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FACTORS THAT DETERMINE THE NON-LINEAR AMYGDALA INFLUENCE ON
HIPPOCAMPUS-DEPENDENT MEMORY

Irit Akirav and Gal Richter-Levin � Department of Psychology and The
Interdisciplinary Research Center for Brain and Behavior, University of Haifa, Haifa
31905, Israel

� Stressful experiences are known to either improve or impair hippocampal-dependent
memory tasks and synaptic plasticity. These positive and negative effects of stress on the
hippocampus have been largely documented, however little is known about the mecha-
nism involved in the twofold influence of stress on hippocampal functioning and about
what factors define an enhancing or inhibitory outcome. We have recently demonstrated
that activation of the basolateral amygdala can produce a biphasic effect, enhancement or
inhibition, of hippocampal synaptic plasticity, depending on the timing of activation
(priming or spaced activation). A key question is under which conditions do the effects of
amygdala activation on hippocampus dependent memory functions change from
improvement to impairment of learning and memory. In this chapter we suggest that hip-
pocampal outcome of amygdala activation may be critically dependent on four main fac-
tors: (1) The intensity of amygdala activation, (2) the temporal relation between the acti-
vation of the amygdala and the hippocampus dependent memory function, (3) the dura-
tion of amygdala activation, and (4) the contextual input during the processing of the
information. 

Keywords: Amygdala, Hippocampus, Plasticity, Stress.

A. EMOTIONALLY AROUSING EVENTS ARE MEDIATED BY 
THE AMYGDALA IN AN INVERTED U-SHAPED FUNCTION

Emotional states range from positive to negative, and both can range
from low to high levels of arousal. Research in the field of emotional
memories usually focuses on the negative end of emotional experiences
due to the profound neurobiological effects of stressful experiences on
learning and memory. These effects are believed to be the basis of many
cognitive and affective changes in health and disease (McEwen and
Sapolsky, 1995). 

The amygdala is an important brain structure for the recognition of
negative, unpleasant emotions, such as fear, and for associating environ-
mental stimuli with emotionally charged, aversive sensory inputs. Most of
the evidence points to the basolateral amygdala nucleus (BLA; comprised
of the lateral, basal, and accessory basal nuclei) as particularly important
in the acquisition, consolidation, and retrieval of emotional information
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(Cahill and McGaugh, 1998; Davis, 1992; Dunn and Everitt, 1988;
LeDoux, 2000; McGaugh et al., 1996). From an evolutionary perspective,
it is clearly adaptive for memory of emotional stimuli to be enhanced,
because emotional stimuli, whether pleasant or aversive, would have a
greater survival value than neutral stimuli (Hamann et al., 1999). Thus,
heightened cognition as a response to stress may be an adaptive mecha-
nism enabling an organism to respond effectively to a real or potential
threat to its survival. However, a stressful experience may also have
adverse consequences, including deterioration in learning and memory
capacity (Kim and Diamond, 2002). 

The relationship between the strength of consolidation and the emo-
tionally arousing event seems to follow an inverted U-shaped function;
one important factor that determines whether there will be enhancement
or impairment of memory is the level of amygdala engagement. In turn,
the level of amygdala activation is a direct consequence of the character-
istics of the stimulus such as intensity, duration, and so on. At moderate
levels of arousal (hence of amygdala’s involvement), the resulting memo-
ry will be potentiated. On the other hand, when the subject encounters
neutral items (with no involvement of the amygdala) the result will be a
relatively ineffective memory consolidation.

Findings from functional imaging studies in humans lend further sup-
port to a good correlation between increased activity within the amygdala
during encoding, and subjects’ subsequent performance on recognition
or recall memory tasks. Emotionally arousing stimuli that activate the
amygdala during encoding are remembered better, whereas encoding
information that is emotionally neutral correlates with activation of the
hippocampus, but not the amygdala (Alkire et al., 1998) and with lower
level of performance in memory tasks.

When the emotional items are too immense (hence extreme involve-
ment of the amygdala), the outcome may be memory impairment. Under
conditions of high stress and amygdala activation subjects tend to show
impaired attentional processes, for example, problems discriminating
between relevant and irrelevant stimuli. Such impairments will easily pre-
vent successful acquisition of useful information (Lupien and McEwen,
1997). 

