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Fig. 5.— Profiles of density, temperature, H I λ1216 (bold)
and He II λ1640 (light) cooling rates, and velocity for a line of
sight. Owing to the complicated structure of the density and the
turbulent velocity fields, it is difficult to predict how much the
radiative transfer blurs the surface brightness of Lyα cooling blobs.
However, because the IGM is optically thin to He II, our He II
cooling maps (Fig. 3) should be accurate.

other energy source included in our simulations. When
stars form in the simulations, supernova feedback energy
is deposited into the surrounding gas in the form of heat.
Thermal energy deposited into dense, rapidly cooling gas
is quickly radiated away, so feedback contributes some-
what to the cooling emission. However, we find that
our density-temperature cutoff for the condensed phase
effectively removes all the star-forming gas particles at
each time step. Because the supernova thermal input
is directly proportional to the star formation rate, our
cooling maps without the condensed phase should not
be seriously contaminated by supernova feedback energy.
Thus the cooling maps in Figure 3 with the condensed
phase removed are still robust lower limits of the flux
from the gravitational cooling. Fardal et al. (2001) also
show that while the re-radiated supernova energy domi-
nates at lower luminosity, gravitational cooling becomes
the dominant source as the mass and luminosity increase.

3.2. Properties of Cooling Sources

To study the properties of individual H I λ1216 and
He II λ1640 sources like the ones shown in the cooling
maps, we identify discrete groups of gas particles asso-
ciated with individual dark matter halos and then cal-
culate the total Lyα and He II λ1640 luminosities for
these sources. To find the dark matter halos, we ap-
ply a friends-of-friends algorithm with a linking length
that is 0.25 times the mean inter-particle separation.
We count a gas particle as a member of the source, i.e.
blob, associated with the dark matter halo if the dis-
tance from the potential center is less than the virial

radius of the halo. We then add the Lyα and He II

λ1640 luminosities of the particles to obtain the total
cooling luminosities of the blob. We restrict our analy-
sis to blobs with more than 64 gas particles and 64 dark
matter particles to mitigate numerical resolution effects.
Thus the smallest halo in the 22 Mpc simulation has a
gas mass of Mgas = 6.3 × 109M⊙ and dark matter mass
of Mdark = 5.0 × 1010M⊙. These masses decrease to
Mgas = 8.5 × 108M⊙ and Mdark = 6.8 × 109M⊙ in the
11 Mpc simulation.

H I λ1216 and He II λ1640 cooling luminosities show
tight correlations with halo mass and star formation rate
(Fig. 6). The open squares, crosses and circles represent
the luminosities for the three different emissivities dis-
cussed in §2.2: the optically thin case, the self-shielding
correction case, and the condensed phase cut cases, re-
spectively. The correlations are as one would expect: the
more massive a galaxy is, the more gas accretes onto the
galaxy, resulting in more cooling radiation and a higher
star formation rate. The distribution of cooling lumi-
nosity is continuous, and we do not find any evidence
that extended Lyα or He II emission originates only from
high-mass systems or high density regions.

The solid line in the upper panel in Figure 6 indi-
cates the Lyα emission due to recombination from stel-
lar ionizing photons. We assume a conversion factor of
fLyα = 2.44× 1042 ergs s−1 for a 1 M⊙ yr−1 star forma-
tion rate with no dust absorption, no escaping ionizing
photons, a Salpeter IMF, and solar metallicity. Under
these assumptions the Lyα emission from star formation
in galaxies always dominates the Lyα emission from the
surrounding IGM, even in the (most optimistic) optically
thin case. This result is consistent with the predictions of
Fardal et al. (2001) and Furlanetto et al. (2005). 2 The
strong correlation between the Lyα cooling rate in the
optically thin case (squares) and the star formation rate
results from the fact that the gas in the condensed phase
tends to satisfy the star formation criteria of the simu-
lation and is likely to form stars in the next time step.
In contrast, the He II emission caused by star formation
is quite uncertain because only extremely low metallic-
ity (Z < 10−5) stars can emit the hard ionizing photons
necessary to ionize He II. However, star formation at
z = 2 − 3 is unlikely to be dominated by Population III
or extremely low metallicity stars. Unlike for Lyα, the
contribution of star formation to He II must be negligi-
ble. We discuss this point in more detail in §4.

Figure 7 shows the Lyα and He II luminosity func-
tions (LFs) for the three emissivity cases at z = 2 and 3.
The LFs include emission only from the IGM. The solid,
dashed, and dot-dashed lines represent the optically thin,
the self-shielding correction, and the condensed phase
cut cases, respectively. The horizontal dotted lines in-
dicate the number density of one halo in the simulation
volume. Note that the distributions extend to brighter
blobs as we increase the simulation volume because the
larger simulations contain higher mass systems. Note
also that the Lyα luminosity function is very sensitive to
the assumed emissivities, whereas the He II λ1640 cool-

