
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

Spring March 2015

Universal Schema for Knowledge Representation from Text and Universal Schema for Knowledge Representation from Text and

Structured Data Structured Data

Limin Yao
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Data Storage Systems Commons

Recommended Citation Recommended Citation
Yao, Limin, "Universal Schema for Knowledge Representation from Text and Structured Data" (2015).
Doctoral Dissertations. 338.
https://doi.org/10.7275/6458477.0 https://scholarworks.umass.edu/dissertations_2/338

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

founded

Microsoft was
founded by Bill Gates ...

personcompany

nation

country

With Microsoft chairman
Bill Gates soon relinquishing...

Bill Gates was
born in the USA in 1955

1

nationof

Elevation Partners , was
founded by Roger McNamee ...

Roger McNamee ,USA

Yrel

Z1

person

R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee ,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners , was
founded by Roger McNamee ...

Elevation Partners , was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identiÞcation.

Þne the following conditional distribution:

p(y |x) =
1

Zx

!

Tj ! T

!

(y i ,x i)! Tj

e
P K j

k =1 ! j
k f j

k (y i ,x i) (3)

In our case the setT consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simpliÞes the construction process, as well as
inference and learning.

3.1.1 Bias Template

We use a bias templateTBias that prefers certain
relations a priori over others. When the template is
unrolled, it creates one factor per variableYcfor can-
didate tuplec and one weight! Bias

r and feature func-
tion f Bias

r for each possible relationr . f Bias
r Þres if

the relation associated with tuplec is r .

3.1.2 Mention Template

In order to extract relations from text, we need to
model the correlation between relation instances and
their mentions in text. For this purpose we deÞne
the mention templateTMen that connects each rela-
tion instance variableYc with its observed variables
mention variablesX M c .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modiÞca-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

f Men
101 (yc , xM c) def=

"
#$

#%

1 yc = founder !
m1", director of "m2 " xM c

0 otherwise

.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuplec and extract features from all of these.

3.1.3 Selectional Preference Templates

To capture the correlations between entity types
and the relations the entities participate in, we in-
troduce the joint templateTJoint. It connects a re-
lation instance variableYe1,...,ea to the entity type
variablesYe1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one featuref Joint

r,t 1 ...t a
(and weight! Joint

r,t 1 ...t a
) for each

combination of relation and entity typesr, t 1 . . . ta.
The feature Þres when the variables are in the
state r, t 1 . . . ta. After training we would expect
a weight ! Joint

founder ,person ,company to be larger than
! Joint

founder ,person ,country .
We also add a templateTPair that measures the

compability betweenYe1,...,ea and eachYei in iso-
lation. Here we use featuresf P air

i,r,t that Þre ifei is

1

nationof

Elevation Partners , was
founded by Roger McNamee ...

Roger McNamee ,USA

Yrel

Z1

person

R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee ,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners , was
founded by Roger McNamee ...

Elevation Partners , was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identiÞcation.

Þne the following conditional distribution:

p(y |x) =
1

Zx

!

Tj ! T

!

(y i ,x i)! Tj

e
P K j

k =1 ! j
k f j

k (y i ,x i) (3)

In our case the setT consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simpliÞes the construction process, as well as
inference and learning.

3.1.1 Bias Template

We use a bias templateTBias that prefers certain
relations a priori over others. When the template is
unrolled, it creates one factor per variableYcfor can-
didate tuplec and one weight! Bias

r and feature func-
tion f Bias

r for each possible relationr . f Bias
r Þres if

the relation associated with tuplec is r .

3.1.2 Mention Template

In order to extract relations from text, we need to
model the correlation between relation instances and
their mentions in text. For this purpose we deÞne
the mention templateTMen that connects each rela-
tion instance variableYc with its observed variables
mention variablesX M c .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modiÞca-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

f Men
101 (yc , xM c) def=

"
#$

#%

1 yc = founder !
m1", director of "m2 " xM c

0 otherwise

.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuplec and extract features from all of these.