Accordingly, very high levels of emotional arousal may prevent the
proper evaluation and categorization of experience by interfering with
cognitive function (van der Kolk, 1997), and as a result some aspects of
the experience may be consolidated while others may be impaired.
Hence, the result of exceptional life experiences (such as flashbulb mem-
ory following important public events, or post-traumatic stress disorder
(PTSD) developed following exposure to a severe trauma) may be a com-
bination of enhanced and harmed memories (Adolphs et al., 2000).

Non-linear amygdala influence on hippocampus-dependent memory
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B. EMOTIONAL TAGGING: THE AMYGDALA ENHANCES HIPPOCAMPAL
MEMORY FOLLOWING EMOTIONAL EVENTS

An emotional experience that is moderately arousing (in contrast to
neutral or extremely emotional events) is suggested to activate the amyg-
dala to promote the enhancement of cognitive or declarative memories
that are emotionally loaded. During an emotional experience the amyg-
dala interprets the emotional value of the incoming information; it
attaches emotional significance to aspects of the experience and passes
this evaluation on to (among other brain regions) the hippocampus (van
der Kolk, 1997) which is considered central for the acquisition and con-
solidation of declarative memory (Eichenbaum, 1999; Maguire et al.,
1999; Squire, 1992; 1998). The hippocampus puts a specific event into its
proper context, it binds together multiple events that co-occur during an
experience, organizes and categorizes them, and through this kind of
rich processing it converts short-term into long-term memories, making
possible the formation of accurate episodic memories (Chiba et al., 1994;
Kesner et al., 1996). Emotional inputs from the amygdala help in sorting
the more relevant from the less relevant aspects of an experience, in
order to retain only the former in long-term memory. Accordingly, the
intensity of the input coming from the amygdala correlates with the
intensity of memory encoding in the hippocampus. Emotionally arousing
events are thereby better remembered than neutral events, which are
generally weakly retained or require repetition to endure (Cahill and
McGaugh, 1998). It has been suggested that following an emotionally
arousing event the amygdala signals to the hippocampus that an emo-
tional experience has occurred that is worth storing; this leads to the rein-
forcement of consolidation of that event. The amygdala “marks” an emo-
tionally charged experience as important, presumably by strengthening
synapses located on neurons that have just been activated in another
brain-memory system that is engaged in the learning situation. We
termed this intensification of cognitive memory by amygdala activation
“emotional tagging” (Akirav and Richter-Levin, 1999; 2002; reviewed by
Richter-Levin and Akirav, 2003). Accordingly, augmenting the general
arousing influence of an emotional experience is a more specific impact
on memory processes, i.e., potentiating the consolidation of emotionally
loaded aspects of an experience into enhanced long-term memory. 

C. AMYGDALAR MEDIATION OF THE EFFECTS OF THE STRESS HOR-
MONES ON HIPPOCAMPAL MEMORY PROCESSES 

During emotional experiences stress hormones and other neuro-
transmitters are released, which give the event special significance and
prominence in the memory pathways (Robertson, 2002). 

I. Akirav and G. Richter-Levin
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Naturally, multiple factors mediate stress effects on hippocampal
functioning, and behavioral stress leads to the activation of a wide variety
of neurotransmitters and neuroendocrine systems that can potentially
affect learning and memory. These include corticotrophin-releasing fac-
tor (CRF), opioid peptides, neurosteroids, etc. (de Wied and Croiset,
1991). However, the adrenal stress hormones, norepinephrine and glu-
cocorticoids, appear to play an important role in enabling the emotional
significance of an experience to regulate the strength of its memory. The
full expression of stress effects on the hippocampus seems to require co-
activation of the amygdala and hippocampus, in concert with the actions
of the stress hormones directly on the hippocampus. 

Specifically, there is growing literature indicating that the BLA is crit-
ical for the expression of the modulatory effects of a stressful experience
on hippocampal learning and memory function (Cahill and McGaugh,
1996; Kim et al., 2001; Kim and Diamond, 2002; McGaugh et al., 1996;
Packard and Chen, 1999; Packard et al., 1994; Packard and Teather, 1998;
Richter-Levin and Akirav, 2000; Roozendaal et al., 1999; Roozendaal et
al., 1996; 1998; Shors and Mathew, 1998). 