2 In contrast, we do not find the trend of Fardal et al. (2001)
in which Lyα from cooling radiation dominates the Lyα from star
formation in more massive systems. We suspect that this difference
is a consequence of including a photoionizing background in the
simulation analyzed here.
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Fig. 6.— Lyα and He II luminosity as a function of the halo viral mass and the star formation rate in the 22 Mpc simulation at z = 2.
The open squares, crosses and circles represent the three different emissivity predictions: the optically thin case, the self-shielding correction
case, and the condensed phase cut case, respectively. In the right panels, we plot only blobs with a baryonic (star + gas) mass larger than
200 mSPH . Below this mass limit, the derived star formation rates are not reliable owing to our limited resolution. As discussed in the
text, Lyα luminosity changes dramatically depending on the prescription used for the self-shielded phase. The correlations between the
cooling luminosity, halo mass, and SFR are as one generally expects: the more massive a galaxy is, the more gas accretes onto the galaxy,
resulting in more cooling radiation and a higher star formation rate. The solid line in the upper right panel represents the Lyα emission
expected from star formation, assuming a conversion factor, fLyα = 2.44× 1042 ergs s−1, for a 1M⊙ yr−1 star formation rate with no dust
absorption, no escaping ionizing photons, a Salpeter IMF, and solar metallicity. Note that under these assumptions the Lyα emission from
star formation always dominates the cooling emission from the surrounding IGM.

ing luminosity depends much less on the treatment of
the self-shielded or condensed phase of the IGM. This
large variation of the Lyα luminosity is consistent with
the results of Furlanetto et al. (2005).

3.3. Detectability and Observational Strategy

To estimate the detectability of cooling emission from
the extended sources, we convert the rest-frame cooling
maps at z = 2 and 3 into observed surface brightness
maps and rebin them with a pixel scale of 0.′′5 × 0.′′5 to
mimic the independent resolution elements of ground-
based observations (Fig. 3). Figure 8 shows the surface
brightness distributions of the rebinned cooling maps at
z = 2 and 3, assuming the conservative condensed phase
cut case. Note that the distributions depend strongly on
the size of the bins in the surface brightness maps, be-
cause the bright, small-scale structures are smoothed out
by binning. We express each surface brightness distribu-
tion in terms of the number of binned pixels per comoving
volume and also the number of pixels per square arcmin
if one were to observe through a R = 100 narrow band

filter. The projected angular extents of the 11 Mpc sim-
ulation at z = 2 and 3 are 11.4′ and 9.4′, respectively.
The depth of the 11 Mpc simulation is ∆z ≃ 0.013 and
0.019 for z = 2 and 3, respectively.

Deep, wide-field (∼ 30′ × 30′), narrow-band (R >
100) imaging is an effective way to detect cooling
radiation, because sky noise dominates in this low
surface brightness range. For example, the average
sky background at 6500Å on the ground is ∼ 10−17

ergs s−1 cm−2 arcsec−2 Å
−1

, comparable to our esti-
mates for the brightest blobs. In Figure 8, we show the
5 σ detection limits for typical R = 100 narrow band
imaging with an 8m-class telescope and for R = 1000
imaging with a hypothetical 30m telescope. We assume
a peak system throughput of ∼ 35%, a Mauna Kea sky
background (for the 50% dark condition), and a 30-hour
exposure time. We estimate the signal-to-noise ratios for
one binned pixel (0.′′5×0.′′5), which corresponds to & 2×2
instrumental pixels in ground-based CCD detectors.
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Fig. 7.— Luminosity functions of Lyα and He II λ1640 cooling radiation at z = 2 (upper) and 3 (lower). The solid, dashed, and
dot-dashed lines represent the optically thin, the self-shielding correction, and the condensed phase cut cases, respectively. In the upper
panels, for each emissivity case, the LFs from the 11 and 22 Mpc simulations are denoted with light and bold lines, respectively. The
horizontal dotted lines indicate the number density of one halo in the 11 Mpc and 22 Mpc simulations. Note that the 22 Mpc results
extend to higher luminosity than the 11 Mpc results, and that even the larger simulation may underestimate the density of high luminosity
systems. In the lower panels, we show only results from the 22 Mpc simulation. For comparison, we show the LF of the Subaru Lyα blob
sample (the crosses; Matsuda et al. 2004). The Subaru Lyα blobs could arise from a variety of mechanisms (see text), including cooling
radiation. It is suggestive, however, that their LF lies between our predictions for the self-shielding correction and condensed phase cut
cases. Note also that the Lyα LF is very sensitive to the assumed emissivities, whereas the He II λ1640 cooling luminosity depends much
less on the treatment of the self-shielded or condensed phase of the IGM.

3.3.1. H I λ1216

We predict that H I λ1216 cooling emission from
the brightest blobs at z = 2 and 3 is detectable by
6-8m class telescopes with moderate resolving power
(R = 100). The limiting sensitivity of current surveys
for high-z Lyα emitters is ∼ 10−18 ergs s−1 cm−2 (e.g.,
Malhotra & Rhoads 2004, and references therein). It
is encouraging that even our most conservative predic-
tions suggest that the Lyα blobs arising from gravita-
tional cooling radiation are detectable with a reasonable
amount of telescope time.

The Lyα surface brightness of the largest system in
our z = 3 simulation (Mhalo ∼ 6.5× 1012h−1M⊙), corre-
sponding to the brightest blob in Figure 3, is consistent
with the mean surface brightnesses of the Lyα blobs of
the Matsuda et al. (2004) sample (represented with small
vertical bars in the Figure 8). Note that our predicted
Lyα blob luminosities depend on the different emissivi-
ties for the self-shielded phase and/or the exact location
of our density-temperature cut of the condensed phase.
Though the surface brightnesses of the predicted and ob-
served blobs are consistent, the luminosity of our bright-
est Lyα blob is fainter than that of observed blobs (see
Fig. 7), possibly because of our conservative assumptions
for the self-shielded phase.