3.1.3 Selectional Preference Templates

To capture the correlations between entity types
and the relations the entities participate in, we in-
troduce the joint templateTJoint. It connects a re-
lation instance variableYe1,...,ea to the entity type
variablesYe1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one featuref Joint

r,t 1 ...t a
(and weight! Joint

r,t 1 ...t a
) for each

combination of relation and entity typesr, t 1 . . . ta.
The feature Þres when the variables are in the
state r, t 1 . . . ta. After training we would expect
a weight ! Joint

founder ,person ,company to be larger than
! Joint

founder ,person ,country .
We also add a templateTPair that measures the

compability betweenYe1,...,ea and eachYei in iso-
lation. Here we use featuresf P air

i,r,t that Þre ifei is

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

nationality . When testing our model we then
encounter a sentence such as

(3) Arrest Warrant Issued forRichard Gere in
India .

that leads us to extract that RICHARD GERE is a cit-
izen of INDIA .

2.6 Global Consistency of Facts

As discussed above, distant supervision can lead to
noisy extractions. However, such noise can often be
easily identiÞed by testing how compatible the ex-
tracted facts are to each other. In this work we are
concerned with a particular type of compatibility:
selectional preferences.

Relations require, or prefer, their arguments to be
of certain types. For example, thenationality
relation requires the Þrst argument to be aperson ,
and the second to be acountry . On inspection,
we Þnd that these preferences are often not satis-
Þed in a baseline distant supervision system akin to
Mintz et al. (2009). This often results from patterns
such as Ò<Entity1> in <Entity2>Ó that Þre in many
cases where <Entity2> is alocation , but not a
country .

3 Model

Our observations in the previous section suggest
that we should (a) explicitly model compatibil-
ity between extracted facts, and (b) integrate ev-
idence from several documents to exploit redun-
dancy. In this work we choose a Conditional Ran-
dom Field (CRF) to achieve this. CRFs are a natural
Þt for this task: They allow us to capture correlations
in an explicit fashion, and to incorporate overlapping
input features from multiple documents.

The hidden output variables of our model areY =
(Yc)c! C . That is, we have one variableYc for each
candidate tuplec ! C . This variable can take as
value any relation inC with the same arity asc. See
example relation variables in Þgure 1.

The observed input variablesX consists of a fam-
ily of variablesX c =

!
X 1

c, . . . X m
c

"
m! M for each

candidate tuplec. HereX i
c stores relevant observa-

tions we make for thei -th candidate mention tuple of
c in the corpus. For example,X 1

BILL GATES,MICROSOFT

in Þgure 1 would contain, among others, the pattern
Ò[M2] was founded by [M1]Ó.

3.1 Factor Templates

Our conditional probability distribution over vari-
ablesX and Y is deÞned using using a setT of
factor templates. Each templateTj ! T deÞnes
a set of factors{ (y i , x i)} , a setK j of feature in-

dices, parameters
#

! j
k

$

k! K j

and feature functions
#

f j
k

$

k! K j

. Together they deÞne the following con-

ditional distribution:

p(y |x) =
1

Zx

%

Tj ! T

%

(y i ,x i)! Tj

e
P

k ! K j
! j

k f j
k (y i ,x i)

(4)
In our case the setT consists of four templates

we will describe below. We construct this graphical
model using FACTORIE (McCallum et al., 2009), a
probabilistic programming language that simpliÞes
the construction process, as well as inference and
learning.

3.1.1 Bias Template

We use a bias templateTBias that prefers certain
relationsa priori over others. When the template
is unrolled, it creates one factor per variableYc for
candidate tuplec ! C. The template also consists of
one weight! Bias

r and feature functionf Bias
r for each

possible relationr . f Bias
r Þres if the relation associ-

ated with tuplec is r .

3.1.2 Mention Template

In order to extract relations from text, we need
to model the correlation between relation instances
and their mentions in text. For this purpose we de-
Þne the templateTMention that connects each relation
instance variableYc with its observed mention vari-
ablesX c. Crucially, this template gathers mentions
from multiple documents, and enables us to exploit
redundancy.

