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Multiple-Group confirmatory factor analysis in R –  
A tutorial in measurement invariance with continuous and ordinal 

indicators 
 

Gerrit Hirschfeld, Childrens’ Hospital Datteln, Germany; 
Ruth von Brachel, Ruhr-University Bochum, Germany 

 
Multiple-group confirmatory factor analysis (MG-CFA) is among the most productive extensions of 
structural equation modeling. Many researchers conducting cross-cultural or longitudinal studies are 
interested in testing for measurement and structural invariance. The aim of the present paper is to provide a 
tutorial in MG-CFA using the freely available R-packages lavaan, semTools, and semPlot. The combination 
of these packages enable a highly efficient analysis of the measurement models both for normally distributed 
as well as ordinal data. Data from two freely available datasets – the first with continuous the second with 
ordered indicators - will be used to provide a walk-through the individual steps. 

     

Many researchers in psychology and social science are 
faced with the problem to compare latent constructs 
(i.e. mathematic ability, extraversion) that are not 
directly observable between different groups 
(languages, ethnic-groups), or points in time. Usually 
these latent constructs are measured by questionnaires, 
comprised of different scales that reflect different 
underlying latent variables. Typically differences 
between groups with regard to these underlying 
constructs are tested via scale means. Any comparison 
of means presuppose that the measures function 
similar in these different groups, i.e. that the response 
to individual items can be explained by the same latent 
factors (Byrne, Shavelson, & Muthén, 1989; Cheung & 
Rensvold, 1999; Vandenberg & Lance, 2000). Multiple-
Group Confirmatory Factor Analysis (MG-CFA) has 
become the de-facto standard to investigate the degree 
to which measures are invariant across groups (Chen, 
2008). Practical applications in educational psychology 
entail the cross-cultural validation of tests testing for 
equation of international test (Wu, Li, & Zumbo, 2007) 
and assessing the invariance of test results across 
different subgroups, e.g. the validity of somatic 
complaints in White and African American samples 
(Kline, 2013). These techniques are also widely-used in 
medicine where measurement invariance is seen as an 

important precursor for interpreting patient reported 
outcomes (Gregorich, 2006).  

Although there are several introductions to MG-
CFA to test for invariance that are based on 
commercial programs, e.g. AMOS (Byrne, 2004), 
several recent additions to the open source software R 
(R Core Team, 2012) enable researchers to perform 
such analysis with unprecedented efficiency. In this 
paper we will describe how the three packages lavaan 
(Rosseel, 2012), semPlot (Epskamp, 2013) and 
semTools can be combined to conduct MG-CFA 
analysis. Before providing a walk-through the analysis a 
short conceptual introduction is given. 

A conceptual introduction to measurement 
invariance 

A scale is said to have measurement invariance 
(also known as measurement equivalence) across 
groups if subjects with identical levels of the latent 
construct have the same expected raw-score on the 
measure (Drasgow & Kanfer, 1985). As such, the level 
of measurement invariance a scale exhibits has very 
important implication for the interpretation of 
differences. If measurement invariance has been 
established for a measure, observed mean differences 
can be attributed to differences in underlying 
constructs between the groups. If however, one cannot 
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assume a stable relation between underlying construct 
and scale score, observed mean differences may be 
either due to differences in underlying constructs, or 
due to the different relations between latent constructs 
and scores. There are currently two approaches to test 
for invariance; structural equation modeling, and item 
response theory (Raju, Laffitte, & Byrne, 2002; Reise, 
Widaman, & Pugh, 1993).  

Structural equation modeling (SEM) lends itself 
naturally to investigate the invariance of the relations 
between underlying constructs (latent variables) and 
observed responses (manifest variables), since these 
relations are explicitly modeled. For example figure 1 is 
a graphical representation of a measurement model for 
the classic dataset by Holzinger and Swineford (1939) 
comprising scores of 300 school children on nine 
different tests. In this measurement model the 
performance on the nine different tests is explained by 
three interrelated latent constructs; speed, textual, and 
visual. Following usual conventions observed variables 
 

Figure 1. Measurement model for the Holzinger and 
Swinford Data.  

are represented by rectangles and latent variables are 
represented by ovals. The paths indicate which item 
loads on which factor. The fact that loadings are 
represented by directed arrows highlights the fact that 
the measurement model presupposes that the latent 
variables affect the individual items. In regression terms 
fitting this model to the data entails estimating six 
parameters; (1) a regression coefficient (e.g. the loading 
of test “x1” on factor visual “visual”), (2) a regression 
intercept, (3) a regression residual variance, (4) the 
means of the factors, (5) the variances of the underlying 
factors, and (6) the covariances of the underlying 
factors (Wu et al., 2007). MG-CFA extends this 

framework by allowing researchers to tests whether 
these different regression parameters are equal in two 
or more groups. 

