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ABSTRACT 

INVESTIGATING THE PREDICTIVE VALIDITY OF  

THREE MEASURES OF NUMBER SENSE 

May 2015 
 

BETHANY C. POLITYLO, B.S., UTICA COLLEGE 
 

M.Ed., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by:  Amanda M. Marcotte, Ph.D. 
 

Number sense has been identified as an important foundational skill in the development 

of later mathematics competence.  Although number sense has historically been difficult 

to define in the educational literature, operational definitions of the construct typically 

consist of a collection of early numeracy skills or “number sense components” such as 

quantity discrimination, rote counting, and one-to-one correspondence.  Consequently, 

assessments of number sense tend to measure a wide variety of these skills.  The purpose 

of this study was to investigate the predictive validity of three measures of number sense:  

the Test of Early Numeracy (TEN), Number Sense Brief Screener (NSB), and Early 

Numeracy Test (ENT).  This study also sought to identify which measure or combination 

of measures best predicted later mathematics achievement, as measured by the Test of 

Early Mathematics Ability, Third Edition (TEMA-3).  Number sense assessments were 

administered to participants at kindergarten entry and the TEMA-3 was administered at 

the end of kindergarten.  Data were analyzed using simple linear regression analyses, 

multiple regression analyses, and a procedure for comparing dependent correlations.  

Evidence for the predictive validity of each number sense measure was demonstrated; 
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however, statistically, no number sense measure emerged as the best predictor of later 

mathematics achievement.  The combination of the NSB with either the TEN or the ENT 

explained variation in TEMA-3 scores better than the NSB alone, but this finding may 

not be of clinical importance.  The concurrent and predictive validities of teacher rating 

of student number sense were also examined.  Results indicated that the TEN, NSB, and 

ENT all predicted TEMA-3 scores better than teacher rating of student number sense in 

the fall.  Teacher rating of student number sense in the spring explained 42% of variation 

in TEMA-3 scores.  Implications for practice and directions for future research are 

discussed. 
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CHAPTER 1 
 

STATEMENT OF THE PROBLEM 

Mathematics performance in the United States has suffered over the last several 

decades.  International statistics show that students in the U.S. perform well below that of 

other countries on mathematics achievement tests, and in addition, national statistics 

reveal that U.S. students are not currently making significant gains in mathematics (Kelly 

et al., 2013; National Center for Education Statistics [NCES], 2013; Provasnik et al., 

2012).  Although this poor performance is discouraging, it has served to draw attention 

toward the field of mathematics education and the importance of foundational 

mathematics skills.  Among the foundational skills found to be critical in the attainment 

of mathematics achievement is the faculty of number sense, which both the National 

Council of Teachers of Mathematics (2000) and the National Mathematics Advisory 

Panel (2008) have highlighted as a vital prerequisite to later success in mathematics.  A 

well-developed number sense allows students to understand number facts and algorithms 

more quickly, recognize errors, and ultimately perform mathematical computations with 

greater ease.  Several measures have been developed to assess the construct of number 

sense, and this study examined the predictive validity of three of the more widely used 

measures of number sense:  the Test of Early Numeracy (TEN; Clarke & Shinn, 2004b), 

the Number Sense Brief Screener (NSB; Jordan, Glutting, & Ramineni, 2008), and the 

Early Numeracy Test (ENT; Van Luit & Van de Rijt, 2005).   

Current State of Mathematics in the United States 

For the past several decades, the field of education has primarily been dominated 

by the research and promotion of all aspects of reading and literacy.  Researchers have 
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worked to identify the foundational skills predictive of later reading achievement, ways 

to assess those necessary skills, and ways to screen for students at risk for later reading 

failure (National Center on Response to Intervention, 2014; National Institute of Child 

Health and Human Development, 2000).  While this unwavering dedication to literacy is 

certainly of great importance, equivalent attention and resources need to be allocated to 

the study of mathematics.  In fact, mathematics researchers would likely benefit from the 

extensive research on reading and literacy, as this work could serve as a useful 

framework for mathematics researchers to focus on and examine effective mathematics 

practice.  This necessary focus on mathematics, however, has not occurred.  As a result, 

the United States is slowly beginning to lose its “peerless mathematical prowess” that 

was once present during the twentieth century (National Mathematics Advisory Panel 

[NMAP], 2008, p. xi).  International statistics clearly show that the U.S. performs well 

below that of other countries on assessments of mathematics achievement, and in 

addition, national statistical trends reveal that U.S. students are not currently making 

significant gains in mathematics (Kelly et al., 2013; NCES, 2013; Provasnik et al., 2012).   