There are indications that the effects of norepinephrine and gluco-
corticoids (corticosterone in the rat ) on hippocampal memory consoli-
dation depend critically on the BLA, and more specifically that the BLA
is a locus of action of these stress hormones in modulating memory con-
solidation. For example, it has been shown that post-training injections of
the synthetic glucocorticoid dexamethasone enhanced the performance
in a 48-h inhibitory avoidance retention test, and that a selective N-
methyl-d-aspartate (NMDA)-induced lesion of the BLA blocked this
enhancement (Roozendaal and McGaugh, 1996). In another task, intra-
hippocampal infusions of a glucocorticoid receptors (GRs) agonist (RU
28362) given 60 min before a spatial task retention test impaired retrieval
(Roozendaal et al., 2003) and a selective NMDA-induced lesion of the
BLA 1 week before training blocked this impairment. Likewise, post-train-
ing microinfusions of norepinephrine or the beta-noradrenergic antago-
nist propranolol into the BLA immediately following training in a spatial
version of the water maze task was also shown to modulate spatial per-
formance. Retention latencies obtained on the second training day
revealed that norepinephrine dose-dependently enhanced retention for
the location of the hidden platform whereas propranolol significantly
impaired retention (Hatfield and McGaugh, 1999). Hence, the effects of
the stress hormones (either by microinfusion or following a stressful
event) which are mediated by the BLA may determine whether the cog-
nitive function will be enhancement or impairment. The stress hor-
mones’ effects on hippocampal memory processes also seem to follow an
inverted U-shaped dose-response relationship: extremely low and high
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levels may impair consolidation or plasticity whereas moderate activation
seems to be a prerequisite for the long-term storage of information or to
its reinforcement. Thus, removal of circulating corticosteroids (via
adrenalectomy) or selective mineralcorticoid receptors (MRs) or GRs
antagonist injections impaired acquisition and retention in hippocampus
dependent tasks, such as spatial learning, avoidance, and contextual fear
conditioning. At the same time exposure to a stressor or experimentally-
induced high levels of corticosterone were reported to impair acquisition
and retention of those tasks (Cahill et al., 1994; Conrad et al., 1996; 1997;
1999; Diamond et al., 1994; 1996; 1999; Diamond and Rose, 1994; Oitzl
and de Kloet, 1992; Oitzl et al., 1994; Pugh et al., 1997; de Quervain et al.,
1998; Sandi and Rose, 1994b; Vaher et al., 1994). In contrast, intermedi-
ate increase in circulating corticosteroids has been shown to facilitate
memory in different learning paradigms (Akirav et al., 2004; Akirav et al.,
2001; Cordero and Sandi, 1998; Flood et al., 1978; Liu et al., 1999; Oitzl
and de Kloet, 1992; Pugh et al., 1997; Sandi et al., 1997; Sandi and Rose,
1994a). A similar pattern was demonstrated with norepinephrine; reten-
tion was enhanced at moderate doses and impaired at high doses in a
variety of training tasks, including inhibitory avoidance, active avoidance,
discrimination learning, and appetitively motivated tasks (Gold and van
Buskirk, 1975; Introini-Collison and McGaugh, 1986; Izquierdo and Dias,
1985; Liang et al., 1986; McGaugh et al., 1990).

There are several possible ways in which the BLA may be involved in
mediating the stress hormones’ effects on memory storage. The stress
hormones can act in parallel to affect memory function through binding
to receptors in the amygdala, in the hippocampus, or in other brain struc-
tures. This will activate the amygdala and the hippocampus and thereby
mediate the effects of the stress hormones on memory formation.
Norepinephrine may be released directly into the hippocampus and the
amygdala from ascending terminals of the locus coeruleus upon arousal
and stress, which in turn may induce changes (enhancement or impair-
ment) in the neural activity engaged in memory processes (Seidenbecher
et al., 1997). Stress produces increases in norepinephrine turnover in the
locus coeruleus, the hippocampus, and the amygdala, as well as in the
hypothalamus and the cerebral cortex (Charney et al., 1995).
Glucocorticoids released by an arousing experience bind to steroid recep-
tors in the BLA, the hippocampus, and other parts of the brain. For
example, it has been suggested that glucocorticoids bind directly to GRs
in the BLA and their effects may be mediated via an interaction with beta-
adrenergic mechanisms in the BLA (Roozendaal, 2000). However, gluco-
corticoid release following an emotional experience probably also bind to
GRs and MRs in the hippocampus and exert facilitative or damaging
influence directly there. 