The feature functions of this template are taken
from Mintz et al. (2009). This includes features that
inspect the lexical content between entity mentions
in the same sentence, and the syntactic path between
them. One example is

f Men
101 (yc, xc) def=

&
'(

')

1 yc = founded " # i with

"M2 was founded by M1"! x i
c

0 otherwise

.

founder

Microsoft was
founded by Bill Gates ...

personcompany

nationality

country

With Microsoft chairman
Bill Gates soon relinquishing...

Bill Gates was
born in the USA in 1955

1

nationof

Elevation Partners , was
founded by Roger McNamee ...

Roger McNamee ,USA

Yrel

Z1

person

R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee ,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners , was
founded by Roger McNamee ...

Elevation Partners , was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identiÞcation.

Þne the following conditional distribution:

p(y |x) =
1

Zx

!

Tj ! T

!

(y i ,x i)! Tj

e
P K j

k =1 ! j
k f j

k (y i ,x i) (3)

In our case the setT consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simpliÞes the construction process, as well as
inference and learning.

3.1.1 Bias Template

We use a bias templateTBias that prefers certain
relations a priori over others. When the template is
unrolled, it creates one factor per variableYcfor can-
didate tuplec and one weight! Bias

r and feature func-
tion f Bias

r for each possible relationr . f Bias
r Þres if

the relation associated with tuplec is r .

3.1.2 Mention Template

In order to extract relations from text, we need to
model the correlation between relation instances and
their mentions in text. For this purpose we deÞne
the mention templateTMen that connects each rela-
tion instance variableYc with its observed variables
mention variablesX M c .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modiÞca-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

f Men
101 (yc , xM c) def=

"
#$

#%

1 yc = founder !
m1", director of "m2 " xM c

0 otherwise

.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuplec and extract features from all of these.

3.1.3 Selectional Preference Templates

To capture the correlations between entity types
and the relations the entities participate in, we in-
troduce the joint templateTJoint. It connects a re-
lation instance variableYe1,...,ea to the entity type
variablesYe1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one featuref Joint

r,t 1 ...t a
(and weight! Joint

r,t 1 ...t a
) for each

combination of relation and entity typesr, t 1 . . . ta.
The feature Þres when the variables are in the
state r, t 1 . . . ta. After training we would expect
a weight ! Joint

founder ,person ,company to be larger than
! Joint

founder ,person ,country .
We also add a templateTPair that measures the

compability betweenYe1,...,ea and eachYei in iso-
lation. Here we use featuresf P air

i,r,t that Þre ifei is

1

nationof

Elevation Partners , was
founded by Roger McNamee ...

Roger McNamee ,USA

Yrel

Z1

person

R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee ,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners , was
founded by Roger McNamee ...

Elevation Partners , was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identiÞcation.

Þne the following conditional distribution:

p(y |x) =
1

Zx

!

Tj ! T

!

(y i ,x i)! Tj

e
P K j

k =1 ! j
k f j

k (y i ,x i) (3)

In our case the setT consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simpliÞes the construction process, as well as
inference and learning.

3.1.1 Bias Template

We use a bias templateTBias that prefers certain
relations a priori over others. When the template is
unrolled, it creates one factor per variableYcfor can-
didate tuplec and one weight! Bias

r and feature func-
tion f Bias

r for each possible relationr . f Bias
r Þres if

the relation associated with tuplec is r .

3.1.2 Mention Template

In order to extract relations from text, we need to
model the correlation between relation instances and
their mentions in text. For this purpose we deÞne
the mention templateTMen that connects each rela-
tion instance variableYc with its observed variables
mention variablesX M c .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modiÞca-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

f Men
101 (yc , xM c) def=

"
#$

#%

1 yc = founder !
m1", director of "m2 " xM c

0 otherwise

.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuplec and extract features from all of these.