Performance of U.S. students on the 2011 Trends in Mathematics and Science 

Study (TIMSS), which is designed to assess fourth and eighth graders from several 

different countries in mathematics and science, was less than adequate (Provasnik et al., 

2012).  In fourth grade, eight of fifty-seven participating countries outperformed the U.S. 

in mathematics, and U.S. performance was not measurably different from the 

performance of six other countries.  Eleven of fifty-six countries outperformed U.S. 

eighth graders in mathematics, while U.S. performance was not significantly different 

than the performance of twelve other countries.  In addition, the average performance of 
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U.S. eighth graders on the TIMSS in 2011 was not significantly different than average 

performance in 2007 (Provasnik et al., 2012).  Results from the 2012 Programme for 

International Student Assessment (PISA), which is an international test designed to assess 

the achievement of fifteen-year-olds in mathematics, science, and reading, revealed that 

U.S. students continue to struggle in mathematics when they reach high school.  U.S. 

performance on the mathematics portion of the PISA was significantly lower than the 

average performance of international students.  In fact, results indicated that students 

from twenty-seven of the PISA’s sixty-five participating countries outperformed U.S. 

students in the area of mathematics (Kelly et al., 2013).  Moreover, only nine percent of 

U.S. students performed at the top level of proficiency in mathematics on the PISA (in 

contrast, fifty-five percent of students from Shanghai, China performed at the top level) 

(Kelly et al., 2013).  U.S. performance on national mathematics assessments is no less 

concerning.  According to the National Assessment of Educational Progress, fourth grade 

students made no significant gains in mathematics between 2007 and 2009, and have only 

made small gains since 2009 (NCES, 2013).  In 2013, only 42% of students were 

considered proficient in fourth grade mathematics, and in eighth grade, only 35% of 

students were found to be proficient (NCES, 2013).   

Although this unsatisfactory performance is discouraging, it has served to draw 

much-needed attention towards the field of mathematics education.  Much like what has 

already been done with reading, researchers are now beginning to investigate the early 

foundational skills necessary for children to be proficient in mathematics.  These skills, 

as well as the importance of success in mathematics, were highlighted in 2008 as part of 

the Final Report of the National Mathematics Advisory Panel.  
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Importance of Success in Mathematics 

In response to the U.S.’s increasingly poor performance in the area of 

mathematics, President George W. Bush called for the creation of the National 

Mathematics Advisory Panel (NMAP) in 2006.  Members of this panel were instructed to 

recommend ways to “foster greater knowledge of and improved performance in 

mathematics among American students” while using the “best available scientific 

evidence” (NMAP, 2008, p. xiii).  Not only did the members of the panel make 

recommendations regarding the foundational skills, curricula, instructional practices, and 

teacher education necessary for proficiency in mathematics, they also emphasized the 

general importance of mathematics to future success in education and in life.  

Competence in mathematics is vital on both a national and individual level.  

Nationally, retirements and job growth in science, technology, engineering, and 

mathematics (STEM) fields are resulting in an increased demand for individuals with 

expertise in those areas (NMAP, 2008).  Instead of meeting that demand domestically, 

however, the U.S. is relying more and more on the skills of international scientists and 

engineers.  In fact, fewer and fewer U.S. citizens are earning degrees in STEM areas, and 

in turn, the U.S. is failing to produce enough individuals needed to fill the jobs available 

in the fields of science and technology.  According to the NMAP (2008), this outsourcing 

of jobs and dependence on the talent of other countries has threatened the U.S.’s 

economic security, as well as its role as a world leader.  Furthermore, the lack of U.S. 

independence in various STEM fields has most certainly led and will continue to lead to 

the slowing of this nation’s technological advances (NMAP, 2008). 
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Individual success in mathematics is equally as important as success at the 

national level.  Those who complete higher-level mathematics in high school (i.e., 

Algebra II and beyond) are more likely to go to college, graduate from college, and excel 

in the workplace.  For example, the majority of individuals who earn over $40,000 

annually have completed Algebra II or higher in high school (NMAP, 2008).  Students 

who enroll in higher-level mathematics courses in high school are more likely to attend a 

four-year college, and those who complete Algebra II in high school are more than twice 

as likely to graduate from college (NMAP, 2008).  Graduation from college, of course, 

leads to better job opportunities, benefits, and salaries.  Clearly, individual expertise in 

mathematics is of great importance, as it not only leads to personal benefits but will also 

likely lead to success in mathematics and other STEM fields at the national level. 

Defining and Measuring Number Sense 

 Due to the relationship between the completion of Algebra II and later success in 

college and in the workplace, the primary focus of the National Mathematics Advisory 

Panel (2008) was to identify and recommend methods by which educators and 

policymakers could prepare students for entry into and success in high school algebra.  

Members of the panel also recognized that mathematics is a hierarchical subject area, 

where complex skills often build on simpler, more foundational skills.  In order for 

students to be proficient in a higher-level subject like algebra, they must first master early 

arithmetic skills such as the understanding of numbers, fractions, operations, and 

measurement (National Council of Teachers of Mathematics [NCTM], 2000; NMAP, 

2008).  Many of these foundational skills – counting, knowledge of whole numbers, the 

ability to compare quantities, and fluency in basic computations – are taught and acquired 
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as early as preschool and mastered throughout the early elementary grades.  Perhaps most 

prominent among these foundational skills is the critical, yet abstract, faculty of number 

sense.  

Both the National Council of Teachers of Mathematics and the National 

Mathematics Advisory Panel have highlighted number sense as a vital prerequisite to 

success in mathematics (NCTM, 2000; NMAP, 2008).  Students who possess a strong 

sense of number are often better able to understand numbers and their relationships, use a 

variety of problem-solving strategies, recognize errors or impossible solutions, and 

ultimately perform mathematical computations with greater ease.   

