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Figure 10: Collaborative manipulation with long object (Arai et al., 2000) 

Consider a case when a person and a robot jointly hold a long wooden bar. The person holds the object 

of mass  at point , and the robot holds at point  (Figure 10). As the object moves in a horizontal 

plane, the object’s movement is described by: 

         (10) 

An impedance behavior comprising of mass  and viscous friction  will be described by 

      (11) 

Here  is very small when the sampling frequency is high enough, so the kinematic relationship 

between the center of mass  and the robot gripping point : 

     (12) 
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Replace Equations (11) and (12) into (10) results in: 
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The motion in x  - axis corresponds directly with the xhf  . Meanwhile, the normal acceleration ry  and 

angular acceleration   are coupled. With the case of long object, it is hard to apply a large torque at the 

end of the object, so here h  is assumed to be equal to zero.  Now, motion of the object in rotation and 

translation is given by equations (Arai et al., 2000): 
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    (14) 

Both the person’s intention of either rotation or translation the object cause the torque around z  axis at 

the robot’s gripping point R , this leads to sideslip of the object and complicates the manipulation (Arai et 

al., 2000). There are two principal ways to address this problem: first is applying additional constraints to 

the mobility of the robot or the interpretation of sensor data to get an unequivocal interpretation of the 

measure data, second is to estimating the human partner’s intent of movement then react according to 

(Yigit et al., 2004). An example of the former was a virtual non-holonomic constraints proposed in (Arai et 

al., 2000). In the movement of an object like a wheelbarrow any forces perpendicular to the object are 

interpreted as rotation and only translation along the x  axis is allowed. Although this approach has shown 
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to be able to move the object to any position, it would require the operator to combine a series of motion 

in order to perform a single movement. Also, it is not suitable in cases of a restricted workspace (Wojtara 

et al., 2009). Therefore, in this thesis the approach of a human intent recognition during collaborative 

manipulation is the focus.  
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CHAPTER 3 

METHOD 

This thesis focuses on human-robot collaboration of manipulation object task where a person and a 

robot jointly move an object. The robot is holding the object, a weighted board, and the person grasps 

the other end of the object with one hand (Figure 11). The desired path trajectory is not provided to the 

robot and the robot is not aware in advance whether the person intends to rotate or translate the object. 

The robot will rely on forces and torques measured by the robot at the gripping point of the robot to 

predict the person’s intended motion in real-time. HMMs are trained with a measured dataset and then 

are used for the robot to estimate the person’s intent of rotation or translation the object (details in 

section 3.1). After that, the robot will move to follow the person’s intention. An impedance controller is 

implemented to the robot for safe and compliant interactions. 

 

Figure 11: Human-robot collaboration in manipulation an object 

3.1 Robot testbed 

For the experiments, a KUKA LBR iiwa 14 R820 robotic arm is used (Figure 11). This is a light weight, 

7 degree-of-freedom robot arm with a rated load of 14 kg and a total weight of 29.6 kg. It is the latest 
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version of KUKA lightweight robot with high precision position and torque sensors and can be operated in 

both position control and impedance control modes. In addition, the robot arm also has joint toque 

sensors at every joint which enable the user to calculate the external force and torque at the end-effector 

point.  

KUKA Lbr iiwa 14 R820 system consists of four main parts (Figure 12). The manipulator is about 

1.3 m long and 29.9 kg heavy, has 7 revolute joints driven by brushless motors. The controller operates 

with KUKA Sunrise.OS which separates the operator control and programming of the robot system. The 

SmartPAD allows simple manual movements, starting robot applications, activating the safety 

configuration, jogging, teaching frames, polling inputs. Robot applications are programmed in Java 

language with KUKA Sunrise.Workbench software (Figure 13) in a development computer. 