3.1.3 Selectional Preference Templates

To capture the correlations between entity types
and the relations the entities participate in, we in-
troduce the joint templateTJoint. It connects a re-
lation instance variableYe1,...,ea to the entity type
variablesYe1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one featuref Joint

r,t 1 ...t a
(and weight! Joint

r,t 1 ...t a
) for each

combination of relation and entity typesr, t 1 . . . ta.
The feature Þres when the variables are in the
state r, t 1 . . . ta. After training we would expect
a weight ! Joint

founder ,person ,company to be larger than
! Joint

founder ,person ,country .
We also add a templateTPair that measures the

compability betweenYe1,...,ea and eachYei in iso-
lation. Here we use featuresf P air

i,r,t that Þre ifei is

1

nationof

Elevation Partners , was
founded by Roger McNamee ...

Roger McNamee ,USA

Yrel

Z1

person

R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee ,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners , was
founded by Roger McNamee ...

Elevation Partners , was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identiÞcation.

Þne the following conditional distribution:

p(y |x) =
1

Zx

!

Tj ! T

!

(y i ,x i)! Tj

e
P K j

k =1 ! j
k f j

k (y i ,x i) (3)

In our case the setT consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simpliÞes the construction process, as well as
inference and learning.

3.1.1 Bias Template

We use a bias templateTBias that prefers certain
relations a priori over others. When the template is
unrolled, it creates one factor per variableYcfor can-
didate tuplec and one weight! Bias

r and feature func-
tion f Bias

r for each possible relationr . f Bias
r Þres if

the relation associated with tuplec is r .

3.1.2 Mention Template

In order to extract relations from text, we need to
model the correlation between relation instances and
their mentions in text. For this purpose we deÞne
the mention templateTMen that connects each rela-
tion instance variableYc with its observed variables
mention variablesX M c .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modiÞca-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

f Men
101 (yc , xM c) def=

"
#$

#%

1 yc = founder !
m1", director of "m2 " xM c

0 otherwise

.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuplec and extract features from all of these.

3.1.3 Selectional Preference Templates

To capture the correlations between entity types
and the relations the entities participate in, we in-
troduce the joint templateTJoint. It connects a re-
lation instance variableYe1,...,ea to the entity type
variablesYe1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one featuref Joint

r,t 1 ...t a
(and weight! Joint

r,t 1 ...t a
) for each

combination of relation and entity typesr, t 1 . . . ta.
The feature Þres when the variables are in the
state r, t 1 . . . ta. After training we would expect
a weight ! Joint

founder ,person ,company to be larger than
! Joint

founder ,person ,country .
We also add a templateTPair that measures the

compability betweenYe1,...,ea and eachYei in iso-
lation. Here we use featuresf P air

i,r,t that Þre ifei is

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

g(,) ! DKL (||)

g () = log
!
1 ! µi + µi e! i

"
! µi e! i

. . . + w" f " (y , y , y) + . . .

> 0

= max
y! ,y ! ,y !

f "
!
y! , y! , y! "

< max
y! ,y ! ,y !

f "
!
y! , y! , y! "

! 1 (y5,7, ; x) = exp (. . . + w f (y ; x) + . . .)

! (yi,j ; x) = exp

#
$

k

wk f k (yi,j ; x)

%

p(y ; x) =
1

Zx
" 1 (y ; x) á. . . á" n (y ; x)

log E [" i] ! µi

" i (y ; x) = exp (! i " i (y ; x))

µi = E [" i]

Y

Y

Y

Y

Y

X 1

X 2

Figure 1: Factor Graph of our model that captures selectional preferences and functionality constraints. For
readability we only label a subsets of equivalent variables and factors. Note that the graph shows an example
assignment to variables.

It tests whether for any mentions of the candidate
tuple the phrase "founded by" appears between the
mentions of the argument entities.