For as much as number sense is touted as a critical skill, it has historically been 

poorly defined in the literature (Berch, 2005; Gersten, Jordan, & Flojo, 2005; Mcintosh, 

Reys, & Reys, 1992).  Educational definitions of number sense are often vague and 

overly extensive, containing abstract principles and far too many components.  As 

Gersten et al. (2005) have noted, number sense is a complex, intricate set of skills that 

“no two researchers have defined in precisely the same fashion” (p. 296).  In fact, Berch’s 

(2005) brief review of the literature found approximately thirty different definitions of 

number sense, ranging from the ability to estimate, to the understanding of number 

meanings, to the skill of having a non-algorithmic “feel” for numbers.  The NMAP 

(2008) defines number sense – among other things – as the ability to subitize, count, 

estimate, work with whole numbers and fractions intuitively, understand basic operations, 

and problem solve.  A more recent, comprehensive review of the number sense literature 

found forty studies containing thirty-four different proposed components of number 
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sense, including the ability to compare quantities, identify numbers, and count objects 

(Politylo, White, & Marcotte, 2011).   

While the vague and extensive definitions for number sense make it difficult to 

research, there is a growing consensus that the best way to observe and measure the 

construct is through the assessment of early numeracy skills (Chard et al., 2005; Clarke, 

Baker, Smolkowski, & Chard, 2008; Gersten & Chard, 1999; Lembke & Foegen, 2009).  

Much like phonemic awareness has been operationalized through the measurement of 

skills such as blending and segmenting the sounds of oral language, number sense has 

begun to be operationalized through the assessment of skills and behaviors that may 

represent the latent construct (Gersten & Chard, 1999; Methe et al., 2011).  These early 

numeracy skills include counting, one-to-one correspondence, cardinality, number 

identification, and other similar skills acquired before, during, and just after kindergarten.  

In many cases, early numeracy skills are identical to the several previously identified 

components of number sense, such as the ability to compare quantities, estimate, and 

manipulate numbers.  This significant overlap has led some researchers to view early 

numeracy skills and number sense interchangeably (Berch, 2005; Methe et al., 2011).  

Consequently, as will be seen in the following section, the number sense assessments that 

currently exist are essentially measures of early numeracy skills. 

Over fifteen assessments of number sense are currently used in both research and 

practice, most of which operationalize number sense through the measurement of early 

numeracy skills.  Some of these measures include the Number Knowledge Test (NKT; 

Okamoto & Case, 1996), the Number Sense Test (Malofeeva, Day, Saco, Young, & 

Ciancio, 2004), and the easyCBM measures (Alonzo, Tindal, Ulmer, & Glasgow, 2006).  
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As noted, many of these measures involve the assessment of early numeracy skills.  For 

example, the NKT is a test designed to measure children’s understanding of whole 

numbers and related concepts.  Skills assessed include rote counting, one-to-one 

correspondence, quantity comparison, simple computation, and more complex 

computation (Okamoto & Case, 1996).  The Number Sense Test is a similar measure of 

number sense created for use with preschool students, ages three through five.  This 

assessment includes six scales designed to evaluate students’ skills in the areas of 

counting, number identification, number-object correspondence, ordinality, comparison, 

and addition and subtraction (Malofeeva et al., 2004).  The easyCBM measures are more 

broad-based measures of number sense; at the kindergarten and first grade levels, these 

measures assess skills in the areas of number, operations, measurement, geometry, and 

algebra (Alonzo et al., 2006; Clarke et al., 2011).  Although initial research exists on each 

of these assessments, they appear to be less established and thus are not used frequently 

in research or practice.  (For a more comprehensive review of these and other number 

sense measures, see Chapter 2).   

The more popular measures of number sense, and thus those that appear more 

frequently in the literature, include the Test of Early Numeracy (TEN), the Number Sense 

Brief Screener (NSB), and the Early Numeracy Test (ENT).  The TEN is a set of 

individually administered curriculum-based measures designed to assess the early 

numeracy skills of students in kindergarten and first grade.  These measures consist of 

four fluency-based subtests that each take one minute to complete:  Oral Counting, 

Number Identification, Quantity Discrimination, and Missing Number (Clarke & Shinn, 

2004b).  The NSB is a 33-item, individually administered assessment intended for use 



 9 

with kindergarteners and first graders (Jordan et al., 2008).  The measure includes items 

on one-to-one correspondence, number recognition and comparison, nonverbal 

calculation, and story problems.  Finally, the ENT is a 40-item, individually administered 

assessment designed to measure the early mathematical competence of students in 

preschool through grade one (Van Luit & Van de Rijt, 2005).  Originally developed by 

Dutch researchers, the assessment includes items on counting knowledge, concepts of 

comparison, seriation, classification, one-to-one correspondence, and general knowledge 

of numbers.   

While research has been conducted on the TEN, NSB, and ENT individually, no 

studies have compared the predictive qualities of these three assessments directly.  In 

other words, although preliminary research has been conducted on the reliability and 

validity of each measure in isolation, no study has compared the three assessments in an 

attempt to discern which, if any, is the best predictor of later mathematics achievement.  

Similarly, no studies have investigated whether or not certain combinations of the TEN, 

NSB, and ENT predict later mathematics achievement above and beyond that of just one 

measure.  In addition, few studies have replicated the findings that currently exist on the 

psychometric properties of each measure of number sense. 