 

Figure 12: KUKA Lbr iiwa system: 1 - Development computer; 2 - KUKA Sunrise Cabinet robot controller; 

3 - Manipulator; 4 - KUKA smartPAD control panel (Os & Workbench, 2014) 
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Figure 13: User interface Sunrise.Workbench. 1-Menu bar; 2-Toolbars; 3-Editer area; 4-Perspective 

selection; 5-Package Explorer view; 6-Application data and Object template views; 7-Tasks and Javadoc 

views; 8-Properties view (Os & Workbench, 2014) 

Designed to work with people, the robot has safety options including joint torque limit, which is 

used for safety of the project. The joint torque safety interface permits monitoring joint torques to ensure 

the external torque will not exceed the limit that may cause injury to the person. The main force the robot 

can exert is the twist about the Z axis. Therefore, the external torque safety is limited to 25Nm. With this 

value, in the worst scenario, the robot can only exert a force F = T/L = 25/0.571 = 43.78 N to the person 

(T: torque limit, L: length of the object). In addition, the maximum end-effector velocity is limited to 1500 

mm/s in this project. For physical gripping the object, a simple coupler which helps the robot grip an end 

of the bar is designed. The coupler uses magnets so that it can easily detach from the robot by a vertical 

force (Figure 14) 
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Figure 14: Coupler to connector board to robotic end effector 

3.2 Impedance control of robotic arm 

KUKA LBR iiwa has a KUKA Sunrise.Connectivity SmartServo interface which allows to set new end 

points of the robot’s end effector cyclically during the runtime of the robot motion (Figure 16). Using this 

interface, the robot’s end effector can be programed to move to new positions every a specific period of 

time. This is appropriate for implementing impedance control. The positions of the end effector will be 

updated at frequency of 100 Hz. In this project, the robotic arm is constrained to operate in the horizontal 

plane (Figure 15).  

 

Figure 15: Coordinate system for impedance control 
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Figure 16: Servo motion in application context. 1-create a new smart servo motion; 2-activate the servo 

motion; 3-get the run time; 4-set new end points cyclically; 5-end the servo motion (Kuka Sunrise 

Connectivity, 2014) 

A xyzR coordinate system is attached to the end-effector of the robot so that: the X axis is parallel 

to the object, R  is the robot’s gripping point. The robot can provide the forces xF  , yF  and torque zT around 

the vertical axis which is perpendicular to the xy plane. These values are also described in the end-

effector coordinate system xyzR . For compliant interaction, the impedance parameters are assigned 

respective to the end-effector frame ( xyzR ), not in the fixed absolute frame ( xyzB ) (Figure 17). So that 

these parameters are independent of the position of the end effector of the robot.  
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Figure 17: Coordinate systems on the robot 

A impedance control law for the movement of the end effector of the robot with mass and viscous 

friction behavior will be set as follows (Arai et al., 2000): 
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                                                                             (15) 

where xm , xb , ym  , yb  are mass and friction coefficients in x  axis and y  axis, i  and c are moment inertia 

and friction coefficient around R . Although the spring factor (stiffness) is usually included in impedance 

control model, here it is omitted because the effect of the spring factor makes the manipulation task 

difficult to execute (Ikeura & Inooka, 1995). The acceleration of robot’s end effector is: 
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The values of these coefficients are chosen to be as small as possible so that the object can move freely. 

The external force and torque at the end-effector of the robot are not measured directly. They are 

calculated through from the measured torques at each joint resulting in some errors and noise. 

Considering these errors, the impedance parameters cannot be chosen too small in order to keep the 

system stable (Table 2).  

Parameters Value 

( )xm kg  0.5 

( / )xb kg s  2.0 

( )ym kg  0.5 

( / )yb kg s  2.0 

2( . )i kg m  0.08 

2( . / )c kg m s  0.5 

     Table 2: Impedance parameters 

 

Figure 18: Dead-zone function 

To distinguish the error due to measurement and calculation versus force exerted by the person, a dead 

zone function is used before the forces and torques are fed into control Equation (16). The value of a  is 

chosen to be equal to 3 for xF  and yF (Figure 18) because without applying external force into the robot 
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these values range about from -3 to 3 N. As the torque zT  directly depends on measured torque at joint 

A7 of the robot (as shown in Figure 12), this value is more accurate. Therefore, a dead zone function is 

not needed for zT . The position reference of the end effector of the robot is obtained by integrating 

Equation (16) with a sample time of 10 milliseconds using Euler method.  
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According to Equation (16) the translation is controlled through yF , and the rotation is controlled 

through zT . In translation mode, the rotation is compressed by setting 0zT  ; and in rotation mode, yF is 

set equal to zero to avoid translation.  