3.1.3 Selectional Preferences Templates

To capture the correlations between entity types
and relations the entities participate in, we introduce
the templateTJoint. It connects a relation instance
variableYe1,...,en to the individual entity type vari-
ablesYe1 , . . . , Yen . To measure the compatibility
between relation and entity variables, we use one
featuref Joint

r,t 1 ...t a
(and weight! Joint

r,t 1 ...t a
) for each com-

bination of relation and entity typesr, t 1 . . . ta.

f Joint
r,t 1 ...t a

Þres when the factor variables are in the
stater, t 1 . . . ta. For example,f Joint

founded,person ,company
Þres ifYe1 is in stateperson , Ye2 in statecompany ,
andYe1,e2 in statefounded .

We also add a templateTPair that measures the
pairwise compatibility between the relation variable
Ye1,...,ea and each entity variableYei in isolation.
Here we use featuresf Pair

i,r,t that Þre ifei is thei -th ar-
gument ofc, has the entity typet and the candidate
tuplec is labelled as instance of relationr . For ex-
ample,f Pair

1,founded,person Þres ifYe1 (argumenti = 1)
is in stateperson , andYe1,e2 in statefounded, re-
gardless of the state ofYe2 .

X 1
BILL GATES,USA

3.2 Inference

There are two types of inference we have to perform:
sampling from the posterior during training (see sec-
tion 3.3), and Þnding the most likely conÞguration
(aka MAP inference). In both settings we employ a
Gibbs sampler (Geman and Geman, 1990) that ran-
domly picks a variableYc and samples its relation
value conditioned on its Markov Blanket. At test
time we decrease the temperature of our sampler in
order to Þnd an approximation of the MAP solution.

3.3 Training

Most learning methods need to calculate the model
expectations (Lafferty et al., 2001) or the MAP con-
Þguration (Collins, 2002) before making an update
to the parameters. This step of inference is usually
the bottleneck for learning, even when performed
approximately.

SampleRank (Wick et al., 2009) is a rank-based
learning framework that alleviates this problem by
performing parameter updateswithin MCMC infer-
ence. Every pair of consecutive samples in the
MCMC chain is ranked according to the model and
the ground truth, and the parameters are updated
when the rankings disagree. This update can fol-
low different schemes, here we use MIRA (Cram-
mer and Singer, 2003). This allows the learner to
acquire more supervision per instance, and has led
to efÞcient training for models in which inference

Figure 3.5. Factor Graph of our model that captures selectional preferences and
functionality constraints. For readability we only label a subsets of equivalent vari-
ables and factors. Note that the graph shows an example assignment to variables

average precision by 4%. However, it does not outperform a pipelined system. In

the out-of-domain setting, our collective model substantially outperforms both other

approaches. Compared to the isolated baseline, we achieve a 15% increase in precision.

With respect to the pipeline approach, the increase is 13%.

3.3.1 Model

In this section we describe our approach. It is based on Conditional Random

Field (CRF), represented as factor graphs, in which variables correspond to entity

types and relation types, and factors between them measure compatibility. CRFs are

a natural fit for this task: they allow us to capture correlations in an explicit fashion,

and to incorporate overlapping input features from multiple documents.

Figure 3.5 shows the factor graph of our model. The hidden output variables

of our model are Ys. We have one relation variable for each candidate tuple, and

one entity variable for each entity. Relation variables can take values from the set

19

of relation types, while entity variables take values from the set of entity types. See

example relation variables in figure 3.5.

The observed input variables X consist of a family of variables for each candidate

tuple. Each candidate tuple may have multiple relation mentions. Each variable

stores relevant observations we make for the i-th candidate relation mention in the

corpus. For example, X1
Bill Gates,Microsoft in figure 3.5 would contain the pattern

“[M2] was founded by [M1].”

Our conditional probability distribution over variables X and Y is defined using

a set T of factor templates. Each template Tj ∈ T defines a set of factors {(yi,xi)},

a set Kj of feature indices, parameters
{
θjk
}
k∈Kj and feature functions

{
f jk
}
k∈Kj .