I. Akirav and G. Richter-Levin
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D. PARAMETERS THAT MAY DEFINE THE OUTCOME OF AMYGDALA
MODULATION OF HIPPOCAMPUS DEPENDENT MEMORY PROCESSES

A key question when we examine stress-memory interactions is under
which conditions do the effects of amygdala activation on hippocampus
dependent memory functions change from improvement to impairment
of learning and memory. In this chapter we address the issue of amygdala
modulation of hippocampal memory processes and demonstrate that
amygdala activation may result in memory enhancement or memory
impairment, and that these effects may be critically dependent on four
main factors: 

(1) The intensity of amygdala activation (i.e., the level of stress or
amygdala direct stimulation), (2) the temporal relation between the acti-
vation of the amygdala and the hippocampus dependent memory func-
tion (i.e., the time window between amygdala and hippocampus activa-
tion), (3) the duration of amygdala activation (which is closely related to
the activation of the stress hormones and whether their presence in the
system is brief or lingering), and (4) the contextual input during the pro-
cessing of the information. 

D.1. The intensity of amygdala activation

(i) Moderate amygdala activation results in enhanced memory
Studies with humans (Bradley et al., 1992; Gallagher and Chiba, 1996;

Hamann et al., 1999) and animals (Cahill and McGaugh, 1990; 1998)
have demonstrated that memory is better for emotionally arousing stim-
uli than for emotionally neutral stimuli. It has been suggested that the
amygdala may be more extensively involved in training situations that are
highly arousing (Cahill and McGaugh, 1990) and that those stimuli invok-
ing weaker emotional responses appear much less effective at consistent-
ly or robustly activating the amygdala. We have demonstrated that a high-
ly arousing learning experience that significantly activated the amygdala
also led to better hippocampus-dependent memory (Akirav et al., 2001).
We examined the activation of the memory-related biochemical marker
ERK2 (ERK/MAPK; extra cellular-signal regulated kinase/mitogen-acti-
vated protein kinase) in the hippocampus and the amygdala following a
spatial learning task performed under different stressful conditions. We
found that animals trained for a massed (1 hr of training in one day) spa-
tial task in a water maze under cold water conditions (moderate level of
stress) showed better performance in the spatial task and higher levels of
corticosterone than animals trained in warm water (mild level of stress).
Significant activation of ERK2 in the hippocampus was found in all the
animals that had acquired the spatial task (irrespective of the level of
stress involved) whereas ERK2 activation in the amygdala was found only
in animals that acquired the task in cold water. Animals that were exposed
to the cold water with no escape platform in the maze (hence with no spe-

Non-linear amygdala influence on hippocampus-dependent memory

27

6

Dose-Response: An International Journal, Vol. 4 [2014], Iss. 1, Art. 4

https://scholarworks.umass.edu/dose_response/vol4/iss1/4



cific task to learn) and showed the highest corticosterone levels did not
show ERK2 activation in the amygdala, indicating that ERK2 activation in
the amygdala was learning-specific. The participation of the amygdala in
learning seems to be directly dependent on the training conditions; the
water temperature may have acted differently on consolidation mecha-
nisms via the influence on the amygdala during and/or following the
training, and this led to differential performance in the test. Indeed, the
activation of the amygdala (as seen by the activation of ERK2) following
the emotionally charged hippocampus-dependent learning experience
apparently led to the better performance of the cold-water trained rats in
the spatial task (Akirav et al., 2001). 

These ideas win support from another set of studies that demonstrat-
ed the inverted U-shaped curve between arousal and performance: rats
trained at 19°C showed better performance in the retention test than rats
trained at 25°C (Sandi et al., 1997) whereas rats trained at 12°C showed
impaired performance and significantly higher corticosterone levels than
rats trained at 26°C or 19°C (Sandi et al., 1997; Selden et al., 1990). 

Note that the increase in corticosterone levels is probably not a suffi-
cient condition to mediate stress effects on hippocampal plasticity and
learning. Specifically, an intact amygdala is necessary for the expression
of the modulatory effects of stress and stress-related hormones on hip-
pocampal long-term potentiation (LTP) and memory. Lesions in the
amygdala block the modulatory effects of systemic and post-training
intra-hippocampal injections of stress hormones on long-term memory
assessed in a variety of learning tasks, including inhibitory avoidance, Y-
maze discrimination, and water-maze tasks (Cahill and McGaugh, 1990;
Packard and Chen, 1999; Roozendaal and McGaugh, 1996; Roozendaal et
al., 1996; 1998). Moreover, a recent study has shown that amygdala lesion
effectively blocked stress effects on hippocampal LTP and spatial memo-
ry without significantly affecting the increase in corticosterone secretion
in response to stress (Kim et al., 2001). 

