might seem counter

intuitive, however we highlight here that the objective value obtained from the disjoint

model is not a correct interpretation of the real situation as it ignored the effects of

cross-selling and cannibalization which will occur in reality regardless of the fact

that the firm is aware of its existence or not. To calculate the actual gross profits

in the disjoint case and demonstrate the effects of overlooking substitution and/or

complementarity effects, we solve the instance again using the integrated model, with

the active values of γij while forcing the model to fix the myopic solutions of the

disjoint case in Table 3.1. The optimal objective value obtained in this case is $79.67.

This means that when cannibalization and cross-selling effects are overlooked, the

actual objective value of $79.67 is less than the (falsely) expected objective of $83.44

due to the suboptimal timing of products. Which is, in turn, 3.7% less than the

optimal integrated objective value ($82.73) that is obtained when planning considers

57



cannibalization and cross-selling effects, which in considered a valuable increase in

terms of gross profits in retail business.

3.5.2 Tractability Analysis

Table 3.3 shows results for 12 instances of size up to 100 products within 12

periods. Solutions for the nonlinear MIP formulation (APPCS) are obtained using the

solver KNITRO, while the linear reformulation (L-APPCS) results are obtained using

CPLEX and the RelaxMax heuristic results are obtained using MINOS. Optimality

gaps for the nonlinear formulation are reported by the solver, while gaps for the

heuristic are computed relative to solutions and gaps of KNITRO, except for instance

12 and due to the absence of a KNITRO solution, the gap is calculated relative to

the continuous relaxation solution using MINOS.
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As shown in Table 3.3, solving the problem to optimality using the linear for-

mulation L-APPCS was enabled for small-size instances, however for large instances

CPLEX exceeded the one hour limitation to find the solution. With the exception of

instance 12, the nonlinear solver KNITRO could obtain near-optimal solutions (opti-

mal in 8 out of 12 instances) to the problem APPCS. The optimality gap is reported

for each instance which ranged from 0% to 0.003%, while the CPU time taken to find a

solution ranged between 0.03 seconds and about 27 minutes. The RelaxMax heuristic

is shown to achieve very close to optimal results (optimal in 9 out of 12 instances). In

terms of CPU time, it ranged from 0.03 seconds to a maximum of around 33 seconds.

This empirically observed computational tractability of the proposed heuristic, with

very close to optimal solutions, is encouraging and bears the potential of benefiting

retailers for large-scale, industry-sized problem instances.

3.6. Extension

In this section we develop an extension of the general model APPCS in the movie

industry. A formal statement of the multi-period multi-genres assortment packing

problem of movies under cannibalization effects is provided and an example is solved

to illustrate the model behavior.

3.6.1 Model Formulation

Movie scheduling in the motion picture industry can be considered one of the most

important applications to the assortment packing problem (see Eliashberg et al. 2006

for a review on movie industry problems). Each movie theater (exhibitor) decides on

a weekly basis on the set of movies (assortment) to start showing in the coming week.

The set of candidate movies to choose from I, is the set of all movies released, or will

be released, within the planning horizon T . Usually the number of candidate movies

exceeds the number of screens in the theater and thus the exhibitor must choose an
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optimal set for each week, within its capacity of screens H, that maximizes the gross

profit. Each movie i is characterized by a release date (rdi) and an optional due

date (ddi), together they act as a time-window for each movie to be displayed within.

Distributors often mandates an obligation period (obi) which is the minimum number

of weeks the exhibitor is required to display the movie (see Swami et al. 1999 and

Eliashberg et al. 2001 for more information about the movie scheduling problem).

The fact that customers’ interest in a movie decays over time, makes the movie

a product with a limited life-cycle. This creates more challenge on theaters deciding

on the best release time and removal time of a movie. A successful decision support

system needs to incorporate different decay functions into its structure. A distinction

between two different movie types in terms of their decay function is made by Sawh-

ney and Eliashberg (1996). They classified movies as either a blockbuster or a sleeper

movie, where sales of blockbusters start at its peek then decay exponentially over

time, while sales of sleepers build up gradually and usually peek in 3 to 6 weeks after

its release then it decays over time. This decay function characterizes the movie’s life

cycle, and thus a movie is discontinued when it either totally decays (that is when

customers lose interest in watching the movie) or when it is more profitable to discon-

tinue this movie and introduce another. Our formulation is capable of incorporating

both decay patterns.