Together they define the following conditional distribution:

p (y|x) =
1

Zx

∏

Tj∈T

∏

(yi,xi)∈Tj

e
P
k∈Kj θ

j
kf
j
k(yi,xi) (3.1)

In our case the set T consists of four templates we will describe below. We

construct this graphical model using FACTORIE [McCallum et al., 2009].

Bias Template. We use a bias template TBias that prefers certain relations a priori

over others. When the template is unrolled, it creates one factor per variable Yc for

candidate tuple c ∈ C. The template also consists of one weight θBias
r and feature

function fBias
r for each possible relation r. fBias

r fires if the relation associated with

tuple c is r.

Mention Template. In order to extract relations from text, we need to model the

correlation between relation instances and their mentions in text. For this purpose

we define the template TMen that connects each relation instance variable Yc with

its observed mention variables Xc. Crucially, this template gathers mentions from

multiple documents, and enables us to exploit redundancy.

The feature functions of this template are taken from Mintz et al. [2009]. This

includes features that inspect the lexical content between entity mentions in the same

20

sentence, and the syntactic path between them. One example is

fMen
101 (yc,xc)

def
=





1 yc = founded ∧ ∃i with

“M2 was founded by M1” ∈ xic

0 otherwise

.

It tests whether for any mentions of the candidate tuple the phrase “founded by”

appears between the mentions of the argument entities.

Selectional Preferences Templates. To capture the correlations between entity

types and relations the entities participate in, we introduce the template TJoint. It

connects a relation instance variable Ye1,...,en to the individual entity type variables

Ye1 , . . . , Yen . To measure the compatibility between relation and entity variables, we

use one feature fJoint
r,t1...ta

(and weight θJoint
r,t1...ta

) for each combination of relation and entity

types r, t1 . . . ta.

fJoint
r,t1...ta

fires when the factor variables are in the state r, t1 . . . ta. For example,

fJoint
founded,person,company fires if Ye1 is in state person, Ye2 in state company, and Ye1,e2 in

state founded.

We also add a template TPair that measures the pairwise compatibility between

the relation variable Ye1,...,ea and each entity variable Yei in isolation. Here we use

features fPair
i,r,t that fire if ei is the i-th argument of c, has the entity type t and the

candidate tuple c is labelled as instance of relation r. For example, fPair
1,founded,person

fires if Ye1(argument i = 1) is in state person, and Ye1,e2 in state founded, regardless

of the state of Ye2 .

3.3.2 Learning and Inference

Most learning methods need to calculate the model expectations [Lafferty et al.,

2001] or the MAP configuration [Collins, 2002] before making an update to the pa-

21

rameters. This step of inference is usually the bottleneck for learning, even when

performed approximately.

SampleRank [Wick et al., 2009] is a rank-based learning framework that allevi-

ates this problem by performing parameter updates within MCMC inference. Every

pair of consecutive samples in the MCMC chain is ranked according to the model

and the ground truth, and the parameters are updated when the rankings disagree.

This update can follow different schemes, here we use MIRA [Crammer and Singer,

2003]. This allows the learner to acquire more supervision per instance, and has

led to efficient training for models in which inference is expensive and generally in-

tractable [Singh et al., 2009].

There are two types of inference we have to perform: sampling from the posterior

during training, and finding the most likely configuration (aka MAP inference). In

both settings we employ a Gibbs sampler [Geman and Geman, 1990] that randomly

picks a variable Yc and samples its relation value conditioned on its Markov blan-

ket. At test time we decrease the temperature of our sampler in order to find an

approximation of the MAP solution.

3.3.3 Experiments

We set up experiments to answer the following questions: (i) Does the explicit

modeling of selectional preferences improve accuracy? (ii) Can we also perform entity

and relation extraction in a pipeline and achieve similar results?

We carry out experiments on two data sets, Wikipedia and New York Times

articles, and use Freebase as distant supervision source for both. For briefness, I only

report the results on New York Times data. Our experimental setting is the same as

described in §3.2.2.

