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ABSTRACT

THE ORIENTED-EDDY COLLISION MODEL

MAY 2012

MICHAEL B MARTELL JR

B.S., NORWICH UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor J. Blair Perot

The physical and mathematical foundations of the Oriented-Eddy Collision tur-

bulence model are provided through a discussion of the Reynolds averaged Navier-

Stokes (RANS) equations, probability density functions (PDF), PDF collision models,

Reynolds stress transport models (RSTM), and two-point correlations. Behavior of

the Oriented-Eddy Collision turbulence model near solid boundaries is examined in

depth. The Oriented-Eddy Collision turbulence model treats turbulence in a novel

way: the average behavior of a turbulent flow can be modeled as a collection of in-

teracting fluid particles, or eddies, which have inherent orientation. The model is

cast in the form of a collection of Reynolds stress transport models. Underlying this

approach is a unique PDF collision model that departs from more common PDF

methods as it includes orientation information along with the usual position and ve-

locity information. This adds important physics and differentiates it from other PDF

collision treatments that return RANS-type models.
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To operate in physical space, the model is cast as a unique decomposition to the

two-point velocity correlation transport equation. The Oriented-Eddy Collision tur-

bulence model accurately captures fast pressure-strain in rapid distortion, which is a

major shortcoming of nearly all Reynolds stress transport models. The Oriented-Eddy

Collision turbulence model contains no special provisions to satisfy realizability, and

maintains frame and coordinate invariance. Models to account for turbulent dissipa-

tion, diffusion, and system rotation are presented with canonical benchmark flows for

validation. Inhomogeneous, anisotropic cases are also considered. Model to capture

non-local pressure effects near solid boundaries are proposed in the form of turbu-

lent eddy reorientation schemes with associated Reynolds stress treatments. These

schemes aim to capture the asymptotic approach of the Reynolds stress components

and basic turbulent, wall-bounded flows are investigated as a means of validation.

Boundary conditions for solid and shear-free surfaces are discussed and several alter-

natives to the standard viscous diffusion model proposed.
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CHAPTER 1

INTRODUCTION

Capturing the behavior of turbulent flows is both a challenge and a necessity. Hun-

dreds of methods have been devised. Those based on Reynolds decomposition of the

Navier-Stokes equations (the Reynolds averaged Navier-Stokes, or RANS, equations

[70]) include zero-equation (so-called algebraic) models like Prandtl’s mixing length

model [67, 68] and the Cebeci-Smith [71] and Baldwin-Lomax [4] models, and one-

equation arrangements like the popular Spalart-Allmaras model [89] which is used

heavily in aeronautical flows. Two-equation models exist, such as the widely-used

K − ϵ [17, 29] and K − ω [17, 105, 104] models, and those proposed by Kolmogorov

[91, 32]. Following two-equation models are non-linear eddy viscosity models such

as the cubic K − ϵ model [11] and the v2 − f model [16]. Other RANS-based mod-

els include the relatively new and complex Reynolds stress transport (RST) models,

first proposed by Rotta in 1951 [79], as well as others, such as hybrid Reynolds av-

eraged Navier-Stokes / large eddy simulation models [20, 58] and probability density

function based methods [63, 64, 65, 66, 42, 100]. The most accurate methods are

computationally costly for many flows of interest, while faster methods often fail to

capture important physics or are unphysical in their predictions. All are subject to

certain restrictions such as realizability which can lend to a model’s complexity. Di-

rect numerical simulation of turbulent flows at the Reynolds numbers and scales that

interest most engineers are only now becoming feasible with current state-of-the-art

facilities. Such simulations are only computationally efficient for simple flows. As
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such, researchers must often rely upon experiment or turbulence models to answer

their questions about the nature of such flows.

Many mathematicians, scientists, engineers, and physicists have attempted to de-

scribe turbulent flows through various intuitions, simplifications, assumptions, tricks,

omissions, and ideas from other areas of research. Few have achieved models which

are predictive outside of specific flow regimes. The first models were based on phys-

ical intuition and careful observation. Osborne Reynolds’ landmark 1895 paper [70]

paved the way for nearly all modern turbulence models by introducing the then-novel

concept of decomposing pressure and velocity into mean and fluctuating components.

Taylor [96, 97] did pioneering work on describing turbulence using statistics, along

with Rotta’s work published in 1951 [79]. Many of the first turbulence models were

based on the hypothesis of eddy viscosity, which is physically incorrect and can lead

to inaccurate predictions of turbulent flows. A discussion of this is deferred to §D.1.

Models which use transport equations for the turbulent kinetic energy and length

scales can be better, but have difficulty solving the evolution of turbulent flows in

curvilinear domains or limits such as those described by rapid distortion theory. Rotta

[79] proposed the first model which attempted to explain the behavior of the Reynolds

stress tensor, which is a quantity that results from performing Reynolds averaging on

the Navier-Stokes equations (see §1.2.1). At the time (the early 1950s) the idea was

considered both brilliant and intractable (for practical flows, at least) as the method

introduced further equations to be solved (the components of the Reynolds stress

tensor) and greatly increased the cost of solving turbulent flow problems.

1.1 Turbulence

Before any turbulence modeling is discussed, it is necessary to understand the ba-

sic physical nature of turbulence and some observations that have been made about

its behavior. Although this is by no means an exhaustive survey of turbulent flow
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physics, it is instructive to introduce a few concepts. Many more complete reviews

of turbulence can be found in books by Pope [66], Durbin [17], Tennekes and Lumley

[98] and others. Turbulence is irregular fluid flow which is characterized by numerous

disparate length and time scales, as well as chaotic fluctuations inherent to it. Tur-

bulence develops from instabilities present in the flow, usually emanating from the

regions of flow close to objects or boundaries. Coherent structures exist in turbulence,

and are often called eddies, vortices, bursts, patches, streaks, and other imaginative

but descriptive names. Figure 1.1(a) illustrates the type of structures present in tur-

(a) A snapshot in time.