(ii) Extreme amygdala activation results in enhanced and impaired memory
Two interesting phenomena, PTSD and flashbulb memories, are

important examples of how extraordinary amygdala activation can result
in a combination of enhancement and impairment of memory. 

Extremely high arousal and stress levels may lead to pathological con-
ditions. During excessive cases of stress, the augmentation of the stress
hormones activation or their long-term presence in the system may
underlie the high anxiety levels and the repetitive reliving of the stress
experience (or traumatic event), which may well result in disturbances
such as PTSD. Studies of PTSD suggest a specific association between the
extreme stress of a trauma and alterations in memory functioning
(Bremner, 1999; Pitman, 1989). In general, two types of memory distur-
bances have been identified in traumatized individuals: intrusive memo-
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ries and impoverished memory functioning. Intrusive memories may be
experienced as reenactments of the original trauma (‘flashbacks’) where-
as the poor memory may be evident in deficits in declarative memory,
fragmentation of memories, and trauma-related amnesia (Elzinga and
Bremner, 2002). The coupling of the amplification of memory for a trau-
matic stimulus with the decrement in memory for surrounding contex-
tual material is indeed intriguing. It has been proposed that the failure to
consolidate material proximate to the traumatic stimulus (for example,
the context of the trauma) is due to amygdala suppression of hippocam-
pal function, and that the enhancement of memory at the highest levels
of emotional arousal is because the amygdala then becomes the exclusive
locus of consolidation of the traumatic event (Layton and Krikorian,
2002). Similarly, it has been suggested that under certain stressful condi-
tions hippocampal functioning is impaired while amygdala processing is
heightened (Metcalf and Jacobs, 1998), so emotional memory storage in
the amygdala will be facilitated at the expense of hippocampus-depend-
ent spatio-temporal processing (Diamond et al., 2001). 

Interesting support for these ideas from animal studies has been pre-
sented in a recent study by Vouimba et al. (2004; also see Yaniv et al., 2003).
They showed that in freely behaving rats, exposure to an acute inescapable
stressful experience (30 min on a platform) facilitated LTP in the basal
amygdaloid nucleus following entorhinal cortex stimulation. In another
study the exposure to this stressful experience was found to inhibit LTP in
the CA1 area of the hippocampus and in the amygdala-medial prefrontal
cortex pathway (Maroun and Richter-Levin, 2003). It seems that under
conditions of heightened emotionality the induction and maintenance of
hippocampal synaptic plasticity are impaired and the induction of amyg-
daloid synaptic plasticity is enhanced. A possible explanation for this may
be that under stressful conditions it is essential to “block” the high-order
behavior mediated by the hippocampus (and the prefrontal cortex) and to
allow more automatic responses that are dependent on subcortical areas
such as the amygdala (Diamond et al., 2001).

Another example of an intense emotional event is seen in flashbulb
memories. The vividness with which an event is recalled strongly corre-
lates with the emotionality of the event at the time it occurred, and flash-
bulb memories seem to represent the extreme of this affect-vividness rela-
tionship (Reisberg and Heuer, 1992). 

Flashbulb memories are long-lasting memories for the context of an
important public event, namely experiences occurring both shortly
before and shortly after the event (Brown and Kulik, 1977). These mem-
ories are probably triggered by emotional factors (intensity of emotional
feeling, appraisal of the original event) and by social factors (social shar-
ing of the news, following media debate about the event) (Curci et al.,
2001).

Non-linear amygdala influence on hippocampus-dependent memory
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Emotion seems to cause selectivity in memory, presumably as a result
of selectivity in both encoding and post-event elaboration. Physiological
arousal may lead to a narrowing of attention during emotional events;
hence, the emotion promotes memory for materials tied to an event’s
center, and works against memory for materials at the event’s edge (i.e.,
pulling attention away from remote details) (Reisberg and Heuer, 1992).
This may result in a potentiated memory of some aspects of the event
(gist) but impaired memory of other of its details. This notion gains some
support from studies with amygdala or hippocampus damaged patients
(Adolphs et al., 2001; Hamann et al., 1997). For example, it has been
shown that bilateral, but not unilateral, damage to the amygdala resulted
in poorer long-term memory for gist but superior memory for visual
details of aversive and neutral scenes (Adolphs et al., 2001). Additionally,
although flashbulb memories are more extensive, more consistent, and
reported with more confidence than other memories, they are not per-
fect. There seems to be a higher probability of recalling the personal con-
text of the discovery of shocking news than the news itself (Bohannon
and Symons, 1992). 