3.3.2. He II λ1640

A pixel-by-pixel comparison of the H I λ1216 and He II

λ1640 cooling maps reveals that, without the condensed
phase, the He II λ1640 flux is always & 10× fainter than
that of H I λ1216. The He II λ1640 emission could be
1000× fainter than Lyα in the optically thin case, i.e.,
the most optimistic Lyα prediction. Nonetheless, detec-
tion of the He II λ1640 cooling line from z = 2 sources is
clearly feasible with 6-8 meter class telescopes, and even
possible at z = 3. Though the number statistics of bright
blobs are limited by the relatively small volume of our
simulations, we expect one source in the 11 Mpc simula-
tion and six sources in the 22 Mpc simulation at z = 2
with areas of & 0.′′5×0.′′5 above the surface brightness de-
tection threshold of ∼ 5× 10−18 ergs s−1 cm−2 arcsec−2

(R = 100 arrow in Figure 8). Thus the space den-
sity of the sources from which we could detect not only
Lyα but also He II λ1640 emission with narrow band
imaging corresponds to a comoving number density of
∼ 5−7×10−4 h3 Mpc−3 or ∼ 0.02 arcmin−2 per R = 100
filter (∆z = 0.03; ∆λ ≃ 49Å for He II λ1640).

If we consider the larger survey volume typically acces-
sible by modern narrow band imagers, we could expect
better survey efficiency than that described above. Be-
cause cosmological simulations do not contain power on
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scales larger than their finite sizes, the largest objects
in the simulation are typically underestimated in num-
ber and size. For example, the luminosity functions and
surface brightness distributions in Figs. 7 and 8 extend
their bright limits as the volume of the simulation in-
creases. Therefore, one might expect that the detection
of even brighter blobs by surveying more volume. For
example, many current wide-field imagers and spectro-
graphs have half degree field of views, so it is possible to
survey a volume ∼ 17 times larger than encompassed by
our 11 Mpc simulation at z = 2 (or a volume ∼ twice

that of the 22 Mpc simulation). Therefore, if we näively
extrapolate the number of detectable He II sources in our
11 Mpc and 22 Mpc simulations, then 17 (±17) and 13
(±5) He II sources would be detected, respectively. The
numbers within parentheses indicate Poisson errors.

Our results predict that bright He II sources are always
bright Lyα cooling blobs. Observationally, the difficul-
ties in searching for He II cooling sources could be eased
(1) by pursuing narrow-band Lyα imaging first, detect-
ing Lyα blobs, and looking for He II λ1640 emission in
those blobs with follow-up observations, or (2) by adopt-
ing a combined multislit spectroscopy + narrow-band fil-
ter approach (Martin & Sawicki 2004; Tran et al. 2004)
to identify Lyα blobs (which can then be targeted for
He II).

The latter technique is potentially quite effective de-
spite the faint surface brightness of the Lyα and He II

blobs. This technique employs multiple parallel long slits
with a narrow band filter that limits the observed spec-
tral range to a few hundred angstroms and, by dispers-
ing the sky background, achieves better sensitivity than
narrow-band imaging alone. In the sense that this tech-
nique trades off survey volume (or sky coverage) to go
deeper in flux, it is about as efficient as simple narrow
band imaging for surveys of Lyα emitters, which are not
as extended as Lyα blobs. However, the multi-slit win-
dow technique is superior to narrow band imaging for
low surface brightness objects like the Lyα and He II

blobs discussed here. It has the further advantages that
1) it provides the spectral and kinematic data necessary
to distinguish the origins of blob emission (§4) and 2) it
enables us to exclude contaminating emission lines, such
as Hα, Hβ, [O III], and [O II], from nearby star-forming
galaxies by measuring the line shapes (e.g. line asymme-
tries and line doublets) and blueward continuum. If this
technique is employed with large field-of-view imagers,
the survey volume covered by the multiple slits is still
reasonably large (∼ 10% of the whole field of view).

It is possible to search for He II cooling radiation at
lower redshifts than z ∼ 2 − 3. For example, z ≈ 1.5
is the lowest redshift at which He II λ1640 still lies at
an optical wavelength (λobs ≈ 4100 Å). Because metal
abundances in the IGM do not change very much over
z ∼ 2−4 (Schaye et al. 2003), it is unlikely that our basic
assumption of a primordial composition (§2) is violated
seriously at z ≈ 1.5. Any blind search for He II λ1640
blobs at z = 1.5 − 2 will be contaminated by H I Lyα
emission from z ≈ 3 sources if only one emission line is
identified in the spectrum. In this case, the blob’s red-
shift could be further constrained by obtaining a redshift
for the galaxy it surrounds.

He II λ1640 cooling radiation at very low redshifts

(z . 0.5) is potentially detectable in the ultraviolet us-
ing UV satellites or HST. For example, Furlanetto et al.
(2003) show that detection of the bright cores of H I

λ1216 emission from z . 0.5 sources is feasible with deep
wide-field UV imaging, e.g. with The Galaxy Evolution
Explorer (GALEX) or the proposed Space Ultraviolet-
Visible Observatory (SUVO; Shull et al. 1999). Because
H I λ1216 and He II λ1640 trace different phases of
the gas, as shown in Figure 4, combined observations
of these two lines, e.g., of their morphologies and line
ratios, would probe different phases of the IGM.