Within the SEM framework different levels of 
measurement invariance may be defined; configural, 
weak, strong, and strict invariance that correspond to 
the above-mentioned regression parameters. Configural 
invariance implies that the number of latent variables 
and the pattern of loadings of latent variables on 
indicators are similar across the groups. In the above 
example this implies that in all groups the first three 
tests “x1”, “x2”, and “x3” are influenced by the same 
latent variable “visual ability”. Weak invariance (also 
known as metric invariance) implies that the magnitude 
of the loadings is similar across the groups. This type of 
measurement invariance is required in order to 
meaningfully compare the relationships between latent 
variables across different groups. Strong invariance 
(also known as scalar invariance) implies that not only 
the item loadings but also the item intercepts are 
similar across the groups. This form of measurement 
invariance implies that there are no systematic response 
biases and is required in order to meaningfully compare 
the means of latent variables across different groups 
(Chen, 2008). Last, some authors require strict 
invariance before means can be compared (Wu et al., 
2007). Strict invariance implies that in addition to 
loadings and intercepts, the residual variances are 
similar across groups. After having established 
measurement invariance, researchers may go on to test 
substantial hypotheses about the means and 
interrelations between latent constructs. For example 
after having established that the measurement model is 
invariant across groups one might want to test whether 
the two groups differ in mean visual ability or whether 
these latent variables are related to academic 
achievement as measured by grades in different 
subjects. 

Testing for measurement invariance  

Testing for measurement invariance consists of a 
series of model comparisons that define more and 
more stringent equality constraints (Byrne, 2009; 
Cheung & Rensvold, 1999; Raju et al., 2002; 
Vandenberg & Lance, 2000). First, a baseline model is 
fit in which the loading pattern is similar in all groups 
but the magnitude of all parameters – loadings, 
intercepts, variances, etc. - may vary. Configural 
invariance exists if this baseline model has a good fit 
and the same loadings are significant in all groups. 
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Second, a weak-invariance model in which the factor 
loadings are constrained to be equal is fit to the data 
and the fit of this model is compared to the baseline 
model. Weak invariance exists if the fit of the metric 
invariance model is not substantially worse than the fit 
of the baseline model. As described below there exist 
several statistical alternatives to decide whether the fit is 
substantially worse. Third, a strong-invariance model in 
which factor loadings and item intercepts are 
constrained to be equal is fit to the data and compared 
against the weak measurement invariance model. Again 
strong invariance exists if the fit of the scalar invariance 
model is not substantially worse than the fit of the 
weak invariance model. Fourth, a strict invariance 
model in which factor loadings, intercepts, and residual 
variances are constrained to be equal is fit to the data 
and compared to the strong measurement invariance 
model.  

A special case pertains to the testing of multiple-
group models with ordinal indicators (Millsap & Yun-
Tein, 2004; Muthén & Asparouhov, 2002; Temme, 
2006). Even though there is some debate about the 
exact number of categories a likert-scale needs to have 
in order to be treated as continuous, it is clear that 
likert-scales with few (probably four) categories are best 
handled using alternative estimation methods that take 
into account the ordinal nature of the data (Rhemtulla, 
Brosseau-Liard, & Savalei, 2012). The approach to 
dealing with ordered indicators most often employed is 
modeling thresholds for each indicator that describe at 
which level of the latent variable a specific category is 
chosen and using the weighted least squares means and 
variance adjusted (WLSMV) estimator to estimate 
parameters. Within the framework of MG-CFA these 
thresholds are roughly equivalent to the item loadings. 
That makes testing for weak and strong measurement 
invariance relatively easy. However, testing for strict 
invariance, i.e. testing the equality of residual variances, 
is only possible when theta-parameterization is used to 
identify model parameters (Muthén & Asparouhov, 
2002). Since lavaan currently uses delta-
parameterization the residuals are not estimated and 
one cannot the equality of these parameters across 
groups.  

Importantly, the decision whether or not a 
measurement model exhibits measurement invariance is 
not an all-or-none decision. Partial measurement 
invariance describes scenarios in which only some 
indicators exhibit a certain level of measurement 
invariance while the others do not. For example three 

out of four indicators may exhibit strong invariance 
while the fourths only exhibits weak invariance (Byrne 
et al., 1989). This indicator is identified by constraining 
only those parameters (loadings, intercepts) pertaining 
to one specific indicator (Cheung & Rensvold, 1999). 
Whenever indicators show evidence of invariance 
researchers may drop these indicators from the model, 
use partial measurement invariance, or omit any 
interpretation of the scales across the groups. Some 
authors have argued that only two indicators are 
needed to be invariant to make meaningful 
comparisons between groups (Steenkamp & 
Baumgartner, 1998).  