All in all, the emotional nature of stimuli seems to have a complex
influence on long-term declarative memory for those stimuli: whereas
emotion enhances memory for gist, it may suppress memory for details
(Adolphs et al., 2001). 

D.2. The temporal relation between the activation of the amygdala and 
the hippocampus-dependent memory function 

To examine the neural bases of amygdala modulation of hippocam-
pal long-term memory we looked at long-term potentiation (LTP) of
synaptic transmission in the hippocampal dentate gyrus (DG) area as a
function of amygdala activation. LTP is the most widely studied cellular
model for synaptic plasticity, and long-lasting alterations in synaptic plas-
ticity are considered to be involved in memory formation. 

We wanted to determine the possible influence of activating both the
amygdala and the hippocampus within a narrow (30 sec; priming) or a
spaced (1-2 hrs) time window to examine how it may contribute to long-
term functional changes during memory formation. We have shown
(Akirav and Richter-Levin, 1999; 2002) that BLA stimulation within a nar-
row time window before perforant path (PP) tetanization resulted in the
enhancement of DG - LTP whereas BLA stimulation 1 or 2 hrs prior to PP
activation resulted in the suppression of hippocampal LTP. Moreover, we
found that whereas a stressful experience suppresses hippocampal LTP,
priming the BLA in stressed animals relieves the depressant effect of
behavioral stress on hippocampal LTP (Akirav and Richter-Levin, 1999).
This study strongly supports the notion that the amygdala and the hip-
pocampus may act synergistically to form long-term memories of signifi-
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cantly emotional events, and that the temporal relationship between the
activation of the amygdala and the hippocampus may be critical to the
outcome. More support for these ideas comes from two studies that exam-
ined the influence of amygdala activation on hippocampal LTP. Frey et
al., (2001) showed that temporally correlated stimulation of the BLA and
the PP can enhance the maintenance of DG-LTP. This form of heterosy-
naptic plasticity occurs on a weak decaying form of LTP, is optimal when
co-stimulation is applied within a narrow time window (5-15 minutes),
involves muscarinic and ß-adrenergic receptors, and depends on de novo
protein biosynthesis. Pape and Stork (2003) suggest that temporally cor-
related electrical activity in amygdaloid and hippocampal networks, such
as occurs, for instance, during theta waves, may facilitate this heterosy-
naptic plasticity. 

Furthermore, Seidenbecher et al., (1997) showed that LTP in the DG
of freely moving rats was reinforced after its induction by appetitive or
aversive stimuli (which are known to activate the amygdala). The efficacy
of these stimuli terminated about 1 h after tetanization, probably reflect-
ing time constants of the mechanisms underlying consolidation. 

D.3. The duration of amygdala activation 
The response to emotional or stressful experiences involves biphasic

secretion of the stress hormones in which norepinephrine represents the
first phase and glucocorticoids represent the second phase. The potent
effects of the stress hormones on learning and brain plasticity are pre-
sumably mediated by influences involving the amygdala (Cahill and
McGaugh, 1998; Liang et al., 1990; McGaugh, 2000; Roozendaal and
McGaugh, 1996). Norepinephrine has been shown repeatedly to be
involved in memory reinforcement of different behavioral tasks (Cahill et
al., 1994; McGaugh, 1989) and in the reinforcement of hippocampal LTP
(Izquierdo and Medina, 1995; Seidenbecher et al., 1997). Specifically, it
has been suggested that noradrenergic activation of the BLA may serve to
modulate memory storage and plasticity in the hippocampus (Ferry et
al., 1999; Frey et al., 2001; Ikegaya et al., 1997). 

The glucocorticoids have dose-dependent inverted U-shaped effects
on hippocampal LTP and memory (Kerr et al., 1994; Pavlides et al., 1993;
1995). It has been suggested that a functioning BLA is required for adre-
nal steroids to exert their influence on hippocampal memory storage
(Roozendaal et al., 1996; 1999; Roozendaal and McGaugh, 1997). 