For both training and testing we then choose the candidate tuples that may or

may not be relation instances. To pick the entities we want to predict entity types

22

for, we choose all entities that are mentioned at least once in the train/test corpus.

To pick the entity pairs that we want to predict the relations of, we choose those that

appear at least once together in a sentence.

Since many tuples are not covered in Freebase, for efficiency, we filter out a large

fraction of these negative candidates for training. The number of negative examples

we keep is chosen to be about 10 times the number of positive candidates.

We carry out manual and held-out evaluation. For both evaluation, we rank

extracted test relation instances in the MAP state of the network. For manual eval-

uation we pick the top ranked 50 relation instances for the most frequent relations

and ask three annotators to inspect the mentions of these relation instances to decide

whether they are correct. Upon disagreement, we use the majority vote. To sum-

marize precisions across relations, we take the average of all relations, and also the

average weighted by the proportion of predicted instances for the given relation.

We compare our joint approach against the distant supervision approach [Mintz

et al., 2009] and a pipeline approach. For the pipeline approach, we first train an

isolated system for entity type prediction. Then we use the output of this system as

input for the relation extraction system.

We apply the following configurations of our factor graphs. As our baseline,

and roughly equivalent to previous work [Mintz et al., 2009], we pick the templates

TBias and TMen. These describe a fully disconnected graph, and we will refer to this

configuration as isolated. Next, we add the templates TJoint to model selectional

preferences, and refer to this setting as joint.

In addition, we evaluate how well selectional preferences can be captured with a

simple pipeline.

Freebase contains many relation types and only a subset of those relation types

occur frequently in the corpus. Since classes with few training instances are generally

hard to learn, we restrict ourselves to the 54 most frequently mentioned relations.

23

These include, for example, nationality, contains, founded and place of birth.

Note that we convert two Freebase non-binary temporal relations to binary relations:

employment tenure and place lived. In both cases we simply disregard the tem-

poral information in the Freebase data.

As our main focus is relation extraction, we restrict ourselves to entity types

compatible with our selected relations. To this end we inspect the Freebase schema

information provided for each relation, and include those entity types that are de-

clared as arguments of our relations. This leads to 10 entity types including person,

citytown, country, and company.

Note that a Freebase entity can have several types. We pick one of these by

choosing the most specific one that is a member of our entity type subset, or MISC if

no such member exists.

3.3.3.1 Wikipedia data

In our first set of experiments we train and test using Wikipedia as the text corpus.

This is a comparatively easy scenario because the facts in Freebase are partly derived

from Wikipedia, hence there is an increased chance of properly aligning training facts

and text. This is similar to the setting of Mintz et al. [2009].

Held Out Evaluation. We split 1,300,000 Wikipedia articles into training and test

sets. Table 3.1 shows the statistics for this split. The last row provides the number of

negative relation instances (candidates which are not related according to Freebase)

associated with each data set.

Figure 3.6 shows the precision-recall curves of relation extraction for held-out data

of various configurations. We notice a slight advantage of the joint approach in the

low recall area. Moreover, the joint model predicts more relation instances, as can be

seen by its longer line in the graph.

24

Wikipedia NYT
Train Test Train Test

#Documents 900K 400K 177K 39K
#Entities 213K 137K 56K 27K
#Positive 36K 24K 5K 2K
#Negative 219K 590K 64K 94K

Table 3.1. The statistics of held-out evaluation on Wikipedia and New York Times

0.0 0.1 0.2 0.3 0.4

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Recall

P
re
ci
si
on

joint
pipe
isolated

Figure 3.6. Precision-recall curves for various setups in Wikipedia held-out setting

For higher recall, the joint model performs slightly worse. On closer inspection,

we find that this observation is somewhat misleading. Many of the predictions of the

joint model are not in the held-out test set derived from Freebase, but nevertheless

correct. Hence, to understand if one system really outperforms another, we need to

rely on manual evaluation.

Note that the figure only considers binary relations—for entity types all configu-

rations perform similarly.