3.3.3. He II λ304

In contrast to H I λ1216 and He II λ1640, He II λ304
photons redshifted to wavelengths shorter than the pho-
toionization edge of H I and He I (912Å and 504Å, respec-
tively) can be absorbed by neutral hydrogen and neutral
helium. Even if they escape the blobs, He II λ304 pho-
tons are removed from the line of sight owing to cumula-
tive absorption by the intervening neutral IGM, includ-
ing the Lyα forest and damped Lyα systems. We esti-
mate the transmission of He II λ304 through the inter-
vening IGM using Monte Carlo simulations as described
in Møller & Jakobsen (1990) with the updated statistics
of Lyman forest and Lyman limit systems (i.e., num-
ber density evolution and column density distribution)
from Jakobsen (1998). For the emitters at z = 3, we
find that the transmission factor averaged over all lines
of sight is ∼ 12% and that 67% (76%) of the sightlines
will have transmission lower than 1% (10%). Therefore,
though the He II λ304 emissivity is roughly 10× higher
than that of He II λ1640 (Fig. 1 in §2.1), we expect the
He II λ304 cooling map to be fainter than that of He II

λ1640 in most cases and to vary strongly from sightline
to sightline. 3

He II λ304 photons can also be destroyed by the H I

and He I inside the blobs, because He II λ304 photons
experience a large number of scatterings before escaping.
The destruction probability by H I and He I atoms per
scattering is given by

ǫ =
nH IσH I + nHe IσHe I

nH IσH I + nHe IσHe I + nHe IIσLyα
, (3)

where σH I and σHe I are the photoionization cross sec-
tions of H I and He I at 304 Å, respectively, and σLyα is
the integrated scattering cross section of He II λ304. The
abundances of H I and He I atoms are smaller than for
He II, and their photoionization cross sections are also
much smaller than the resonant cross section of He II

λ304 by a factor of . 2 × 10−5. We estimate that the
destruction probability is ǫ & 5 × 10−8 at a tempera-
ture of T ∼ 104.8 without applying the self-shielding cor-
rection. In the self-shielded regions where more neutral
hydrogen can reside, this probability rises. Thus the es-
cape probability of a He II λ304 photon from a blob is
fIGM ≃ (1 − ǫ)Nτ , where Nτ ≃ τ2 is the number of
scatterings required to escape the blob, if it is approxi-
mated by an optically thick slab. For example, we obtain
fIGM ≃ 0.7% for τHe II = 104. Therefore, we cannot ig-
nore the absorption by H I and He I atoms in the high

3 If one sightline does not have any Lyman limit or damped Lyα
systems, it will have ∼87% transmission on average due only to
Lyman forest systems.
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Fig. 8.— Distributions of surface brightnesses in the cooling maps for the IGM at z = 2 and 3. Bold and light solid lines represent the
surface brightness histograms of rebinned (0.′′5 × 0.′′5) pixels for He II λ1640 and H I λ1216, respectively, in the 11 Mpc simulation. We
show the S/N > 5 detection limits for a 30-hour observation with an 8-meter telescope and R = 100 narrow-band filter, and with a 30-meter
telescope and R = 1000 filter. The right y-axis represents the number of binned pixels per square arcminute per the redshift width for the
R = 100 filter. The dotted lines at the bottom of each panel indicate one detection in the simulation. The dot-dashed lines represent the
surface brightness distributions for the 22 Mpc simulation. Detection of the brightest H I λ1216 and He II λ1640 blobs at z = 2 and 3
is possible with deep narrow-band imaging on a 6-8 meter class telescope. Note that the larger simulation extends the bright tail of the
surface brightness distribution. Even larger simulation volumes might therefore predict still brighter, thus more easily detectable, systems.

density gas. However, the number of scatterings Nτ is
very difficult to estimate correctly because of the com-
plex density and velocity structure of the blob, unless one
carries out full 3-D hydro-radiative transfer calculations
(which are beyond the scope of this paper). For certain
geometries and velocity fields, bulk motions of the gas
will help the He II λ304 photons escape the blob with
fewer scatterings (e.g., Zheng & Miralda-Escudé 2002).

Owing to intervening absorption and the destruction
inside the blobs, He II λ304 is the most uncertain cool-
ing line we consider. Although He II λ304 is dimin-
ished significantly by the intervening IGM, if the es-
cape fraction from the IGM is significant (fIGM ≃ 1),
the detection of He II λ304 may not be out of ques-
tion with a large aperture UV/optical optimized space
telescope (e.g., SUVO; Shull et al. 1999). An advan-
tage of observing He II λ304 in the far ultraviolet in
space is that the sky background is very low (∼ 10−23

ergs s−1 cm−2 arcsec−2 Å−1 at 1250 Å) compared to the
optical (∼ 10−18 ergs s−1 cm−2 arcsec−2 Å−1 at 6500
Å), except for the geocoronal emission lines (e.g., Lyα
1216 Å and O I 1304 Å). Thus, if these geocoronal emis-
sion lines could be eliminated with blocking filters or by
adopting an L2 orbit, the direct detection of He II λ304
is feasible. In this case, the detector noise — especially
the dark current — will dominate. Recent developments
in UV detector technology are very promising, so the
possibility of studying these blobs at those wavelengths
remains open.