Decision rules for invariance tests 

An open issue pertains the use of different 
decision rules for invariance (Wu et al., 2007). The 
problem is that imposing equality constraints will 
always result in a decrease in fit because less degrees of 
freedom are available. Consider testing for weak 
invariance by comparing the baseline model with the 
weak-invariance model. In the baseline model the 
loadings of the items on the factors are allowed to be 
different between the group. In the weak-invariance 
model these loadings are constrained to be equal. Since 
the baseline-model has more free parameters than the 
weak-invariance model the baseline-model’s overall 
model fit will be better. This raises the question 
whether a specific decrease in fit observed during the 
model comparisons is substantial or not. Initial studies 
used chi-square tests to decide whether or not the 
increase in fit is substantial (Byrne et al., 1989). 
Following studies have however identified several 
problems with this approach and proposed using a 
difference in fit indices to define invariance (Cheung & 
Rensvold, 2002). Other authors have adopted a hybrid 
approach arguing that chi-square should be used to 
determine invariance at the measurement level (i.e. 
configural, weak, strong, and sctrict invariance), and fit-
indices should be used at the structural level (Little, 
1997). At present the inspection of changes in fit-
indices, specifically the difference in comparative fit 
index (CFI) (ΔCFI), seems the most widely used and 
empirically best supported criterion to define invariance 
(Chen, 2007; Cheung & Rensvold, 2002). Most often a 
cutpoint of ΔCFI < .01 is chosen to decide whether a 
more constrained model, e.g. the weak-invariance 
model, shows a substantial decrease in model fit 
compared to a less constrained model, e.g. the baseline 
model. Some authors have however shown that the 
optimal cutpoints for differences in chi-square or CIF 
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strongly depend on model complexity and have 
provided tables for cutpoints that result in have higher 
power and sensititivity to detect invariance than global 
decision rules (Meade, Johnson, & Braddy, 2008). 
Unfortunately previous systematic simulation studies 
into the performance of cut-off values have used 
maximum likelihood estimation (Chen, 2007; Cheung 
& Rensvold, 2002; Meade et al., 2008). As a result it is 
unknown whether or not the standard cutoff points for 
differences in CFI are also applicable to models 
estimated with WLSMV. As a result very few studies 
into measurement invariance have (Chungkham, Ingre, 
Karasek, Westerlund, & Theorell, 2013) taken into 
account ordinal indicators and instead have used ML 
estimation to fit the data. A recent simulation study 
(Koh & Zumbo, 2008) has shown that this practice 
does not lead to inflated type-I error rates, i.e. claiming 
non-invariance when models are in fact invariant. We 
compare the outcome of the analysis in the second 
example presented below.  

Example I: Continuous indicators 

Our first example will analyze a dataset that only 
included continuous indicators. The packages lavaan, 
semTools and semPlot contain all functions needed to 
efficiently run MG-CFA analysis in R. Running a MG-
CFA analysis comprises six steps; (1) Install/load  

Table 1.  Important functions and parameters 
Function What it does 
cfa() Fits a model to data. The 

parameters group.equal and 
group.partial allow defining and 
relaxing constraints. 

moreFitIndices() Gives several additional fit indices. 
semPaths() Plots structural models and 

estimates. 
Measurement 
Invariance() 

Performs a series of model 
comparisons for which chi-square 
and ΔCFI are reported. Allows 
relaxing constraints via the 
parameter group.partial. 

ggplot() Visualizes data. 
inspect() Gives only part of the model 

summary so that these can be 
stored. 

mgcfa.perm() Performs a permutation test to 
estimate the distribution of ΔCFI 
for random groups. 

 

packages; (2) Loading data; (3) specifying a baseline 
model; (4) defining equality constraints; (5) comparing 
the models; (6) visualizing results. Table 1 gives an 
overview of the functions used and their most 
important parameters. The first three steps have already 
been described in more detail in a previous article in 
this journal (Beaujean, 2013) so that they are only 
summarized here. 

Install/load Packages 

Before the functions can be used they have to be 
installed once and loaded at the beginning of the script. 
In the following lines beginning with “>” denote code 
that has to be entered by the user and the output that is 
generated by R is printed in bold, “[…]” is used to 
denote that the output was truncated. The following 
commands install and load the packages: 

> install.packages(c(‘‘lavaan’’, 
‘‘semTools’’, ‘‘semPlot’’)) 

> library(lavaan) 
> library(semPlot) 
> library(semTools)  

Loading data 

R has many functions to load data in various 
formats, ranging from simple tabular data such as 
comma-separated files to more specialized data files 
such as SPSS or SAS-data files (Beaujean, 2013). Also 
some packages already include datasets. In our first 
example we will use the Holzinger-Swineford data that 
is part of the lavaan package. As such it can be loaded 
into memory using the function data(), after the 
package is installed and the package loaded, as 
described in the previous section. 

> data(HolzingerSwineford1939) 
> str(HolzingerSwineford1939) 
 
'data.frame': 301 obs. of  15 variables: 
 $ id    : int  1 2 3 4 5 6 7 8 9 11 ... 
 $ sex   : int  1 2 2 1 2 2 1 2 2 2 ... 
 $ ageyr : int  13 13 13 13 12 14 12 12 13 12 

... 
 $ agemo : int  1 7 1 2 2 1 1 2 0 5 ... 
 $ school: Factor w/ 2 levels "Grant-

White",..: 2 2 2 2 2 2 2 2 2 2 ... 
 $ grade : int  7 7 7 7 7 7 7 7 7 7 ... 
 $ x1    : num  3.33 5.33 4.5 5.33 4.83 ... 
 $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 

6.25 5.75 5.25 ... 
 $ x3    : num  0.375 2.125 1.875 3 0.875 ... 
 $ x4    : num  2.33 1.67 1 2.67 2.67 ... 
 $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 

5.75 5 ... 
 $ x6    : num  1.286 1.286 0.429 2.429 2.571 

... 
 $ x7    : num  3.39 3.78 3.26 3 3.7 ... 
 $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 

6.2 5.15 4.65 4.55 ... 
 $ x9    : num  6.36 7.92 4.42 4.86 5.92 ... 
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The output of the function str() describes the 

variables in the dataset “HolzingerSwineford1939”. 
Each line represents one variable, in which the name 
(e.g. sex), format (int = integer, or num = numeric, or 
Factor) and first few datapoints are given. 