The effects of cannibalization between each pair of movies (i, j) of the same genre

is captured using the matrix γij. This effect is represented by a fraction ranging

from 0 to 1 indicating the intensity of the accelerated decay that will result from

introducing a same-genre movie while another is still displaying. Cross-selling effects

are not typically detected between movies and therefore are not considered in this

extension.

Consider the following notation of the optimal entry timing problem in the movie

industry:
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Parameters

• I = {1, . . . , n}: Set of candidate movies in all genres that the exhibitor can

show over the planning horizon, listed consecutively from 1 to n.

• T = {1, . . . , T}: Set of all T weeks in the planning horizon.

• H: Number of screens in the movie theater.

• αt: Seasonality factor in period t, used to reflect peeks due to holiday weeks,

∀t ∈ T .

• r: The average unit gross margin of a sold ticket.

• vi: Weight (attractiveness) of movie i on the first week, ∀i ∈ I.

• v0: Weight (attractiveness) of the outside option due to competition.

• rdi: Release date of movie i, ∀i ∈ I.

• ddi: Due date of movie i, ∀i ∈ I.

• obi: Obligation period in weeks of movie i, ∀i ∈ I.

• mi = max{obi, ddi− rdi + 1}: Maximum possible number of weeks movie i can

be displayed, ∀i ∈ I.

• kid: Decay factor for movie i after d weeks of its initial introduction, ranging

between 0 and 1. As such, ki0 = 1, since the product did not start decaying yet

at the first period.

• γij: Fraction of the decrease in the decay value of movie i if movie j is introduced

within its life cycle as a result of cannibalization effects, with the assumption

that
∑

j:γij<0

γij ≥ −1,∀i ∈ I.
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Decision Variables

• xitw ∈ {0, 1}: xitw = 1 if and only if movie i is introduced in week t for w weeks,

∀i ∈ I, t ∈ T , w ∈ T .

The multi-period multi-genres optimal assortment packing problem with canni-

balization effects that is oriented towards the movie industry, denoted by APPMV,

can be stated as the following 0-1 nonlinear (fractional) program:

APPMV: Maximize:

T∑
t=1

αtr
n∑
i=1


vi

t∑
u=1

mi∑
w=obi

xiuw[ki,t−u +
∑
j 6=i

min{ddi,u+w−1}∑
h=u

ki,t−uγij
mj∑

y=obj

xjhy]

v0 +
n∑
s=1

vs
t∑

u=1

ms∑
w=obs

xsuw[ks,t−u +
∑
j 6=s

min{ddi,u+w−1}∑
h=u

ks,t−uγsj
mj∑

y=obj

xjhy]


(3.8a)

subject to:
T∑
t=1

mi∑
w=obi

xitw ≤ 1, ∀i ∈ I (3.8b)

n∑
i=1

mi∑
w=obi

t∑
h=max{1,t−w+1}

xihw ≤ H, ∀t ∈ T (3.8c)

T∑
w=1

xitw = 0, ∀i ∈ I, t ∈ T : t < rdi or t > ddi (3.8d)

x binary. (3.8e)

The objective function in (3.8a) is the sum of the seasonal (gross) profits over all

movies in all genres for all weeks in the planning horizon. The expression between

parentheses is the market share of movie i in week t. Constraint (3.8b) ensures that

each movie is introduced at most once. Constraint (3.8c) ensures that the number of

selected movies in each week does not exceed the number of screens in the theater.

Constraint (3.8d) prevents the introduction of a movie before its release date or after

its due date. Constraint (3.8e) imposes binary restrictions on the decision variable x.
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3.6.2 Illustrative Example

Consider a movie theater with a capacity of four screens (H = 4), having to choose

from a pool of twenty released movies (n = 20). We examine a case with a planning

horizon of 4 weeks (T = 4), assuming that all movies are available during the planning

horizon, and thus rdi = 1,∀i ∈ I and ddi = 4,∀i ∈ I. Furthermore, we assume no

holidays and thus no seasonal factor (αt = 1,∀t ∈ T ), and a cannibalization effect

between movies 6 and 10 of the same genre, that is γ6,10 = −0.2, and γij = 0 otherwise.