4. DISCUSSION

Until now, we have only considered the cooling ra-
diation from gas that is losing its gravitational energy,
falling into a galaxy-sized dark halo, and ultimately form-
ing stars. Photoionization by these stars is another pos-
sible heating source for the blobs. Starburst-driven su-
perwinds or AGNs, which are not included in our sim-
ulations, are other potential blob energy sources (e.g.,
see the discussions in Steidel et al. 2000; Matsuda et al.
2004). Although the radiation from gas heated by these
feedback processes is not generally termed “cooling ra-
diation”, the energy injected into the surrounding gas
can also be released through line emission. Thus our
estimates for cooling emission might be lower limits for
the actual fluxes in the cooling lines. In this section,
we assess whether other H I λ1216 and He II λ1640
sources overwhelm our gravitational cooling signals and
then discuss how to discriminate among these other pos-
sible mechanisms in order to use H I λ1216 and He II

λ1640 cooling lines to study gas infall into galaxies.

4.1. Photoionization by Stellar Populations

UV photons from massive stars in a galaxy or blob
ionize the surrounding interstellar medium, and the re-
combination lines from these nebulae could contribute to
the Lyα and He II line fluxes. Generally, the recombina-
tion line luminosity is proportional to the star formation
rate (SFR) and is given by

Lline = e−τdust(1 − fesc)fIGMfline

(

SFR

M⊙yr−1

)

, (4)

where τdust is the dust optical depth for the ionizing
continuum in the interstellar medium (ISM), fesc is the
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fraction of ionizing photons that escape the star-forming
galaxy, fIGM is the fraction of photons that escape the
surrounding IGM, and fline is the conversion factor from
the SFR to the line luminosity in ergs s−1. This SFR
conversion factor depends on the metallicity, initial mass
function (IMF), and evolutionary history of the stars in
the blobs (e.g., a lower metallicity and a top heavy IMF
produce more ionizing photons and thus more recombi-
nation line photons). 4

The conversion factor for H I λ1216, f1216, is large
enough to make it difficult to distinguish the cooling
lines (of IGM origin) from the recombination-induced
lines (of ISM origin). For example, Schaerer (2003) finds
f1216 = 2.44×1042 ergs s−1 for a constant star formation
history, solar metallicity, and a Salpeter IMF with a mass
range of 1 − 100 M⊙. Thus for a SFR = 10 M⊙ yr−1,
fesc ≃ 0.1, e−τdust ≃ 0.1, and fIGM ≃ 1, we obtain the
observed flux, F1216 ≃ 2.9×10−17 ergs cm−2 s−1, due to
the stars in a Lyα blob at z = 3, which is comparable
to the surface brightness of the brightest blobs in our
simulations (see §3.3 for the blob luminosity functions).
Therefore, the contamination of the H I λ1216 line by
stars is not negligible, unless the Lyα photons from star-
forming regions are heavily absorbed by a dusty ISM
(e.g., in highly obscured sub-millimeter galaxies or Ly-
man break galaxies with the damped Lyα absorption).
Because Lyα cooling radiation is produced sufficiently
far from the star-forming region and thus should be less
susceptible to dust attenuation than the Lyα emission
from the stellar populations, it might be possible to iso-
late extended Lyα cooling radiation in these galaxies.
However, in the case that Lyα photons emitted by stars
escape the galaxy (e.g., Lyα emitters), it will be chal-
lenging to distinguish the Lyα cooling radiation from the
Lyα produced by the stellar populations unless the var-
ious parameters such as fesc, fIGM, and SFR are fully
constrained.

In contrast, He II λ1640 emission appears to be lim-
ited to very small metallicities (log(Z/Z⊙) . −5.3) and
Population III objects, because stars of solar or sub-
solar metallicities emit few if any He II ionizing pho-
tons (Bromm, Kudritzki, & Loeb 2001; Schaerer 2003;
Tumlinson, Shull, & Venkatesan 2003). Using He II

λ1640 to detect the first hard-ionizing sources such as
metal-free stellar populations, the first miniquasars, or
even stellar populations before the reionization epoch has
been proposed (e.g., Tumlinson, Giroux, & Shull 2001;
Oh, Haiman, & Rees 2001; Barton et al. 2004). In this
paper, we take advantage of this fact to discount the
contributions of stellar populations to the He II λ1640
cooling line. Even for Z = 10−5, f1640 = 1.82 ×
1040 ergs s−1 (≃ 6 × 10−4f1216) for an extremely top
heavy IMF containing only stars in the range 50 −
500 M⊙. For the same assumptions used in the Lyα
calculation above, we obtain an observed flux of F1640 ≃

4 Note that the equation (4) does not take into account the
dust absorption of Lyα photons by ISM after Lyα photons escape
from the H II region. When the H I optical depth in the ISM is
high enough, Lyα photon will experience a large number of res-
onant scatterings before escaping the galaxy. These scatterings
will increase the effective dust optical depth and destroy Lyα pho-
tons preferentially. However, the actual optical depth is likely to
strongly depend on the kinematics of neutral gas and the geometry
of the galaxy, which are hard to quantify.