In view of this, we hypothesized that norepinephrine is the main
mediator of the BLA rapid enhancing effect on hippocampal LTP and
that corticosterone mediates the BLA slower suppressive effect. However,
we found that the effects of both the priming and the spaced activation of
the BLA on hippocampal plasticity were mediated by norepinephrine
and corticosterone (Akirav and Richter-Levin, 2002). Because both neu-
romodulators seem to be involved in the enhancing as well as the depress-
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ing effects of the BLA, a third factor must be postulated that will define
whether an enhancement or inhibition of plasticity will take place. One
factor may be the duration of the stress hormones’ presence in the sys-
tem. Therefore, the effects of a brief exposure to these hormones may be
excitatory, whereas their prolonged presence in the spaced phase may
lead to the inhibitory effect. Hence, at the onset of an emotional event
the stress hormones may permissively mediate plasticity and lead to its
facilitation whereas their prolonged presence in the system may suppress
the cognitive response to stress. 

These ideas are supported by studies showing that the duration of cor-
ticosteroid action may be an important factor in the control of learning
and memory (Oitzl et al., 1998). It has been shown that whereas interme-
diate duration of corticosterone treatment or stress facilitated learning
(Luine et al., 1996; Shors et al., 1992), exposure to chronic stress or corti-
costerone treatment significantly impaired memory (Bodnoff et al., 1995;
Conrad et al., 1996; Dachir et al., 1993; Luine et al., 1996). For example,
in their study Vouimba et al., (submitted) showed that whereas exposure
to acute stress facilitated LTP in the entorhinal-basal amygdaloid nucleus
pathway, the exposure to a repeated stressor inhibited LTP in the DG and
inhibited long-lasting LTP (> 3 days) in the basal amygdaloid nucleus.
Furthermore, animals exposed to the repeated stress showed higher levels
of immobility than animals exposed to the acute stressor. 

D.4. The contextual input during the processing of information
Another factor that may determine amygdala-mediated cognitive per-

formance is the contextual input during the various stages of information
processing. The release of corticosterone in our water maze experiment
(hence the activation of MRs and GRs; Akirav et al., 2001) was within the
context of the learning situation and seemed to be essential for the con-
solidation of the learned information (Joels, 2001). Similarly, when corti-
costerone was injected immediately following training for a spatial task in
the water maze, performance in the task improved (Sandi et al., 1997).
However, when a lower dose of corticosterone was injected prior to the
retrieval test, performance in the task declined (de Quervain et al.,
1998). Thus, in addition to the amount of corticosterone, the temporal
relationship between GR activation and the behavioral task is important
(de Kloet et al., 2002; Oitzl et al., 1997; 1998).). In different hippocam-
pus-dependent tasks, the exposure to an unrelated stressor (e.g., foot
shock, exposure to an unfamiliar environment, etc.) interrupted the per-
formance in the learning task (Diamond et al., 1996; de Quervain et al.,
1998). It has been suggested that although GRs are necessary for consol-
idation of information, subsequent GR activation, when triggered by a
distracting stressor that is out of the context with respect to the original
learning task, disrupts ongoing consolidation and apparently influences
retrieval of previously stored information (de Kloet et al., 1999). 
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To summarize, exposure to stressors, and as a result activating the
amygdala and the release of the stress hormones out of the context of the
original learning task, may apparently lead to a completely different
behavioral performance than exposure to stressors that are within the
context of the learning experience. 

E. SUMMARY

The amygdala is necessary for the final memory seen with highly aver-
sive, emotionally arousing experiences. The exposure to a threatening or
stressful experience may result in increased motivation and arousal that
may facilitate cognition. Yet, it may also have a harmful effect on the organ-
ism’s cognition function and may enhance its susceptibility to disease. 

Direct manipulations of neural activity in the amygdala (e.g., with
electrophysiological stimulation) or indirect manipulations (with expo-
sure to behavioral stressors) have shown that the amygdala, using the
stress hormones, exerts a modulatory effect on the hippocampus, which
is directly involved in declarative memory consolidation. 

It seems that the behavioral expression of emotionally motivated
learning depends on the involvement of the amygdala during a narrow
and highly specific time window (Bianchin et al., 1999; Cahill and
McGaugh, 1998). Factors such as the intensity of the experience (which
may range from neutral to extremely strong) and the duration of the stress
hormones’ presence in the system (e.g., in an acute versus repeated stress
experience) may significantly determine the consequence of amygdala
influence on the consolidation of emotionally charged experiences. 
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