The outside factor v0 = 160 and the unit gross margin of a sold ticket r = $1. The

rest of the parameters’ data is listed in Table 3.4.

Table 3.4: Data for Illustrative Example

Parameter Movies
1 2 3 4 5 6 7 8 9 10

vi 7 35 41 22 20 35 42 36 33 44
ki1 0.3 0.4 0.1 0.4 0.5 1 0.3 0.5 0.3 0.2

11 12 13 14 15 16 17 18 19 20
vi 19 42 28 16 4 9 13 17 18 19
ki1 1 0.4 0.9 0.3 0.4 0.7 0.7 0.1 0.6 0.6

The nonlinear solver KNITRO took only 2.4 seconds to find an optimal solution

to the problem (optimality gap = 0%). The recommendations are as follows: for week

1, movies 6, 8, 11 and 13 are introduced, the schedule remains the same until week

3 where movies 6, 8 and 11 are discontinued and movies 2, 7 and 12 are introduced

instead, the movie assortment becomes (2, 7, 12 and 13). In week 4, movie 13 is

discontinued and replaced by movie 10 with a final assortment of movies (2, 7, 10 and

12) for the last week in the time horizon with a total gross revenue of $1.87. Table

3.5 summarizes the recommended schedule with newly introduced movies highlighted

in bold. Note that movies that were introduced within the time horizon are assumed

to continue displaying beyond that horizon if necessary. For instance, movie 10 is

introduced in week 4, however it will continue to be displayed until week 6 which is

beyond the timing horizon of the instance.
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Table 3.5: Recommended Schedule for the Illustrative Example

Screens
Week i ii iii iv

1 6 8 11 13
2 6 8 11 13
3 2 7 12 13
4 2 7 10 12

Model APPMV is, to the best of our knowledge, the first movie scheduling model

that considers competition (using the outside option) and accelerated decay due to

cannibalization effects between movies of the same genre.

3.6.3 Tractability Analysis

Table 3.6 shows results for 9 instances of size up to 100 movies within periods

of 3, 6 and 12 weeks. In all instances, six screens are assumed to be available in

the theater (H = 6). Solutions for the nonlinear model APPMV are obtained using

KNITRO solver and optimality gaps are reported by the solver. We also use the

RelaxMax heuristic introduced in Section 3.4.2 to solve the problem. Optimality gaps

are reported for each instance. For instances 1 to 6, RelaxMax gaps are calculated

based on the performance of KNITRO and the optimality gap given by the solver.

However, for instances 7 to 9, and due to the absence of a solution by KNITRO, gaps

are calculated by comparing the solution obtained by RelaxMax to the continuous

relaxation solution of the problem obtained by the solver MINOS.

As shown in Table 3.6, the nonlinear solver KNITRO is capable of solving instances

of up to 100 movies and 6 periods, the time it takes to solve these instances ranged

from 0.03 seconds to around 8 minutes. For instances with 12 periods or higher, the

solution time exceeded one hour. The RelaxMax heuristics reports optimal and very

close to optimal results for all instances within a few minutes. The solution time of

RelaxMax ranged from 0.06 seconds to around 5 minutes.
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Table 3.6: Computational Analysis of APPMV

Nonlinear Solver RelaxMax
Instance n Gap Time (sec) Gap Time (sec)

3 Periods (T = 3)
1 10 0% 0.031 0% 0.06
2 50 0% 0.16 0% 0.28
3 100 0% 0.55 0% 1.65

6 Periods (T = 6)
4 10 0% 6.63 0.14% 1.72
5 50 0% 90.34 0% 4.18
6 100 0% 412.53 0% 22.15

12 Periods (T = 12)
7 10 * * 0.05% 23.01
8 50 * * 0.12% 56.63
9 100 * * 0% 306.80

* Exceeded the 1 hour limit imposed on the solver.