Purpose of this Study 

Given the lack of extensive research on the TEN, NSB, and ENT, the primary 

purpose of this study was to more closely examine the predictive utility of these 

assessments in several different ways.  First, this study attempted to determine the 

predictive validity of each measure of number sense.  Based on prior research, it was 

hypothesized that there would be a positive relationship between performance on each 
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number sense measure and later performance on a mathematics achievement test.  This 

study also aimed to determine which of the three number sense measures, if any, was the 

best predictor of later mathematics achievement.   It was hypothesized that one of these 

measures would emerge as the more effective test for predicting later mathematics 

achievement.  Finally, this study attempted to ascertain if there was a particular 

combination of number sense measures that predicts later mathematics achievement 

better than any one number sense measure alone.  For example, does performance on the 

TEN and the NSB predict later mathematics achievement above and beyond performance 

on the NSB alone?  It was hypothesized that there are predictive measures of early 

numeracy that account for varying skills subsumed within the construct of number sense 

that can be modeled in a meaningful way so as to best predict later mathematics 

achievement.  Identifying the measure or measures that best predict later mathematics 

achievement upon entry to kindergarten could give teachers a powerful tool with which 

to screen all students and provide targeted instruction so as to prevent later mathematics 

difficulties. 

The final purpose of this study was to add to the literature base on the TEN, NSB, 

and ENT by replicating research that has already been conducted on these measures.  

Although a small body of research currently exists on each measure, few studies have 

replicated this work.  Furthermore, while the ENT is popular abroad, there has been no 

research on the measure in the U.S.  In addition to examining the predictive validity of 

each measure, this study also provided data to assess the inter-rater reliability of each 

assessment, as well as the relationship between performance on each measure and teacher 

rating of student number sense. 
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Research Questions and Hypotheses 

Predictive Validity of Number Sense Measures and Teacher Rating 

1. Is there a relationship between kindergarteners’ fall performance on each measure of 

number sense and spring performance on a mathematics achievement test? 

2. Which measure of number sense, administered in the fall of kindergarten, best 

predicts mathematics achievement in the spring of kindergarten? 

3. Is there a relationship between a teacher’s rating of a kindergartener’s number sense 

in the fall and that same kindergartener’s performance on a mathematics achievement 

test in the spring? 

This first set of research questions aimed to assess the predictive validity of each 

measure of number sense.  In addition, the predictive validity of teacher rating of number 

sense was examined.  It was hypothesized that there would be a strong positive 

relationship between fall performance on each measure of number sense and spring 

performance on a mathematics achievement test (i.e., the Test of Early Mathematics 

Ability, Third Edition [TEMA-3]).  Second, because the ENT is the most comprehensive 

measure of number sense and assesses the broadest range of early numeracy skills, it was 

hypothesized that the ENT would be the best predictor of later performance on the 

TEMA-3.  Finally, it was predicted that there would be a positive relationship between a 

teacher’s rating of a kindergartener’s number sense in the fall and that same 

kindergartener’s spring performance on the TEMA-3. 

Predictive Validity of Combinations of Number Sense Measures and Teacher Rating 

4. Is there a combination of number sense measures that predicts mathematics 

achievement above and beyond that of just one measure?  For example, does the TEN 
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and the NSB predict mathematics achievement above and beyond that of the NSB 

alone? 

5. Does performance on a number sense measure, combined with teacher rating of 

number sense, predict mathematics achievement above and beyond that of 

performance on a number sense measure alone? 

The next group of research questions examined the predictive validity of different 

combinations of number sense measures.  In addition, the predictive validity of a number 

sense measure plus teacher rating was examined.  It was hypothesized that all 

combinations of number sense measures created would predict mathematics achievement 

above and beyond that of just one measure alone.  In other words, it was predicted that all 

three number sense measures would predict mathematics achievement above and beyond 

that of any one measure alone; similarly, any combination of two number sense measures 

would predict mathematics achievement above and beyond that of any one measure.  

These hypotheses were developed due to the fact that all three measures of number sense, 

while assessing the same construct, all contain at least a couple of unique items which 

measure different early numeracy skills (e.g., the NSB is the only measure that assesses 

counting principles, and the TEN is the only measure that requires the student to identify 

the missing number in a sequence of three digits).  Finally, it was hypothesized that 

performance on a number sense measure combined with fall teacher rating of number 

sense would predict mathematics achievement above and beyond that of performance on 

a number sense measure alone. 
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Concurrent Validity of Teacher Rating 

6. Is there a relationship between a teacher’s rating of a kindergartener’s number sense 

in the spring and that same kindergartener’s mathematics achievement in the spring? 

The final research question assessed the concurrent validity of a teacher’s rating 

of student number sense.  It was hypothesized that there would be a positive relationship 

between a teacher’s rating of a kindergartner’s number sense in the spring and that same 

kindergartener’s spring performance on the TEMA-3. 
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CHAPTER 2 
 

LITERATURE REVIEW 

Historical Foundations of Number Sense 

Man, even in the lower stages of development, possesses a faculty which, for 
want of a better name, I shall call Number Sense.  This faculty permits him to 
recognize that something has changed in a small collection when, without his 
direct knowledge, an object has been removed from or added to the collection. 
(Dantzig, 1946, p. 1) 

 
 Although the term was only first used by mathematician Tobias Dantzig in the 

early twentieth century, there is evidence that “number sense” has existed for hundreds of 

thousands of years – long before numbers or numerals were ever documented or 

communicated through oral, symbolic, or written language.  As Dantzig (1946) notes, 

number sense is historically described as the innate ability to perceive small, concrete 

quantities without counting.  This faculty also allows for the ability to identify the 

difference in size between two small groups and to recognize when an element has been 

removed from or added to a group.  Given the intuitive nature of number sense, it is 

impossible to pinpoint exactly when the faculty developed.  Research conducted with a 

wide variety of animal species, however, suggests that number sense existed well before 

humans walked the planet (Dehaene, 1997; Ifrah, 1985; Rilling, 1993).  