3.3 Using HMMs to for intent recognition 

To integrate HMMs in KUKA system which is programmed by JAVA language, a HMMs library Jahmm 

0.6.1 – written in Java by Jean-Marc Francois and Willem V. Onsem was adopted. This library implements 

the Viterbi, Forward-Backward, Baum-Welch and K-Means algorithms for ergodic HMM model. The 

HMMs program is ran as a background task on the KUKA system. In KUKA system, background tasks are 

used to perform actions in the background and are parallel to a running robot application. Several 
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background tasks can run in parallel and independently to each other (Os & Workbench, 2014). There are 

two types of background tasks: 

 Cyclic background tasks which executed cyclically 

 And non-cyclic background tasks which executed only once 

The cyclic task is used for running online intent recognition task. The HMMs and switching function run in 

background to provide the recognition results which then are used by the impedance control program 

running as the main robot application. 

In this project, ergodic HMM models are chosen. Figure 19 shows an example of an ergodic three 

state HMM model, in which all transitions between each states are non-zero. The observations are 

continuous signal. Although it is possible to quantize the signals for the use of discrete HMMs, it would be 

advantageous to use HMMs with continuous observation densities (Rabiner, 1989). The data inputs are 

the torque in z  axis ( zT  ), torque in y  axis ( yT ) and the force in x - axis xF  (Figure 20). HMMs with 

multivariate Gaussian observation are used with each observation is a vector x : 

y

z

x

T

T

F

 
 


 
  

x       (20) 

The frequency of collecting data which is also the frequency of running HMMs for online intent recognition 

is 25 Hz. This frequency is high in comparison to human hand’s motion’s frequency which is up to 5 Hz 

(Flanagan & Johansson, 2002) (Samur, 2012). The combination of a series of observation vector over time 

creates an observation sequence.  

1 2{ , ,..., }nO  x x x      (21) 
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The observation output probability density matrix  ( )jB b x is form by multivariate Gaussian density

( )jb x  (with 1,2...,j N  ): 

   11 1
( ) exp

2(2 ) | |
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j j j
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x x μ Σ x μ
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where  

k

j Rμ : mean vector of probability density of state
thj   

k k

j R Σ  : covariance matrix of probability density of state
thj      

k : dimension of observation vector x  ( 3k   in this case) 

 

Figure 19: Example of an ergodic three state HMM model 
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Figure 20: Force and torque signals at the robot’s end-effector 

The initialization for HMMs parameters before training are found using K-mean cluster algorithm. 

First, the K-mean algorithm with the centroid distance will separate all observation vectors in the training 

data set into N data clusters ( N  is the number of states in HMMs). The observation output probability 

densities’ (Opdf ) parameters are found by fitting the data clusters. For example, mean and covariance 

of jOpdf  are found by fitting the data cluster
thj . To initialize the state transition probability matrix

{ }ijA a , all observation vectors in sequences are classified into each data clusters and given the state 

number according to their clusters they are belong to. Then numbers of transitions from the state i  to 

the state j  are counted. Finally, those numbers are normalize to get the values of ija . The initial state 

probability matrix { }i  is found by the similar method. First, all first observation vectors in each 

sequences of training data set are classified. The state numbers are given for each of first observation 

vectors according to the data clusters they belong to. The number of states appear as first state in 

sequences are counted, then are normalized to get i . 
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3.3.1 Using two HMMs with data collected in only impedance control 

During manipulation, the person has two basic intents: rotation or translation. Therefore, a HMM for 

each of the intent modes is needed: R  for rotation and T  for translation. Figure 21 shows the scheme 

of the intent recognition which includes feature extraction and intent classification.  