3.7. Conclusion

We have examined the multi-category assortment packing problem under the ef-

fect of cross-selling and cannibalization (APPCS), where a retailer seeks to optimize

assortment and entry-timing of products into the market. A novel 0-1 nonlinear frac-

tional model is developed that maximizes the retailer’s gross profit over the planning

horizon. We solve the nonlinear model using the nonlinear commercial solver KNI-

TRO, results shows that near-optimal solutions with very small gaps (0% in many

cases) can be obtained in a reasonable time. We highlight two more solution ap-

proaches, the first is formulating a linear model by circumvented the nonlinearity by

introducing auxiliary variables and accompanying linearization constraints. The lin-

ear MIP reformulation is empirically observed to optimally afford exact solutions to

small-size instances in manageable times. The second solution approach is a heuristic

that is based on the continuous relaxation solution of the problem, and it is shown

that it affords near-optimal solutions for large-scale instances.
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We have demonstrated the importance of the integrated planning of multiple retail

categories that are inter-related by cross-selling or intra-related through cannibaliza-

tion. Our illustrative example shows that disjoint optimization of isolated categories

results in sub-optimal solutions and therefore profit loss occurs.

We designed an extension of the general assortment packing problem model for

a specific application in movie industry, that is to design a decision support system

that helps the decision maker to choose the optimal (near-optimal) assortment of

movies to display and to decide about the entry timing of each movie to the market

given that certain movies can cannibalize each other. The model is based on the

attraction model of demand and thus involves competition effect both internally, due

to cannibalization, and externally when customers decide to watch a movie elsewhere.

An illustrative example that uses an average-size instance of 20 movies over a period

of 4 weeks is solved using KNITRO in 2.4 seconds with a 0% optimality gap, and a

computational analysis is carried to show tractability of the solution approaches.
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CHAPTER 4

CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

This dissertation contributes to the existing literature by proposing new opti-

mization models and more effective solution approaches for the challenge of designing

optimal retail product lines. The work is based on the integration of mathemati-

cal modeling to optimally solve decision problems and the useful data patterns that

can be extracted by the market-basket analysis techniques. Such data patterns that

are used in this dissertation are: (i) Cross-selling effects between complementary

products, (ii) cannibalization effects between substitutable products and (iii) product

decay pattern over time.

4.1. Summary of Findings

The first essay models the assortment and pricing optimization problem under

cross-selling effects. The work is grounded in mathematical optimization and lin-

earization techniques where the problem is first introduced as a nonlinear program

and then reformulated into a linear MIP program that can afford exact solutions to

large-size problem instances. We show the consequences of overlooking cross-selling

data in terms of profit reductions, sub-optimal assortments and inadequate prices.

This essay makes the following contributions: (i) It introduces a novel assortment

and pricing optimization problem, (ii) it enables an exact solution approach to solve

the problem, and (iii) it provides insights on the consequences of overlooking cross-

selling information.
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The second essay models the multi-category multi-period assortment packing

problem, where a retailer seeks to optimize the assortment and the introduction time

of products to the market. To integrate some of the useful patterns in data with the

decision support system, our model considers the effects of both cross-selling and can-

nibalization on the problem decisions. We show the effects of overlooking cross-selling

and cannibalization on the optimal solution using an illustrative example. This essay

makes the following contributions: (i) It introduces a novel assortment and intro-

duction timing optimization problem, (ii) it enables an exact solution approach for

small-size instances, and (iii) it enables a very close to optimal solution for large-size

instances through implementing a linear programming-based heuristic.

4.2. Directions for Future Research

For the first essay, we recommend for future research the integration of additional

retail decisions related to inventory holding and shelf space allocation. It can be also

worthwhile to analyze the effect of promotional campaigns (see Su and Geunes 2012,

2013). Finally, we recommend examining product line optimization problems with

probabilistic consumer choice models, especially to address applications for which the

deterministic consumer choice model may not be adequate.

For the second essay, we believe different applications can benefit from the pro-

posed model and thus what we recommend for future research is to apply the model

into mobile phone introduction and fashion products. Exploiting the product intro-

duction problem within the context of on-line shopping and e-commerce is also a

promising direction for future research.

For both essays, extensions including supply chain considerations shall be contin-

ued. We foresee interest in investigating the impacts of inventory shortage policies

on transportation and truck capacities, and implications of economies of scale on the

single/multiple category management problem with multiple suppliers.
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