 History brings with it many anecdotes describing the apparent mathematical 

prowess of various animals.  Perhaps the most familiar story is that of Clever Hans, a 

horse who could seemingly solve both simple and complex mathematical problems with 

the tapping of his hoof (Fernald, 1984).  Hans’ feats garnered much attention and 

skepticism during the early 1900s; his demonstrations in Germany were frequent and 

spectators often eagerly gathered to watch Hans flawlessly solve computation problems, 
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tell time, and add fractions.  Of course, a series of rigorous experiments by psychology 

graduate student Oskar Pfungst eventually demystified Hans’ abilities (Fernald, 1984).  

Hans was not, in fact, able to add, subtract, or solve any kind of mathematics problems on 

his own.  His mathematical intelligence was simply a reflection of his owner’s 

knowledge, as when Hans arrived at the correct answer to a particular problem, his owner 

would unconsciously tilt his head back ever so slightly.  Hans was sensitive to this small 

movement and he learned to stop tapping his hoof when he saw this signal, thereby 

making it appear that he had solved the problem on his own (Fernald, 1984).   

While the Clever Hans phenomenon left the scientific community suspicious of 

animal intelligence for many years, it also fueled a strong interest in researching the true 

mathematical abilities of animals (Dehaene, 1997).  Countless studies have been 

conducted investigating the numerical competence of animals (Dehaene, 1997; Rilling, 

1993), and several highlight the notion that animals do indeed possess an ability to 

recognize, manipulate, and distinguish between small quantities of number.  Some of the 

first experimental studies that revealed animals’ understanding of number were 

conducted by Otto Koehler in the mid 1900s.  Koehler worked with birds, and his 

experiments demonstrated a bird’s ability to recognize and discriminate between 

quantities (Koehler, 1951).  In one of his seminal studies, his subjects – a raven named 

Jacob and a grey parrot named Geier – were presented with five boxes.  Each box had a 

different number of dots printed on it, ranging from two to six.  On the ground, there was 

also a pattern of dots ranging in quantity from two to six.  Both birds learned to only open 

the box that showed the same number of dots that was also on the ground (Koehler, 

1951).  In other experiments, Koehler trained birds to eat exactly five mealworms from a 
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row of jars containing zero, one, two, or three mealworms.  During the training phase, the 

birds would be shooed away after eating five of the worms.  Eventually, the birds learned 

to eat exactly five worms and then walk away on their own (Koehler, 1951).  Koehler 

ultimately concluded that while birds do not have the ability to count or name numbers, 

they do appear to demonstrate “unnamed thinking;” in other words, birds are able to 

construct internal representations of small quantities of number without the use of 

language (Koehler, 1951). 

Abilities similar to those found in Koehler’s birds have also been demonstrated in 

rats.  Beginning in the 1950s, Francis Mechner, an American psychologist, began 

investigating the numerical competence of rats.  Using Skinner boxes, Mechner (1958) 

trained rats to press two levers in order to receive food.  Essentially, in order to receive 

food pellets, the rats had to press the first lever a specified number of times (e.g., either 4, 

8, 12, or 16 times) and then press the second lever once.  Mechner found that the rats 

became quite adept at pressing the first lever the approximate number of times needed.  

Rats who needed to press the first lever four times, generally pressed it four or five times; 

those who needed to press the first lever eight times also generally did so.  An interesting 

point is that as the number of required presses increased (e.g., 12 or 16), the rats became 

less precise with their presses.  Rats who were required to press the lever 16 times, for 

example, sometimes pressed the lever anywhere from 12 to 24 times (Mechner, 1958).  

Much like Koehler’s studies showed, Mechner’s findings support the notion that animals 

are able to approximate at least small quantities of number.  Larger quantities, however, 

appear more difficult for animals to discriminate between and internally represent.    
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More recent research has shown that pigeons and rats are not the only species 

with a seemingly innate sense of number.  Woodruff and Premack’s (1981) work with 

chimpanzees demonstrated that chimps are not only able to recognize small, whole 

number quantities, but they are also able to discriminate between fractional quantities 

such as one quarter, one half, and three quarters.  Woodruff and Premack’s experiment 

was set up as such:  a chimp was shown a sample (e.g., food, circular wooden disks, glass 

jars filled with blue-colored water) and would then have to select one stimulus from a set 

of two that correctly matched the sample.  For example, the chimp might have been 

presented with a sample consisting of two glasses filled completely with water.  Then, 

two stimuli would be presented:  a tray with three apples and a tray with two apples.  To 

answer the trial correctly, the chimp would have to choose the tray with two apples.  