Manual Evaluation. As mentioned above, held-out evaluation in this context suffers

from false negatives in Freebase. Table 3.2 therefore shows the results of our manual

evaluation. They are based on the average, and weighted average, of the precisions for

the relation instances of the most frequent relations. We notice that here all systems

25

Isolated Pipeline Joint
Wikipedia 0.82 0.87 0.86
Wiki (w) 0.95 0.94 0.95
NYT 0.63 0.65 0.78
NYT (w) 0.78 0.82 0.94

Table 3.2. Average and weighted (w) average precision over frequent relations for
New York Times and Wikipedia data, based on manual evaluation

perform comparably for weighted average precision. For average precision we see an

advantage for both the pipeline and the joint model over the isolated system.

One reason for similar weighted average precisions is the fact that all approaches

accurately predict a large number of contains instances. This is due to very regular

and simple patterns in Wikipedia. For example, most articles on towns start with

“A is a municipality in the district of B in C, D.” For these sentences, the relative

position of two location mentions is a very good predictor of contains. When used

as a feature, it leads to high precision for all models. And since contains instances

are most frequent, and we take the weighted average, results are generally close to

each other.

To summarize: in this in-domain setting, modelling compatibility between entity

types and relations helps to improve average precision, but not weighted average

precision. This holds for both the joint and the pipeline model. However, we will see

how this changes substantially when moving to an out-of-domain scenario.

3.3.3.2 New York Times data

We choose all articles of the New York times during 2005 and 2006 as training

corpus. As test corpus we use the first 6 months of 2007.

Figure 3.7 shows precision-recall curves for our various setups. We see that jointly

modelling entity types and relations helps improve precision.

26

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re
ci
si
on

joint
pipe
isolated

Figure 3.7. Precision-recall curves for isolated, pipeline and joint approaches in
New York Times held-out setting

Due to the smaller overlap between Freebase and NYT data, figure 3.7 also has

to be taken with more caution. The systems may predict correct relation instances

that just do not appear in Freebase. In this case manual evaluation is even more

important.

When evaluating entity precision we find that for both models it is about 84%.

This raises the question why the joint entity type and relation extraction model

outperforms the pipeline on relations. We take a close look at the entities that

participate in relations and find that the joint model performs better on most entity

types, for example, country and citytown. We also look at the relation instances

that are predicted by both systems and find that the joint model does predict correct

entity types when the pipeline mis-predicts. In fact, exactly these mis-predictions lead

the pipeline astray. Considering binary relation instances where the pipeline fails but

the joint model does not, we observe an entity precision of 76% for the pipeline and

27

Relation Type Iso. Pipe Joint
contains 0.92 0.98 0.96

nationality 0.28 0.64 0.82
plc lived 0.88 0.70 0.96
plc of birth 0.32 0.20 0.25
works for 0.96 0.98 0.98

plc of death 0.24 0.40 0.42
children 1.00 0.92 0.98
founded 0.42 0.34 0.71

Avg 0.63 0.65 0.78
Avg(w) 0.78 0.82 0.94

Table 3.3. Precision@50 for the most frequent relations on New York Times

86% for our joint approach. The joint model fails to correctly predict some entity

types that the pipeline gets right, but these tend to appear in contexts where relation

instances are easy to extract without considering entity types.2

Manually evaluated precision for New York Times data can be seen in Table

3.3. We can see that modelling entity types and relations jointly makes significant

improvement over the baselines. For average precision, our joint model improves over

the isolated baseline by 15%, and over the pipeline by 13%. Similar improvements

can be observed for weighted average precision.

Let us look at a break-down of precisions with respect to different relations shown

in Table 3.3. We see dramatic improvements for nationality and founded when

applying the joint model. Note that the nationality relation takes a larger part in

the predicted relation instances of the joint model and hence contributes significantly

to the weighted average precision.

The algorithm is scalable, and the running time is linear in the number of docu-

ments.

2Note that our learned preferences are soft, and hence can be violated in case of wrong entity
type predictions.

28

