






cover and height to biomass and carbon esti-
mates (e.g., Anderson et al. 2018).

Pinyon-juniper carbon
Our results comparing the remotely sensed

pinyon-juniper percent cover product (Falkowski
et al. 2017a) with canopy cover estimates
from SageSTEP plots (McIver et al. 2014) are

consistent with previous validation work that
suggests a tendency of underestimation in high
cover areas (Poznanovic et al. 2014, Falkowski
et al. 2017a). This was particularly pronounced
in areas where SageSTEP plots measured >50%
cover (Appendix S1: Fig. S2). Our estimates
of pinyon-juniper canopy cover (mean � SE =
15.1 � 0.4, range = 0–65.8%, n = 855) are similar

Fig. 5. Estimated aboveground biomass carbon storage in the Great Basin (kg/ha) using mean estimates for the
three shrubland categories.
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to remotely sensed estimates of pinyon-juniper
systems in the Colorado Plateau (mean = 22%,
range = 0–58.9%; Huang et al. 2009) which used
a multiscale approach including field measure-
ments, airborne imaging, and Landsat satellite
data, suggesting that our estimates are a reason-
able representation of canopy cover at regional
scales.

Our estimate of total carbon in Great Basin pin-
yon-juniper systems (~11,883 � 7238 kgC/ha;
mean � SD of all pixels designated as pinyon-
juniper) is also within the range of Huang et al.
(2009) who estimated a total of 19,240 �
7400 kgC/ha (mean � SD) in pinyon-juniper sys-
tems in the Colorado Plateau, and this variation
could reflect actual differences in the pinyon-
juniper carbon contributions in these different
locations. Finally, our estimate of total pinyon-
juniper carbon in the Great Basin may also be con-
servative given the tendency of the canopy cover
map to underestimate the high cover field mea-
surements obtained from the SageSTEP project.

Although our canopy cover model may under-
estimate aboveground carbon, our land cover

map might overestimate the extents of woodland
ecosystems. This is because much of our pinyon-
juniper classification was based on data from
Falkowski et al. (2017a, b) where any pixel with
>0% pinyon-juniper cover was designated as pin-
yon-juniper. These designations superseded
cover classifications from LANDFIRE in order to
better capture the higher carbon content of trees,
and therefore, our maps likely represent the max-
imum land area of pinyon-juniper ecosystems
present in the Great Basin. This is illustrated in
the high amount of pinyon-juniper area in our
land cover map (16.9%) compared to the LAND-
FIRE map alone (8.2%). In addition, our land
cover map estimates 19.7% pinyon-juniper cover
compared to 14.6% in the same geographic area
in previous work (Bradley and Mustard 2008).
This overestimation, however, should have little
impact on the overall carbon estimate in the
Great Basin because areas of <5% pinyon-juniper
cover have carbon estimates similar to those in
shrubland ecosystems. While classifying all pix-
els with any pinyon-juniper vegetation as pin-
yon-juniper is useful for carbon estimates

Fig. 6. Regression of pinyon-juniper carbon estimates from our map compared to the National Biomass and
Carbon Dataset for a random sample (n = 855). There was a weak but significant positive relationship
(R2 = 0.147, P < 0.01).
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because they are the most significant contributor
to carbon on this landscape, this approach could
be problematic if used for mapping habitat for
pinyon-juniper specialist species.

Carbon in other land covers
Each of the remaining six land cover classes in

the Great Basin was given a static carbon esti-
mate based on field sampling (shrubland) or
remotely sensed products (forest). Estimates of
aboveground carbon for the low sagebrush and
sagebrush steppe shrubland categories are simi-
lar to estimates of aboveground biomass for
these shrubland ecosystems in previous work
(Rickard 1985, Bradley et al. 2006), and salt
desert is slightly higher (Driese and Reiners 1997,
Bradley et al. 2006). Because of the high variabil-
ity in the low sagebrush and salt desert shrub
ecosystems partially due to low sample size, we
also calculated aboveground carbon estimates
using a range of shrubland carbon values.