Specifying and inspecting the baseline model 

We will fit a simple three-factor model to the data. 
This entails specifying the model using lavaan’s model-
syntax, fitting the model to the data using the function 
cfa(), and inspecting the model with the functions 
summary(), moreFitIndices() and semPaths().  

> model <- ' visual =~ x1 + x2 + x3; 
textual =~ x4 + x5 + x6; speed =~ x7 
+ x8 + x9 ' 

Lavaans model-syntax was designed to enable 
researchers to quickly set up models with useful default 
parameters in mind. As such covariances between all 
latent variables (“visual” and “textual”) are added 
automatically. All defaults can be overridden as 
described by Rosseel (2012). 

> fit <- cfa(model, 
data=HolzingerSwineford1939) 
> summary(fit, standardized = TRUE, 
fit.measures = TRUE) 
 
lavaan (0.5-16) converged normally after  35 
iterations 
 
  Number of observations                  301 
 
  Estimator                                ML 
  Minimum Function Test Statistic      85.306 
  Degrees of freedom                       24 
  P-value (Chi-square)                  0.000 
 
Model test baseline model: 
 
  Minimum Function Test Statistic     918.852 
  Degrees of freedom                       36 
  P-value                               0.000 
 
User model versus baseline model: 
 
  Comparative Fit Index (CFI)           0.931 
  Tucker-Lewis Index (TLI)              0.896 
 
Loglikelihood and Information Criteria: 
 
  Loglikelihood user model (H0)     -3737.745 
  Loglikelihood unrestricted  
                      model (H1)    -3695.092 
 
  Number of free parameters                21 
  Akaike (AIC)                       7517.490 
  Bayesian (BIC)                     7595.339 
  Sample-size adjusted Bayesian  
                       (BIC)         7528.739 
 
Root Mean Square Error of Approximation: 
 
  RMSEA                                 0.092 
  90 Percent Confidence Interval 0.071  0.114 
  P-value RMSEA <= 0.05                 0.001 

 
Standardized Root Mean Square Residual: 
 
  SRMR                                  0.065 
Parameter estimates: 
[…] 

 

The output of the function summary() already 
provides the user with data pertaining to the model fit, 
e.g. RMSEA. Two additional functions provide more 
fit indices and a graphical representation of the model.  

 
> moreFitIndices(fit) 
 
gammaHat       adjGammaHat   baseline.rmsea      
0.9565611      0.9185521     0.2854364 
aic.smallN     bic.priorN    hqc  
7476.5731866   7544.0149775  7517.2909607  
sic 
3794.0917641 
> semPaths(fit, "std") 
 

Figure 2. Measurement model for the Holzinger and 
Swinford Data including parameter estimates 

Overall, inspection of the output shows that this 
model only has a very weak fit to the data (2 = 85.306; 
DF = 24; CFI = .93; gamma hat = .96; RMSEA = .092; 
SRMR = 0.065). Normally, researchers would have to 
improve the model fit, as this is also important to 
assess configural invariance. Since our main aim is to 
describe the analysis, we continue to work with this 
model and focus on testing hypotheses about weak, 
strong, and strict invariance. 

Running multiple-group tests 

Multiple-group CFAs are implemented in lavaan 
by calling the function cfa() with additional parameters 
(group, group.equal, and group.partial) that specify 
equality constraints between the different groups. One 
can specify these different models manually and 
compare them using the function anova().  

> config <- cfa(model, 
data=HolzingerSwineford1939, 
group="school") 
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> weak <- cfa(model, 
data=HolzingerSwineford1939, 
group="school", 
group.equal="loadings") 

> strong<- cfa(model, 
data=HolzingerSwineford1939, 
group="school", group.equal = 
c("loadings", "intercepts")) 

> strict<- cfa(model, 
data=HolzingerSwineford1939, 
group="school", group.equal = 
c("loadings", "intercepts", 
"residuals")) 

> anova(config, weak, strong, strict) 
 
Chi Square Difference Test 
 
       Df  AIC  BIC Chisq Chisq diff 
config 48 7484 7707   116            
weak   54 7481 7681   124        8.2 
strong 60 7509 7687   164       40.1 
strict 69 7508 7653   182       17.4 
       Df diff Pr(>Chisq)     
config                        
weak         6      0.224     
strong       6    4.4e-07 *** 
strict       9      0.043 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 

'.' 0.1 ' ' 1 

 

What is missing from the output of the function 
anova() is the CFI value for the individual models. One 
could either inspect the individual models to perform 
the series of model comparisons or use the function 
measurementInvariance() as a convenient wrapper that 
automatically performs the series of model 
comparisons (configural, weak, strong, strict).  