Researchers found that the chimps were remarkably good at selecting the correct 

stimulus, even when the size, shape, and type of stimuli or sample changed.  One 

particular chimp, Sarah, was even adept at matching fractions.  When presented with a 

sample of a half-filled glass, for example, Sarah could consistently select the correct 

stimulus that showed half an apple or half a wooden disk.  The same was true for the 

fractions one quarter and three quarters.   Woodruff and Premack (1981) concluded that 

while chimps can recognize and discriminate between small whole numbers, they also 

appear to have a basic understanding for part-whole relationships and analogical 

reasoning.    

 Basic numerical competence has been demonstrated in lions, dolphins, and 

parrots, as well.  By using playback of either one or three lions roaring, McComb, Packer, 

and Pusey (1994) discovered that prides of lions would often approach the playback of a 
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single lion roaring in order to defend their territory, but they tended not to approach the 

playback of three lions roaring unless the size of their pride was much larger.  It seems 

“numerical assessment skills” such as the ability to discern the relative size of a group are 

helpful in contributing to the overall survival and fitness of lions and other species 

(McComb et al., 1994).  An understanding of the relative size of different groups has also 

been shown in dolphins.  When presented with two sets of objects, dolphins have been 

successfully trained to select the set with the fewest number of objects, even when the 

sets change in number and the objects are novel (Kilian, Yaman, Von Fersen, & 

Güntürkün, 2003).  In addition, Kilian et al. (2003) found that dolphins could 

discriminate between slightly larger numbers such as five and six.   

Perhaps the most advanced mathematical abilities demonstrated by an animal 

have come from Alex, an African Grey parrot who had been the subject of several studies 

in the fields of cognition and communication (Pepperberg, 2006).  In Pepperberg’s (2006) 

study, Alex, who was previously trained to label quantities up to six using the English 

language, showed that he could complete basic addition problems.  When asked “How 

many nuts total?” after being shown two nuts under one cup and one nut under another 

cup, Alex could consistently respond with three, even when the addends changed.  

Overall results from the study indicated that Alex could correctly solve a great variety of 

addition problems with sums up to six.  Pepperberg (2006) concluded that with training, 

animals can have expanded numerical capacities that develop much like those found in 

young children. 

Given society’s impressive advances in mathematics over recent centuries, it is 

hard to believe that humans’ concept of number was once as primitive as that of animals.  
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History suggests, however, that that was indeed the case:  humans’ understanding of 

number was first limited to a type of number sense that was no more advanced than the 

numerical competence demonstrated by the animals previously described.  

Anthropological studies have illustrated that several groups of isolated, indigenous 

peoples are not able to represent numbers greater than three or four (Dantzig, 1946; 

Gordon, 2004; Ifrah, 1985; Pica, Lemer, Izard, & Dehaene, 2004).  People from tribes in 

remote areas of Australia, Africa, Brazil, and the Torres Strait, for example, all have 

number words for one, two, and sometimes three or four, but no words for five, six, ten, 

and so on.  For quantities beyond the number three or four, these people use words 

meaning “many” or “a multitude” (Gordon, 2004; Ifrah, 1985; Pica et al., 2004).  This 

speaks to the notion that much like animals, humans possess a rudimentary number sense 

that only allows for the ability to perceive and distinguish between small quantities of 

number.  Without the ability to count, numbers larger than three or four become, as 

Dehaene (1997) describes, “fuzzy” approximations. 

The difficulty in perceiving numbers greater than three or four is reflected 

throughout history.  In nearly all societies, from the Mayans to the Romans to the 

Chinese, the first three or four numerals have always been represented by several 

instances of the same symbol (Dehaene, 1997; Ifrah, 1985).  In Roman societies, the 

numbers one, two, and three, were represented by one, two, or three bars (i.e., I, II, III).  

In Mayan societies, these numbers were represented by dots (i.e., , , ) (Dehaene, 

1997).  After the numbers three or four, however, all societies begin to represent numbers 

by using more abstract symbols.  For the Romans, the number five was denoted by “V,” 

and for the Mayans, five was represented by a long horizontal line.  Why not simply use 
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five bars or dots to denote the number five?  The answer once again goes back to the 

notion that without the ability to count, humans were unable to automatically perceive 

and recognize five dots as representative of the quantity “five.”  Any quantity greater 

than three or four, then, was simply understood as “many” and could only be expressed in 

imprecise approximations (Dehaene, 1997; Ifrah, 1985).   

As Dantzig (1946) notes, this inability to precisely perceive larger numbers did 

not render “primitive” peoples incapable of working with and understanding larger 

quantities of number.  He provides an excellent illustration of how concepts of equality 

and quantity discrimination can be understood without counting: 

We enter a hall.  Before us are two collections:  the seats of the auditorium, and 
the audience.  Without counting, we can ascertain whether the two collections are 
equal and, if not equal, which is greater.  For if every seat is taken and no man is 
standing, we know without counting that the two collections are equal.  If every 
seat is taken and some in the audience are standing, we know without counting 
that there are more people than seats (Dantzig, 1946, pp. 6-7).   
 