2.2×10−19 ergs cm−2 s−1 from the blob stars at z = 3, an
order of magnitude below the brightest He II λ1640 blobs
in our simulations. Therefore, it is very unlikely that
the He II λ1640 photons originating from stars contami-
nate the gravitational cooling emission, unless significant
numbers of metal-free stellar populations are forming.
Thus He II λ1640 cooling radiation is much less contami-
nated than H I λ1216 by recombination lines originating
from star-forming galaxies.

The only caveat is the possibility of He II λ1640 emis-
sion arising not from stars directly, but from the hot,
dense stellar winds of Wolf-Rayet (W-R) stars, the de-
scendants of O stars with masses of M > 20 − 30 M⊙.
W-R populations formed in an instantaneous starburst
at high redshifts would not seriously contaminate the
He II λ1640 cooling radiation, because W-R stars are
very short-lived (. 3 Myr) and their number relative to O
stars (W-R/O) drops as the metallicity decreases below
solar. In the case of continuous star formation, a stellar
population synthesis model (Starburst99; Leitherer et al.
1999) predicts that the maximum number of W-R stars is
reached ∼10 Myr after the initial burst. Using the He II

λ1640 luminosity of a W-R star (Schaerer & Vacca 1998)
and the number evolution of W-R stars from Starburst99
under the assumptions of a Salpeter IMF (1− 100 M⊙),
sub-solar metallicity (Z 6 0.4Z⊙), and a massive SFR of
100 M⊙ yr−1 over at least 10 Myr, we estimate the He II

λ1640 line luminosity due to W-R stellar winds to be
. 1042 ergs s−1. Although this He II λ1640 luminosity
is comparable to the predicted He II cooling radiation, it
is possible to discriminate between the two He II λ1640
sources in individual objects because the emission from
W-R winds should be much broader (e.g. ∼ 1000 km s−1;
see Fig. 9 in §4.3, which is relevant here even though it
is presented in the context of the galactic superwind sce-
nario).

One way to test our predictions in this section is to
look more closely at the He II λ1640 emission associ-
ated with high redshift star-forming galaxies, i.e., the Ly-
man break galaxies (LBGs) with vigorous star formation
rates. Shapley et al. (2003) show that composite spectra
of LBGs have very broad (FWHM ∼ 1500 km s−1) He II

λ1640 profiles regardless of their Lyα emission strength.
While they attribute the He II features to W-R stel-
lar winds, those authors have difficulty reproducing the
strength of the He II lines using stellar population syn-
thesis models with reasonable parameters. Because of
this inconsistency, we speculate that some fraction of the
He II features may come from the cooling of gas falling
into these galaxies along line of sight. It would be worth-
while to obtain high signal-to-noise spectra of individual
LBG’s and their surroundings to see if the He II line
is present, especially outside the galaxy, and relatively
narrow.

4.2. Photoionization by AGNs

AGNs inside the star-forming regions of blobs could
photoionize the surrounding gas and generate He II

λ1640 as well as H I λ1216 emission. The predicted size
(a few arcseconds) and surface brightness (∼ 10−18 −
10−16 ergs s−1 cm−2 arcsec−2) of an extended Lyα blob
enshrouding a quasar are consistent with the observed
quantities (Haiman & Rees 2001).

How many AGN-powered sources might we expect in
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a Lyα/He II blob survey? Unfortunately, it appears that
there is no easy way to predict Lyα/He II luminosity
from the surrounding IGM, because we do not know
how much neutral IGM is distributed around the AGN.
Therefore we take a conservative approach to estimate
the number of the AGN-powered sources. First, we es-
tablish a simplistic relationship between the induced Lyα
(or He II) blob luminosity and the X-ray luminosity of
the AGN, then we estimate the number of AGN-powered
blobs based on the known hard X-ray luminosity func-
tion of AGN at z = 2− 3. If there are not many relative
to the number of blobs powered by gravitational cooling
radiation, then we could conclude that they are unlikely
to complicate the interpretation of extended Lyα/He II

sources.
We assume that all the ionizing photons from an AGN

with a simple power-law spectrum, Lν = L0(ν/ν0)
α, are

absorbed by the surrounding medium and re-emitted as
recombination lines. The line (Lyα or He II) luminosity
of the surrounding blob is then given by:

Lline = clineQ = cline

∫ ∞

νLL

L0

hν

(

ν

ν0

)α

, (5)

where Q is the number of ionizing photons emitted per
unit time, νLL is the frequency of the Lyman limits for
the hydrogen and He II (hνLL = 13.6 eV and 54.4 eV,
respectively), and the line emission coefficient cline in
ergs is the energy of the line photon emitted for each
H I or He II ionizing photon. For case-B recombination
with an electron temperature of Te = 30, 000K and an
electron number density of ne = 100 cm−3, we obtain
c1216 = 1.04 × 10−11 and c1640 = 5.67 × 10−12 ergs (c.f.
Schaerer 2003). We adopt a spectral index α = −1.8 for
the extreme UV (Telfer et al. 2002) and assume that this
α is valid even in the X-ray. The hard X-ray luminosity
of AGN (LX) is simply given by the integration of Lν

between 2 keV and 8 keV.
Once the Lyα (or He II) luminosity is monotoni-

cally linked with the AGN X-ray luminosity, we esti-
mate the number density of AGN-powered sources from
the hard X-ray luminosity function (e.g., Barger et al.
2003; Cowie et al. 2003). To power a blob with LLyα