> measurementInvariance(model, 
data=HolzingerSwineford1939, 
group=’’school’’) 

 
Measurement invariance tests: 
 
Model 1: configural invariance: 
   chisq       df   pvalue      cfi    rmsea      bic  
 115.851   48.000    0.000    0.923    0.097 7706.822  
 
Model 2: weak invariance (equal loadings): 
   chisq       df   pvalue      cfi    rmsea      bic  
 124.044   54.000    0.000    0.921    0.093 7680.771  
 
[Model 1 versus model 2] 
  delta.chisq      delta.df delta.p.value     delta.cfi  
        8.192         6.000         0.224         0.002  
 
Model 3: strong invariance (equal loadings + intercepts): 
   chisq       df   pvalue      cfi    rmsea      bic  
 164.103   60.000    0.000    0.882    0.107 7686.588  
 
[Model 1 versus model 3] 
  delta.chisq      delta.df delta.p.value     delta.cfi  
       48.251        12.000         0.000         0.041  
 
[Model 2 versus model 3] 
  delta.chisq      delta.df delta.p.value     delta.cfi  
       40.059         6.000         0.000         0.038  
 
Model 4: strict invariance (equal loadings + intercepts + 

residuals): 
   chisq       df   pvalue      cfi    rmsea      bic  
 181.511   69.000    0.000    0.873    0.104 7652.632  
 
[Model 1 versus model 4] 
  delta.chisq      delta.df delta.p.value     delta.cfi  
        65.66         21.00          0.00          0.05  
 
[Model 3 versus model 4] 
  delta.chisq      delta.df delta.p.value     delta.cfi  

       17.409         9.000         0.043         0.009  
 
Model 5: equal loadings + intercepts + residuals + means: 
   chisq       df   pvalue      cfi    rmsea      bic  
 221.335   72.000    0.000    0.831    0.117 7675.335  
 
[Model 1 versus model 5] 
  delta.chisq      delta.df delta.p.value     delta.cfi  
      105.484        24.000         0.000         0.092  
 
[Model 4 versus model 5] 
  delta.chisq      delta.df delta.p.value     delta.cfi  
       39.824         3.000         0.000         0.042  

The model comparisons to test for weak, strong 
and strict invariance are found under the headings 
[Model 1 versus model 2], [Model 2 versus model 3], 
[Model 3 versus model 4], respectively. The first three 
entries give the difference in chi-square, the 
corresponding degrees of freedom and significance test. 
The last entry gives the difference in CFI between the 
two models. The output of this function prints all data 
needed including CFI needed to construct a typical 
table (tab. 2). 

Table 2. Series of model comparisons 

Model 2 (Δ2) 
Df 

(ΔDf) 
p (Δp) 

CFI 
(ΔCFI)

M1 Configural 115.851 48 <.001 .923 
M2 Weak 
invariance 
(loadings) 

(8.192) (6) (0.224) (.002)

M3 Strong 
invariance 
(loadings, and 
intercepts) 

(40.059) (6) (<.001) (.038)

M3b. Partial 
strong invariance 
(except item #x3)

(32.322) (5) (<.001) (0.031)

M3c. Partial 
strong invariance 
(except items #x3 
and #7) 

(5.379) (4) (.251) (.002)

M4 Partial strict 
(M3c plus residual 
variances) 

(11.585) (7) (0.115) (0.005)

Note. According to Cheung and Rensvold (2002) ΔCFI 
< 0.01 implies that the invariance assumption still 
holds. 

The series of model comparisons indicate that the 
factor loadings can be assumed to be equal, since the 
chi-square test is not significant and ΔCFI is smaller 
than the proposed cutpoint  of .01 (Cheung & 
Rensvold, 2002). When constraining the intercepts to 
be equal across groups a significant increase in chi-
square and a large increase in CFI highlights that the 
strong invariance assumption cannot be met. In order 
to test for partial invariance we will inspect the 
modification indices for individual parameters in the 
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more constrained model – here the strong-invariance 
model. Specifically, we will first use the function 
modificationIndices() to extract the modification 
indices and inspect modification indices that pertain to 
intercepts.  

> mod_strong<-modificationIndices(strong) 
> mod_strong[mod_strong$op == "~1",] 
 
     lhs op rhs group mi   epc    sepc.lv sepc.all sepc.nox 
1       x1 ~1    1  4.485 -0.133  -0.133   -0.114   -0.114 
2       x2 ~1    1  6.634 -0.165  -0.165   -0.132   -0.132 
3       x3 ~1    1 17.717  0.248   0.248    0.206    0.206 
4       x4 ~1    1  1.816  0.058   0.058    0.050    0.050 
5       x5 ~1    1  1.316 -0.054  -0.054   -0.042   -0.042 
6       x6 ~1    1  0.028 -0.007  -0.007   -0.007   -0.007 
7       x7 ~1    1 13.681  0.205   0.205    0.186    0.186 
8       x8 ~1    1  3.864 -0.099  -0.099   -0.102   -0.102 
9       x9 ~1    1  1.322 -0.058  -0.058   -0.059   -0.059 
10  visual ~1    1  0.000  0.000   0.000    0.000    0.000 
11 textual ~1    1  0.000  0.000   0.000    0.000    0.000 
12   speed ~1    1  0.000  0.000   0.000    0.000    0.000 
13      x1 ~1    2  4.485  0.133   0.133    0.114    0.114 
14      x2 ~1    2  6.634  0.165   0.165    0.151    0.151 
15      x3 ~1    2 17.717 -0.248  -0.248   -0.238   -0.238 
16      x4 ~1    2  1.816 -0.058  -0.058   -0.053   -0.053 
17      x5 ~1    2  1.316  0.054   0.054    0.044    0.044 
18      x6 ~1    2  0.028  0.007   0.007    0.006    0.006 
19      x7 ~1    2 13.681 -0.205  -0.205   -0.193   -0.193 
20      x8 ~1    2  3.864  0.099   0.099    0.096    0.096 
21      x9 ~1    2  1.322  0.058   0.058    0.057    0.057 
22  visual ~1    2  0.000  0.000   0.000    0.000    0.000 
23 textual ~1    2  0.000  0.000   0.000    0.000    0.000 
24   speed ~1    2  0.000  0.000   0.000    0.000    0.000 