Overall aboveground carbon estimates ranged
from 284.0 Tg to 306.9 Tg when calculating
totals based on low and high shrubland carbon
estimates, suggesting that errors in the shrub
estimates have minimal effect on the estimate of
overall carbon in the Great Basin.
The forest land classification was assigned car-

bon values using remotely sensed aboveground
biomass data (Hudak et al., unpublished data),
and our estimate for forest aboveground carbon
is similar to previous estimates of forest carbon
(Kellndorfer et al. 2013; Fig. 7). While the non-
forest land cover category likely has more carbon
than the assigned 0 value, it is defined largely by
grassland and only accounts for 0.4% of the total
study area, suggesting that this land cover cate-
gory does not have a big impact on the overall
carbon storage within the Great Basin region.
While the excluded land cover category made

up roughly one-third of the Great Basin, we do
not expect that this will significantly impact the
overall aboveground carbon storage estimates.
Our excluded category included primarily agri-
culture, introduced grass, development, and
water. These vegetation types typically store
small amounts of aboveground carbon. For
example, in the Great Basin, introduced grass-
land is primarily cheatgrass which has above-
ground carbon typically below 1000 kgC/ha
(Bradley et al. 2006, Diamond et al. 2012, Kessler
et al. 2015). While on average, agriculture sys-
tems in the United States store some carbon, it is
typically harvested, resulting in little long-term
aboveground carbon storage.

Total Great Basin carbon estimates
Previous work by Kellndorfer et al. (2013) esti-

mated aboveground carbon storage in the Great
Basin at 161 Tg, but our regional estimate of car-
bon is nearly double this amount (295.4 Tg).
While the NBCD provides a baseline estimate for
carbon in the year 2000, and our data reflect car-
bon storage during roughly 2011–2014, the dif-
ferences in these carbon maps are not likely due
to actual changes in carbon storage alone.
Instead, our estimates are likely higher because
they focus on shrubland and woodland above-
ground carbon, which collectively make up 66%
of the land area (230.4 Tg C) in the Great Basin,
while Kellndorfer and colleagues only account
for carbon in forest designated pixels of the same

Fig. 7. For six land cover classes, we provided static
carbon estimates (stars; values in Table 1). The box-
plots show mean estimates of carbon from a random
sample of the NBCD (n = 4145). Most of the pixels in
the associated NBCD for these land cover types had
values of 0, with means ranging from 94 to 20,989 kg/ha.
All means (denoted by a line in each boxplot) in the
NBCD were lower than the static estimates with the
exception of the other/excluded and non-forest classifi-
cations. The stars represent the modeled mean for each
land cover type. The modeled mean for pinyon-juniper
is 12,222 � 7408 kgC/ha (mean � SD) and refers to
the mean of the 855 pinyon-juniper designated points
included in the comparison analysis.
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region. In addition, Kellndorfer and colleagues
reported a strong correlation between modeled
carbon and carbon measured in forested FIA
plots in the areas included in our Great Basin
study map (r = 0.44–0.86). However, the correla-
tion with our modeled pinyon-juniper data
(Pearson’s r = 0.38, n = 855, P < 0.001) was
weaker. These discrepancies are not surprising,
because most land within the Great Basin is not
considered forest (at least 10% tree cover), and
Kellndorfer et al. (2013) only mapped 1–65% of
their subregions within our study area. Plots typ-
ically must have at least 10% forest cover for a
forest designation in the FIA dataset, which was
used to train the NBCD (Kellndorfer et al. 2013).
Since nearly half (44%) of our pinyon-juniper pix-
els were estimated to have less than 10% cover,
their exclusion may be a major reason for the dif-
ferences in carbon accounting between the two
products. In fact, 20% of our randomly selected
pinyon-juniper pixels were identified as contain-
ing 0 kg C by Kellndorfer et al. (2013), likely
because they were not considered forest and
were not mapped. This suggests that national-
and global-scale carbon accounting products
focused on forest carbon are poorly suited for
estimating carbon in semi-arid ecosystems where
woodland and shrubland carbon storage may be
substantial. We recommend that researchers and
managers working on carbon storage in dryland
regions globally exercise caution when using for-
est-focused carbon maps.

Product applications and management
implications

The Great Basin is a region undergoing rapid
and extensive land cover change. In some areas,
expansion of woody vegetation, including pin-
yon-juniper woodland, is common (Miller et al.
2008, Wang et al. 2018). However, aboveground
carbon storage in ecosystems is increasingly
threatened by fire and conversion to non-native
annual grasslands (Bradley et al. 2006, Balch
et al. 2013) and has a history of large-scale alter-
ation of ecosystems due to livestock grazing
(Branson 1953, Hickey 1961, Mack and Thomp-
son 1982, Young et al. 1987). By creating a
robust, spatially explicit estimate of above-
ground carbon storage in Great Basin ecosys-
tems, this analysis provides an important first
step toward measuring and accounting for

carbon changes through degradation of this
extensive semi-arid region.
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