= 1043 ergs s−1, an AGN must have LX & 1041.8

ergs s−1, which would generate a He II blob with LHe II &
1041.7 ergs s−1. Around the required X-ray luminosity,
Cowie et al. (2003) derive the number density of X-ray
selected AGNs regardless of their optical AGN signa-
tures to be 1.3 × 10−5 . Φ(LX > 1042 ergs s−1) ≪
1.4×10−4 Mpc−3 at 2 < z < 4. The extreme upper limit
was determined by assigning all the unidentified sources
in the survey to 2 < z < 4 and is thus very conserva-
tive. For the brightest cooling sources in our simulations
(Fig. 7), we find Φ(LLyα & 1043) ∼ 3× 10−5 Mpc−3 and
∼ 9 × 10−4 Mpc−3 for the condensed phase cut and the
self-shielding correction cases, respectively. 5 Note again
that our assumption that all the ionizing photons from
all AGNs are absorbed to produce Lyα/He II photons is
very conservative and that we are clearly over-predicting
the number of AGN-powered blobs. However, even un-
der this conservative assumption the number density of

5 The number density of Lyα blobs (of unknown origin(s)) from
the Subaru survey (Matsuda et al. 2004) lies between these two
cases.

Fig. 9.— Distribution of He II λ1640 flux-weighted velocity dis-
persion of the gas particles associated with individual dark matter
halos. The different lines represent the velocity dispersions in the
x, y, and z directions. Note that the velocity dispersion due to
gas accretion is less than 400 km s−1, in contrast to the typical
galactic wind speed of ∼ 400-800 km s−1 (Heckman et al. 2000).
Thus the width of the optically thin He II λ1640 line could be used
as a diagnostic to discriminate between the galactic wind and the
gravitational cooling hypotheses for powering Lyα blobs.

AGN-powered sources is only marginally comparable to
the number density of cooling sources in our simulations.
Therefore, at present, we conclude simply that a survey
for extended Lyα and He II cooling radiation is not likely
to be swamped by AGN-powered sources.

The above arguments are statistical, whereas distin-
guishing gravitational cooling radiation from the emis-
sion of AGN-photoionized gas for an individual source
requires a multi-wavelength approach. It is therefore use-
ful to target fields with a large amount of ancillary data
(e.g., deep broad-band or X-ray imaging) to make an un-
ambiguous detection of a true He II cooling blob. First,
searching for the C IV (1549 Å) emission line in the op-
tical spectrum of the source is a good way to identify
an AGN (e.g., Keel et al. 1999). The composite spectra
of optically selected quasars show bright C IV lines, but
much fainter He II lines (Telfer et al. 2002). The recently
discovered Lyα blob associated with a luminous mid-
infrared source (Dey et al. 2005) shows unusually strong
He II λ1640 lines and C IV lines in a localized region
near the center of nebula, suggesting that this Lyα blob
is powered, at least in part, by an obscured AGN. On
the other hand, the absence of a C IV line in a spectrum
with strong He II emission might indicate gravitational
cooling gas like that in our simulations. As we discuss in
the next section, the kinematics of the He II line can fur-
ther constrain the origin of the He II emission. Second,
if the AGN is heavily obscured, deep X-ray imaging of ∼
Msec will provide the most direct probe, because X-rays
from the AGN can penetrate the large column densities
of gas and dust.

4.3. Superwinds

Alternatively, Taniguchi & Shioya (2000) suggest that
galactic superwinds driven by starbursts could power the
extended Lyα blobs. In this scenario, the collective ki-
netic energy of multiple supernovae is deposited into the
surrounding gas, producing a super-bubble filled with hot
and high-pressure gas. If the mechanical energy over-
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comes the gravitational potential of the galaxies, this
metal-enriched gas blows out into the surrounding pri-
mordial IGM and evolves into superwinds.

While the luminosity and sizes of the observed blobs
are roughly consistent with the predictions of simple
wind models, the mechanism to convert the mechanical
energy into Lyα emission is not clear. Using a fast-shock
model, Francis et al. (2001) show that if the shocks are
radiative, the emission from the excited gas in the shock
itself and the photoionized precursor region in front of the
shock can explain the observed Lyα surface brightness of
the blobs. For example, if we adopt the fiducial model of
the pre-run shock grids from Allen et al. (2004) (MAP-
PINGS code by Dopita & Sutherland 1996) with a shock
velocity of 700 km s−1, a number density of 10−2 cm−3,
a magnetic parameter of B/

√
n = 2µG cm3/2, and so-

lar metallicity, then the Lyα and He II λ1640 emissivity
from the shock + precursor region will be ∼ 0.04 and
0.002 ergs s−1 cm−2, respectively. If the shock is per-
pendicular to our line of sight, we would expect sur-
face brightnesses of FLyα ∼ 3 × 10−18 and FHe II ∼
1.5 × 10−19 ergs s−1 cm−2 arcsec−2 at z = 3. This Lyα
surface brightness is roughly consistent with the observed
mean surface brightness of Lyα blobs (Matsuda et al.
2004), but is an underestimate if we consider that Lyα
emission can be suppressed by various factors such as
self-absorption and that the density of the IGM is pos-
sibly lower than the assumed density. If the IGM in the
preshock region is composed of neutral primordial gas,
the UV photons produced in the post-shock plasma will
ionize the preshock region, and the lack of an effective
cooling mechanism other than the atomic hydrogen and
helium lines can boost the Lyα and He II λ1640 line
emissivities significantly. However, the low metallicity
shock grid is not currently available, and the density of
the IGM in the preshock region and the effect of mixing
between the metal-enriched winds and the pristine IGM
are quite uncertain. Thus it is difficult to predict how
much mechanical energy is released through the Lyα or
He II λ1640 lines in the superwind model.