This concept of one-to-one correspondence – where one item in a set is matched to one 

item in another set – is one of the first documented number methods used by people who 

lived tens of thousands of years ago (Dantzig, 1946; Ifrah, 1985).  In order to calculate 

the total number of sheep in a herd without counting, for example, a shepherd might 

make a notch in a bone for every sheep that he owns.  If he wants to check to see if all of 

the sheep are present in the future, he simply has to match each sheep with each notch.  If 

he finds that there are as many sheep as there are notches, he knows his whole herd is 

present (Ifrah, 1985).  Archaeologists have found evidence of this method dating back to 

the Upper Paleolithic period, which occurred at least 30,000 years ago.  Of course, 

historians agree that undocumented number systems involving the use of the body likely 

existed before matching or tallying methods, although it is not possible to pinpoint 
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exactly when those systems began.  Number systems that utilize the body, which are still 

used by indigenous peoples such as the islanders of the Torres Strait, involved touching 

various parts of the body in a specific, fixed sequence in order to communicate certain 

quantities.  To communicate what modern-day society would consider “seven,” for 

example, one might touch all five fingers of the right hand, followed by touching the 

right wrist and right elbow (Ifrah, 1985).  In addition to those utilizing the body and 

notching, other forms of ancient, concrete number systems involved the use of pebbles, 

clay tokens, and strings.  None of these methods, however, required the use of number 

words, written numerals, or any abstract understanding of number whatsoever.   

Eventually, with the advent of number words and then written numerals, the shift 

from concrete to abstract and much more complex number systems began (Dantzig, 

1946; Ifrah, 1985).  Although a comprehensive analysis of this shift from concrete to 

abstract is beyond the scope of this review, it is important to note that no matter how 

advanced society’s number systems have become, they all began with a basic concept of 

number, much like that of animals, and much like the “number sense” described by 

Dantzig (1946).  Without this primitive, seemingly innate sense of number, humans 

would not have been able to develop the ability to estimate, count, or calculate, nor would 

they have been able to accomplish the impressive mathematical advancements that have 

been made to date. 

Modern-Day Number Sense 

Does this ancient faculty of number sense exist in humans today, just as it did tens 

of thousands of years ago?  Are humans today able to perceive small quantities of 

number without counting, or recognize differences between two sets of items?  As 
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Dantzig (1946) points out, counting has become “such an integral part of our mental 

equipment that psychological tests on our number perception are fraught with great 

difficulties” (p. 4).  Experiments conducted within the last few decades, however, have 

examined humans’ basic concept of number without the confounding issue of counting.  

These experiments have primarily been carried out with participants who do not yet know 

how to count or calculate – infants. 

Numerical Abilities of Infants 

 In 1980, psychologists Starkey and Cooper conducted one of the first truly 

rigorous experiments that supported the notion that humans are born with a primitive 

sense of number.  In their study, Starkey and Cooper (1980) assessed whether infants 

ages 16 to 30 weeks could detect the difference between small quantities of number:  two 

and three, and then four and six.  First, during the habituation phase, two dots were 

shown to an infant on a screen several times.  These dots changed in position on different 

slides.  Next, the infant was shown a slide with three dots.  Experimenters found that the 

infants fixed their gaze on the slide with three dots significantly longer than the two-dot 

slides they were habituated to.  Consequently, researchers concluded that the infants 

detected a change in the quantity of the dots.  To be sure infants were not gazing at the 

three-dot slides for a longer length of time simply because there were more items on the 

screen to look at, Starkey and Cooper (1980) also tested infants in the reverse direction.  

In other words, infants were first habituated to three dots and then shown a slide of two 

dots.  Researchers found that the infants looked significantly longer at the two-dot slide, 

suggesting that they were once again able to detect a difference in the number of dots 

shown (Starkey & Cooper, 1980).  Interestingly, the infants did not appear to detect a 



 23 

change in the slides that shifted from four dots to six dots, which supports the idea that 

the primitive number sense does not extend beyond very small quantities such as three or 

four.  Of note is that Starkey and Cooper (1980) did not refer to the infants’ numerical 

abilities as number sense.  Instead, they concluded that part of an infant’s numerical 

competence is the ability to subitize, or instantly “distinguish among arrays containing 

fewer than four items” (Starkey & Cooper, 1980, p. 1033). 

 In a follow-up study, Starkey, Spelke, and Gelman (1983) investigated whether 

infants’ early numerical abilities were purely visual, or if infants could detect 

relationships between sets of visual and auditory items.  In this experiment, infants six to 

eight months old were shown two screens, one containing a set of two items and the other 

containing a set of three.  While looking at the screens, the infants then heard either two 

or three drumbeats, which originated from a speaker in the middle of the two screens.  

What Starkey et al. (1983) found was that the infants gazed significantly longer at the 

two-item screen when they heard two drumbeats, and they also gazed longer at the three-

item screen when hearing three drumbeats.  Researchers concluded that an infants’ 

numerical competence is not solely a visual modality (Starkey et al., 1983).  More recent 

studies using this same paradigm have demonstrated that infants who are only a few 

hours old will similarly gaze at a visual array that matches an auditory sequence for 

significantly longer than an array that does not match the auditory stimulus (Izard, Sann, 

Spelke, & Streri, 2009). 