 

Figure 21: Intent recognition scheme 

For collecting data for training the HMMs offline, the robot is controlled with relatively low 

impedance control in horizontal plane and a high stiffness is set in vertical direction so that the robot can 

leverage the mass of the object. The data of force xF , yF , zF and torque xT , yT , zT at the gripping point of 

the robot (Figure 22) is collected at sample period of 40 milliseconds for each intent mode.  

 

Figure 22: Coordinate system at the robot’s gripping point (R) 
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Although it is common that the data is normalized before feeding into HMMs, in this project the 

force and torque data is not normalized because the input signals’ ranges are relatively the same. For 

training the HMMs, 90 data sequences were collected for each intent mode (Figure 23). 60 data sets are 

used for training the HMMs and 30 data sets are used for evaluating the models.  

  

Figure 23: Examples of translation and rotation sequences 

The length of sequences will be the number of data points in the sequences. For number of states, 

in general, there is no theoretical method for determining the number of states of HMMs (Rabiner, 1989). 

One may think of Bayesian information criterion (BIC). However, BIC only works well for optimizing a single 

HMMs with respect to computational effort, it is not in the case several HMMs work together (Nikolay 

Stefanov, Passenberg, Peer, & Buss, 2013). Therefore, in this project, the number of states of HMMs is 

considered through the accuracies on testing data sets.  

For online recognition, the observation sequences are extracted from real-time data. That means 

a new observation sequence is formed at each sample time of 40 milliseconds (frequency of 25 Hz) and 

then passed into the trained HMMs. This sample time is high in comparison to human hand’s motion’s 

frequency which is up to 5Hz (Flanagan & Johansson, 2002) (Samur, 2012). The HMM model with higher 

likelihood will define the intent mode of the subject. The output of the problem 1 will be the likelihood 
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that model ( , , )A B   generates the observation sequence 1 2{ , ,..., }TO o o o . Because this value 

could be very small, it is more convenient to use logarithmic scale ( | )LL O  . 

( | ) ln( ( | ))LL O p O         (23) 

That means the translation mode is true if ( , ) ( , )T RLL O LL O  . The similar holds for rotation mode. 

  

Figure 24: Intent estimation using two HMMs 

3.3.2 Using two HMMs and four HMMs with data collected in separate modes 

When using two HMMs as mentioned above, the training data is collected when the robot ran only in 

impedance control and without switching modes. Later the trained HMMs are used for recognizing the 

person’s intent then switching mode according to the intent. Because the training data and working data 

are at different conditions, the performance may decrease. This problem can be solved by collecting data 

in separate modes. First, a person intents do rotation and translation actions while the robot is running in 

rotation mode. The data for translation intent and rotation intent is collected. Latter, the person intents 

do rotation and translation actions while the robot is running in translation mode. The data for translation 

intent and rotation intent is collected. 90 sequences are extracted for each intent in while the robot is 

running in rotation mode. Similarly, 90 sequences are extracted for each intent in while the robot is 

running in translation mode. Two-thirds of these sequences are used for training and one third are used 

for testing to determine the appropriate HMM model. The observation sequence is extracted online, then 



 

39 
 

passed into the HMMs. The data is used for trained two HMMs ( R and T ). The intent recognition result 

is determined by comparison of the two likelihoods (Figure 24). 

Because of separate modes, two HMMs in rotation mode (
_T inR and

_R inR ) can be used when the 

robot is in rotation mode, two HMMs in translation mode ( _T inT  and _R inT ) can be used when the robot 

is in translation mode. In this case, the training data for two HMMs in rotation mode are collected as the 

person tries to do rotation and translation actions while the robot is running in rotation mode. Similarly, 

the training data for two HMMs in translation mode are collected as the person tries to do rotation and 

translation actions while the robot is running in translation mode.  

 

Figure 25: Intent estimation diagram using four HMMs 