One important feature of the superwind shock model
is that it also predicts many UV diagnostic lines (e.g.,
C IV λ1549) that have been used to study the energetics
of the narrow-line region in AGNs. The debate about
the origin of the Lyα blobs arises mainly because Lyα is
not a good diagnostic line to discriminate between AGN
photoionization and superwind shock-excitation owing to
its sensitivity to resonant scattering and obscuration by
dust. Ideally, line ratios (e.g., He II/C IV, once detected)
could be used to discriminate among the different mech-
anisms.

The kinematics of the blob is potentially another test of
the superwind hypothesis, because of the expected bipo-
lar outflow motion of the expanding shell. For example,
Ohyama et al. (2003) claim that Blob 1 of Steidel et al.
(2000) shows both blueshifted and redshifted compo-
nents (∼ ±3000 km s−1) in the central region, and they
attribute these profiles to the expanding bipolar motion
of a shocked shell driven by a superwind. On the other
hand, using integral field spectrograph data, Bower et al.
(2004) argue that Blob 1 has chaotic velocity structures
that can be explained by the interaction of slowly rising
buoyant material with cooling gas in the cluster poten-

tial, and that a powerful collimated outflow alone ap-
pears inconsistent with the lack of velocity shear across
the blob.

We show the He II λ1640 luminosity-weighted velocity
dispersions of the gas particles associated with individual
blobs in Figure 9. The effect of Hubble expansion and pe-
culiar motion is included in the velocity dispersion calcu-
lations but the thermal broadening for each gas particle is
not. Most halos have velocity dispersions smaller than ∼
400 km s−1, compared to the typical superwind speed of
several hundreds to a 1000 km s−1 (e.g., Heckman et al.
2000; Pettini et al. 2001). For the superwind case, be-
cause the observed Lyα emission comes mainly from the
shock between the outflow from a galaxy and the sur-
rounding pristine IGM, we expect the He II emission to
be as extended as the observed Lyα emission. Therefore,
if we observe a spatially resolved Lyα and He II emit-
ting blob, and its velocity dispersion is larger than 400
km s−1, it is possible to exclude cooling radiation as the
source of that blob. Note that there would be no ambi-
guities in measuring the size and line broadening because
He II λ1640 is optically thin. Thus He II λ1640 is a finer
tool than H I λ1216 to study the kinematic properties of
Lyα blobs.

5. CONCLUSIONS

In this paper, we use high resolution cosmological sim-
ulations to study the gravitational cooling lines arising
from gas accreted by forming galaxies. Because baryons
must radiate thermal energy to join a galaxy and form
stars, accreting gas produces extended H I λ1216 emis-
sion (a “Lyα blob”) surrounding the galaxy. We also
expect cooling lines from singly ionized helium such as
He II λ1640 to be present within Lyα blobs. We investi-
gate whether three major atomic cooling lines, H I λ1216,
He II λ1640, and He II λ304 are observable in the FUV
and optical. We discuss the best observational strate-
gies to search for cooling sources and how to distinguish
them from other possible mechanisms for producing Lyα
blobs. Our principal findings are:

1. H I λ1216 and He II λ1640 (He II Balmer α) cooling
emission at z = 2 − 3 are potentially detectable with
deep narrow band imaging and/or spectroscopy from the
ground. He II λ304 will be unreachable until a large
aperture UV space telescope (e.g. SUVO; Shull et al.
1999) is available.

2. While our predictions for the strength of the H I

λ1216 emission line depend strongly on how to handle
the self-shielded gas, our predictions for the He II λ1640
line are rather robust owing to the negligible emissivity
of He II for the self-shielded IGM below T ∼ 104.5 K.

3. Although He II λ1640 cooling emission is fainter
than Lyα by at least a factor of 10 and, unlike Lyα
blobs, might not be resolved spatially with current ob-
servational facilities, it is more suitable to study gas ac-
cretion in the galaxy formation process because it is op-
tically thin, less sensitive to the UV background, and less
contaminated by recombination lines from star-forming
galaxies.

4. To use the H I λ1216 and He II λ1640 cooling
lines to constrain galaxy formation models, we first need
to exclude the other possible mechanisms for produc-
ing Lyα blobs. First, because He II λ1640 emission
from stars is limited to stars with very low metallici-
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ties (log(Z/Z⊙) . −5.3) and Population III objects, its
detection, unlike Lyα, cannot be caused by stellar pop-
ulations. Second, the kinematics of the He II λ1640 line
can distinguish gravitational cooling radiation from a sce-
nario in which starburst-driven superwinds power Lyα
blobs, because the He II line width from cooling gas is
narrower (σ < 400 kms−1) than the typical wind speeds
(which are factors of several higher). Third, if some frac-
tion of the He II emitting blobs are powered by AGN,
additional diagnostics such as the C IV line and/or X-
ray emission can be used to discriminate gravitationally
cooling blobs from those powered, at least in part, by

AGN.
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