 Xu and Spelke (2000) later challenged the idea that infants can only understand 

quantities up to three or four.  In their study, they showed that six-month-old infants 

could discriminate between larger numerosities.  Employing methods previously 
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described, infants were habituated to slides that all showed eight dots.  Then, the infants 

were shown a sequence of slides containing either eight dots or sixteen dots.  The infants 

did not pay much attention to the slides with eight dots, but their gaze was fixed 

significantly longer on those slides showing sixteen dots (Xu & Spelke, 2000).  Likewise, 

infants who were habituated on sixteen dots were now more interested in the slides 

showing eight dots.  In an additional experiment, Xu and Spelke (2000) changed the ratio 

of dots from 1:2 (i.e., 8 dots and 16 dots) to 2:3 (i.e., 8 dots and 12 dots).  Infants were 

unable to discriminate between sets of 8 dots and sets of 12 dots, suggesting that they can 

only detect differences between larger numerosities when the ratio of difference between 

the sets is quite large.  A related study by Lipton and Spelke (2003) provided similar 

evidence:  six-month-old infants could only discriminate between large quantities when 

they differed by a ratio of at least 1:2.  Interestingly, though, Lipton and Spelke (2003) 

found that nine-month-old infants were able to discriminate between sets that differed in 

quantity by a ratio of 2:3, but not when they differed by a ratio of 4:5.  Researchers 

concluded that an infant’s sense of number appears to develop in precision during the 

first months of life, long before verbal development or formal teaching of any kind 

(Lipton & Spelke, 2003).  

 Is the numerical competence of infants limited to noticing differences between 

two sets of quantities?  Wynn’s (1992) seminal study on addition and subtraction in 

infants illustrated that a young person’s early numerical abilities clearly extend beyond 

that of quantity discrimination.  Participants in Wynn’s study were four- to five-month-

old infants placed in front of a display area to watch addition and subtraction problems 

concretely acted out.  First, the experimenter would place a Mickey Mouse toy in the 
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display case.  Then, a small screen would rise up to cover the toy.  From the side of the 

screen, where the infant could still see, a second identical toy was placed behind the 

screen.  Wynn configured the experiment to have one of two outcomes when the screen 

dropped:  (1) the expected/possible outcome of two toys behind the screen, or (2) the 

unexpected/impossible outcome of one or three toys behind the screen (for the impossible 

outcomes, the experimenter would remove or add a toy through a trap door, out of view 

from the infant) (Wynn, 1992).  Results indicated that the infants spent significantly more 

time studying the unexpected/impossible outcomes than the expected/possible outcomes.  

The same was true when the infants were presented with possible and impossible 

outcomes of a basic subtraction problem.  Essentially, the infants were surprised when 

one plus one did not equal two, suggesting that infants have some type of mechanism that 

allows them to understand the processes behind simple calculations.  In fact, Wynn 

(1992) went so far as to conclude that “humans innately possess the capacity to perform 

simple arithmetical calculations, which may provide the foundations for the development 

of further arithmetical knowledge” (p. 750). 

 Given the host of numerical skills present at birth, Starr, Libertus, and Brannon 

(2013) wanted to investigate whether the acuity of an infant’s number sense – or 

Approximate Number System (ANS) – predicts later mathematics development.  To test 

the acuity of the ANS, Starr et al. (2013) placed infants in front of two screens.  One 

screen showed an array of dots that stayed constant in number, but the size and placement 

of the dots varied.  The other screen showed an array of dots that changed in number.  

Infants who looked longer at the screen with the dots that changed in number were said to 

have greater ANS acuity, as these infants were detecting the change in the number of dots 



 26 

(Starr et al., 2013).  Approximately three years later, Starr et al. (2013) tested these same 

infants using a variety of standardized early mathematics and general intelligence 

assessments.  Researchers found that children who performed better on the standardized 

assessments had better ANS acuity as infants.  This was the case even after controlling 

for general intelligence.  While Starr et al.’s (2013) study provided evidence for the 

relationship between primitive number sense and later mathematics development, the 

researchers were quick to caution that this relationship is not clear-cut or one-directional.  

Although ANS acuity appears to be a predictor of later mathematics development, it 

explains only a small proportion of the variance, suggesting that many other factors affect 

the mathematics achievement of young children.  Additionally, Starr et al. (2013) 

acknowledged that the relationship between ANS acuity and mathematics development is 

likely bidirectional; ANS acuity may contribute to mathematics development just as 

much as mathematics development affects ANS acuity.  Although further research is 

certainly needed, Starr et al.’s (2013) study did support the notion that (1) an innate 

number sense or Approximate Number System exists in the first years of life and (2) 

these innate number skills are in some way related to later mathematics development.    

Number Sense and the Approximate Number System in Early Childhood 

Evidence indicates that infants are born with some level of numerical competence, 

often in the form of the ability to distinguish between sets consisting of different 

quantities.  As Lipton and Spelke (2003) demonstrated, this number sense or 

Approximate Number System (ANS) appears to become more precise over time.  Nine-

month-old infants, for example, can discriminate between sets that differ in quantity by a 

ratio of 2:3, but six-month-old infants cannot.  Does number sense or the ANS continue 









 115 

APPENDIX F 
Q-Q PLOTS OF INDEPENDENT AND DEPENDENT VARIABLES 
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APPENDIX G 
SCATTERPLOTS OF INDEPENDENT VARIABLES WITH TEMA-3 
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APPENDIX H 
SCATTERPLOTS OF RESIDUALS VERSUS PREDICTED VALUES 
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