This list shows that the modification indices are 
largest for the intercept belonging to the item x3. So 
this will be the first item for which we relax the equality 
constraint, i.e. we allow the intercept for this item to 
differ between groups. For this the function 
measurementInvariance() is used together with the 
parameter group.partial to specify the intercepts for 
which we relax the constraints.  

> measurementInvariance(model, 
data=HolzingerSwineford1939, 
group="school", group.partial = 
c("x3 ~1")) 

[…] 
[Model 2 versus model 3] 
  delta.chisq    delta.df    delta.p.value     delta.cfi  
       20.535       5.000    0.001             0.018  
[…] 

The line corresponding to this partial strong 
invariance test now shows a smaller difference in chi-
square and the correct degrees of freedom (5, was 6). 
However, both chi-square significance test and ΔCFI 
still indicate a lack of strong invariance. Revisiting the 
modification indices (see above) indicated item x7 as a 
second potential source for invariance. So next we 
allow the intercept corresponding to this item to differ 
between the groups. 

>measurementInvariance(model, 
data=HolzingerSwineford1939, 
group="school", group.partial = 
c("x3 ~1", "x7~1")) 

[…] 
 
[Model 2 versus model 3] 
delta.chisq   delta.df    delta.p.value   delta.cfi  
5.379         4.000       0.251           0.002  

[…] 
[Model 3 versus model 4] 
delta.chisq   delta.df   delta.p.value     delta.cfi  
17.838        9.000      0.037             0.010  
[…] 

 

The line corresponding to the partial strong 
invariance test now shows a non-significant chi-square 
test and a ΔCFI that is below the cutpoint of .01. 
Furthermore, even though the test for strict invariance 
yields a significant chi-square test, the ΔCFI is not 
larger than the cutpoint indicating that with the 
exception of items x3 and x7 the scale exhibits partial 
strict measurement invariance. Based on these results 
researchers may thus interpret differences between 
schools in the means between those two groups as 
reflecting real differences in the underlying latent trait 
(i.e. intelligence) rather than the measure.  

Example II: Ordinal indicators 

Our second example will use data from 3376 
participants who took part in an online survey that 
administered the sexual compulsivity scale (Kalichman 
& Rompa, 1995). The data is made available on the 
website http://personality-testing.info/_rawdata/. This 
scale consists of ten items consisting of descriptions 
about sexual behaviour, e.g “I think about sex more 
than I would like to”. Participants respond to each item 
on a four-category likert scale ranging from “not at all 
like me” to “very much like me”. Even though this 
issue could be investigated using ML estimation (Koh 
& Zumbo, 2008), we will also use the “correct” way by 
declaring these variables as ordinal. 

Load Packages 

As before, we need to load the previously installed 
packages lavaan, semPlot, and semTools before we can 
assess the functions. 

> library(lavaan) 
> library(semPlot) 
> library(semTools)  

Loading data 

Since we want to use data that is stored as a zip-file 
on a website, we need to first download this file and 
unzip it before we can load it into R. You may 
download and unzip the file (“http://personality-
testing.info/_rawdata/SCS.zip”) manually or use the 
function download.file() and unzip() as described 
below. The file is loaded with read.csv(). Since we want 
to compare men to women, we use the subset of the 
data in which participants responded either male or 
female (subset(tmp, gender == "1" | gender == "2")).  
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> download.file 
("http://personality-

testing.info/_rawdata/SCS.zip","SCS.
zip") 

> unzip("SCS.zip") 
> tmp <- read.csv("SCS/data.csv") 
> scs <- subset(tmp, gender == "1" | 

gender == "2")  

Specifying and inspecting the baseline model 

Next we will fit a one-factor model taking into 
account the ordered nature of the indicators. This is 
done by declaring the indicators as ordinal using the 
parameter ordered. By declaring the items q1 to q10 as 
ordered lavaan automatically switches to a different 
estimation method. The output of the function 
summary() provides both parameter estimates and 
indices for overall model fit. 

> scs_model_fit<- cfa(scs_model, ordered = 
c("Q1", "Q2", "Q3", "Q4", "Q5", "Q6", 
"Q7", "Q8", "Q9", "Q10"), data=scs)  
> summary(scs_model_fit, standardized = 
TRUE, fit.measures = TRUE) 
 
lavaan (0.5-16) converged normally after  23 
iterations 
 
  Number of observations     3348 
 
  Estimator                DWLS    Robust 
Minimum Function Test Statistic  
   1083.730  2356.933 
  Degrees of freedom   35  35 
  P-value (Chi-square  0.000  0.000 
  Scaling correction factor        
 0.461 
  Shift parameter                   4.613 
    for simple second-order correction (Mplus 
variant) 
 
Model test baseline model: 
 
  Minimum Function Test Statistic 
 95130.457 35638.844 
  Degrees of freedom     45  45 
  P-value             0.000  0.000 
 
User model versus baseline model: 
 
  Comparative Fit Index (CFI)0.989 0.935 
  Tucker-Lewis Index (TLI)  0.986 0.916 
 
Root Mean Square Error of Approximation: 
 
  RMSEA            0.095 0.141 
  90 Percent Confidence Interval  
 0.090-0.100 0.136-0.146 
  P-value RMSEA <= 0.05  0.000  0.000 
 
Weighted Root Mean Square Residual: 
 
  WRMR                    3.571  3.571 
 
Parameter estimates: 
[…] 
 
> semPaths(scs_model_fit, "std", 
curvePivot = TRUE, thresholds = FALSE) 

 

Inspection of the output shows that this model 
only has a very weak fit to the data (2 = 2356.933; DF 
= 35; CFI = 0.94; RMSEA = .14). As in the first 
example, model fit is far from acceptable, but we 
proceed with the testing hypothesis about weak, strong, 
and strict invariance. 

Figure 3. Measurement model for the sexual compulsivity 
scale including parameter estimates 

Running multiple-group tests 

Performing the multiple-group CFAs is slightly 
different because the function 
measurementInvariance() will try to constrain 
“loadings”, “intercepts” and “residuals”. Since residuals 
are not parameters in the delta-parameterization lavaan 
uses (see section 1.2 above), the function will produce 
meaningless output, i.e. comparing models that have 
identical constraints. So the individual models and 
comparisons to test for configural, weak, and strong 
invariance have to be specified by hand. In order to 
compare models the function semTools:::difftest() will 
be used. 

> config <- cfa(model, 
data=HolzingerSwineford1939, 
group="school") 

> scs_model_weak <- cfa(scs_model, 
ordered = c("Q1", "Q2", "Q3", "Q4", 
"Q5", "Q6", "Q7", "Q8", "Q9", 
"Q10"), group = "gender", 
group.equal = c("loadings"), 
data=scs) 

> semTools:::difftest(scs_model_config, 
scs_model_weak) 

 
delta.chisq  delta.df  delta.p.value  delta.cfi  
175.840      9.000     0.000          0.002 

 

The test for weak invariance results in a significant 
scaled chi-square test but a delta CFI that is below the 
cutpoint of .01. Since chi-square is sensitive to sample 
size, we assume that the scale still exhibits weak 
invariance and proceed to testing for strong invariance.  
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> scs_model_strong <- cfa(scs_model, 
ordered = c("Q1", "Q2", "Q3", "Q4", 
"Q5", "Q6", "Q7", "Q8", "Q9", 
"Q10"), group = "gender", 
group.equal = c("loadings", 
"thresholds"), data=scs) 

> semTools:::difftest(scs_model_weak, 
scs_model_strong) 

 
delta.chisq  delta.df  delta.p.value  delta.cfi  
    -31.027  29.000    1.000          -0.001 

 

Due to different scaling parameters in the models, 
the differences in chi-square and CFI may also be 
negative. These indicate however, that the strong 
invariance assumption still holds. As a comparison we 
also repeat the analysis without declaring the variables 
as ordered.  

> measurementInvariance(scs_model, 
data=scs, group="gender", 
strict=TRUE) 

Measurement invariance tests: 
 
[…]  
[Model 1 versus model 2] 
delta.chisq  delta.df  delta.p.value  delta.cfi  
24.317       9.000     0.004          0.001  
[…]  
 [Model 2 versus model 3] 
delta.chisq  delta.df  delta.p.value  delta.cfi  
74.056       9.000     0.000          0.004  
[…]  
Model 3 versus model 4] 
delta.chisq  delta.df  delta.p.value  delta.cfi  
11.996       10.000    0.285          0.000  

 

The output of this analysis gives very similar 
results. Specifically, the tests for weak and strong 
invariance yield a significant chi-square test but a small 
ΔCFI. The test for strict invariance yields both an 
insignificant chi-square test and a neglible ΔCFI. Both 
methods – WLSMV estimation and ML estimation – 
suggest that researchers may interpret differences in the 
means between those two groups as reflecting 
differences in the underlying latent trait rather than the 
measure.  

Conclusions 

Testing for measurement invariance is a central 
aspect of assessment and evaluation (Byrne et al., 1989; 
Chen, 2008; Cheung & Rensvold, 1999; Vandenberg & 
Lance, 2000; Wu et al., 2007). Even though item 
response theory can also be used to test for invariance 
(Raju et al., 2002; Reise et al., 1993), multiple group 
confirmatory factor analysis is the most widely used 
method to establish invariant measurements across 
groups.  

Our description made apparent several areas 
where systematic simulation studies and software 

development is necessary. First, systematic simulation 
studies need to compare the relative utility of different 
decision rules for invariance tests. Studies using 
categorical data and WLSMV estimation would be 
especially useful to close the gap between single-group 
CFA where these estimation methods are widely used 
and multiple-group CFA for which most researchers 
still use ML estimation irrespective of the nature of the 
data (Koh & Zumbo, 2008). Second, further software 
development is also needed. We applaud the goal of the 
developers of the lavaan package to implement 
techniques available in commercial package. We believe 
that functions that are missing in the present version 
(0.5-16), e.g. theta-parameterization, will further 
increase the utility and adoption of this package.  

We hope that the present manuscript showing 
how measurement invariance studies can be 
implemented in the open-source software R, will be 
useful to other researchers working with latent 
variables who want to performing such analysis. 
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Appendix R Script 

 
# 1. Install / load packages 
#install.packages(c("lavaan", "semTools", "semPlot", "ggplot2")) 
 
library(lavaan) 
library(semPlot) 
library(semTools) 
options(width = 22) 
 
setwd("/Users/gerrit/Documents/Forschung/31_MG-CFA/1_Intro_paper/1_analysis") 
 
data(HolzingerSwineford1939) 
str(HolzingerSwineford1939) 
 
model <- ' 
visual =~ x1 + x2 + x3 
textual =~ x4 + x5 + x6 
speed =~ x7 + x8 + x9 
' 
 
fit <- cfa(model, data=HolzingerSwineford1939) 
summary(fit, standardized = FALSE, fit.measures = TRUE) 
moreFitIndices(fit) 
semPaths(fit, rotation = 2, layout = "tree2", nCharNodes = 0, sizeLat = 15, 
sizeLat2 = 7, label.norm = "OOOOO", mar=c(2,6,2,4), curvePivot = TRUE, 
edge.label.cex=1.2, residuals = F) 
dev.print(png, "fig_1_measurement.png", width=6, height=4, res=300, 
units="in") 
 
 
semPaths(fit, "std", rotation = 2, layout = "tree2", nCharNodes = 0, sizeLat 
= 15, sizeLat2 = 7, label.norm = "OOOOO", mar=c(2,6,2,4), curvePivot = TRUE, 
edge.label.cex=1.2, residuals = F) 
 
dev.print(png, "fig_2_cfa.png", width=8, height=4, res=300, units="in") 
 
 
#Multiple Group CFA 
config <- cfa(model, data=HolzingerSwineford1939, group="school") 
weak <- cfa(model, data=HolzingerSwineford1939, group="school", 
group.equal="loadings") 
strong<- cfa(model, data=HolzingerSwineford1939, group="school", group.equal 
= c("loadings", "intercepts")) 
strict<- cfa(model, data=HolzingerSwineford1939, group="school", group.equal 
= c("loadings", "intercepts", "residuals")) 
anova(config, weak, strong, strict) 
measurementInvariance(model, data=HolzingerSwineford1939, group="school", 
strict=TRUE) 
 
mod_strong<-modificationIndices(strong) 
mod_strong[mod_strong$op == "~1",] 
 
measurementInvariance(model, data=HolzingerSwineford1939, group="school", 
group.partial = c("x3 ~1")) 
measurementInvariance(model, data=HolzingerSwineford1939, group="school", 
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group.partial = c("x3 ~1", "x7 ~1", "x3 ~~ x3", "x7 ~~x7"), strict = TRUE) 
 
 
# Example 2: Categorical indicators 
 
#download.file("http://personality-testing.info/_rawdata/SCS.zip","SCS.zip") 
unzip("SCS.zip") 
scs <- read.csv("SCS/data.csv") 
scs <- subset(scs, gender == "1" | gender == "2") 
 
scs_model <- ' 
scs =~ Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7 + Q8 + Q9 + Q10 
' 
 
scs_model_fit <- cfa(scs_model, ordered = c("Q1", "Q2", "Q3", "Q4", "Q5", 
"Q6", "Q7", "Q8", "Q9", "Q10"), data=scs)  
summary(scs_model_fit, fit.measures = TRUE) 
semPaths(scs_model_fit, "std", rotation = 2, layout = "tree2", nCharNodes = 
0, sizeLat = 15, sizeLat2 = 7, label.norm = "OOOOO", mar=c(2,-4,2,4), 
curvePivot = TRUE, edge.label.cex=1.2, residuals = FALSE, thresholds = FALSE) 
 
dev.print(png, "fig_3_scs.png", width=8, height=4, res=300, units="in") 
 
 
scs_model_config <- cfa(scs_model, ordered = c("Q1", "Q2", "Q3", "Q4", "Q5", 
"Q6", "Q7", "Q8", "Q9", "Q10"), group = "gender", data=scs) 
scs_model_weak <- cfa(scs_model, ordered = c("Q1", "Q2", "Q3", "Q4", "Q5", 
"Q6", "Q7", "Q8", "Q9", "Q10"), group = "gender", group.equal = 
c("loadings"), data=scs) 
semTools:::difftest(scs_model_config, scs_model_weak) 
 
scs_model_strong <- cfa(scs_model, ordered = c("Q1", "Q2", "Q3", "Q4", "Q5", 
"Q6", "Q7", "Q8", "Q9", "Q10"), group = "gender", group.equal = c("loadings", 
"thresholds"), data=scs) 
semTools:::difftest(scs_model_weak, scs_model_strong) 
 
measurementInvariance(scs_model, data=scs, group="gender", strict=TRUE)  
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