(b) A time average of Figure 1.1(a).

Figure 1.1. Results from direct numerical simulation of turbulent channel flow over
streamwise ridges, adapted from Martell [45].

bulent flows, in this case turbulent channel flow over an array of streamwise ridges

from a direct numerical simulation running at a fairly low Reynolds number (see

[44]). Non-uniform regions of high and low velocity are present, with certain struc-

tures seeming to grow outward from solid boundaries. Patches, streaks, and other

vaguely similar features populate the flow. It is difficult to exactly describe the na-
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ture of Figure 1.1(a), except perhaps to say it is chaotic or, of course, turbulent. The

contours are colored by streamwise velocity (in this case going into the page). The

top of the domain is bounded by a uniform solid wall while the bottom of the domain

has regions of solid boundaries (so-called no-slip boundary conditions where all fluid

motion comes to rest save for molecular motion) and regions of shear-free boundaries

which damp only wall-normal velocity. Figure 1.1(b), the time-averaged version of

Figure 1.1(a), is much easier to understand: The time-averaged velocity peaks near

the channel’s center, while it tends to zero near the top wall. Although surely not a

complete characterization of even the average behavior, looking at a turbulent flow

in such a way makes a description practical, is often employed in modeling efforts,

and served as partial inspiration for Reynolds’ averaging technique.

Turbulence is strongly rotational, fully three dimensional, and varies in time [66,

17, 105]. Another important aspect of turbulence is its unpredictability. Wilcox [105]

explains this tenet of turbulence by example: Suppose one were to observe a turbulent

flow’s evolution for a fixed amount of time, perhaps by inspecting the results of a

simulation with a given set of initial conditions (using a method which presumably

captured the physics of the process properly, such as direct numerical simulation,

discussed in §1.2.4). Then suppose a second identical simulation was performed (a

second realization), except the initial conditions were perturbed slightly. One might

expect nearly identical results after the same fixed observation period. This, however,

is not the case - the flow may (or may not) evolve in a drastically different manner.

This result, of course, is referring to the instantaneous flow field and not the statistics

of the flow field. This is a very important distinction to make, as the statistics of the

turbulence will tend to evolve in the same manner (otherwise turbulence modeling

would be a lost cause). Interestingly, this is true even of unsteady flows. Turbulence

is fundamentally a characteristic of fluid flows and not of fluid itself. Turbulence

is the result of highly complex non-linear interactions between the viscous and non-

4



linear inertial terms in the Navier-Stokes equations which come from the fully three-

dimensional vortical structure interactions found in any truly turbulent flow [98].

One of the most important and studied aspects of turbulent flows is the energy

cascade mechanism, first introduced by Richardson in 1922 [77]. The energy cascade

is responsible for transferring energy from the largest and most energetic turbulent

structures present in the flow downward to the smallest scales where viscosity dom-

inates and acts to dissipate energy [98, 66, 17, 105]. Note that there needn’t be a

“mean flow” present. Richardson hypothesized that the rate at which energy was

dissipated, ϵ, was dictated by the rate at which it was transferred to the flow, and

thus governed by the largest eddies in the flow, ϵ ∼ u3
0/L0. The largest eddies are

often comparable to the macroscopic scale of the flow (say, the channel height) and

are given characteristic length, velocity, and time scales of L0, u0 and t0 = L0/u0 re-

spectively. Note that a large eddy may contain many other eddies with length scales

smaller than its own [66]. The smallest scales were investigated and characterized by

Kolmogorov, and are dictated by the viscosity. Figure 1.2 shows a schematic repre-

sentation of the structural hierarchy thought to be present in a turbulent flow. The

large scale structures are created by shear present in the flow and “add” energy to

the cascade. Small structures are dissipated by viscosity and “take energy away”

from the cascade. Kolmogorov formed three hypotheses concerning the characteri-

zation of the smallest turbulent scales, which must similarly govern (or be governed

by) the rate at which energy is transferred into, and dissipated out of, the smallest

turbulent scales. Kolmogorov’s first hypothesis states that at high Reynolds num-

bers, the smallest length scales are much smaller than the largest, L << L0, thus

the small scale turbulent structures are statistically isotropic [66]. The second claims

that the flow statistics below a finite length scale are solely dependent on the kine-

matic viscosity ν and dissipation ϵ. From this, single length, time, and velocity scales

can be formed, namely the Kolmogorov length scale η = (ν3/ϵ)1/4, the Kolmogorov
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Figure 1.2. A schematic diagram of the eddy sizes present in a turbulent flow, along
with the length scales proposed by Richardson and Kolmogorov. Modern interpre-
tations of turbulence reveal this to be an oversimplified view of the energy cascade
mechanism in turbulence.

velocity scale uη = (ϵν)1/4, and the time scale tη = (ν/ϵ)1/2. From this conclusion

Kolmogorov further supposed that three length scale regimes existed at sufficiently

high Reynolds numbers, implying that L0 >> L >> η and, more importantly, that

this intermediate range of length scales (the inertial subrange) was characterized by

the dissipation ϵ alone and not affected by the viscosity [66]. This lack of dependence

on viscosity led Kolmogorov to conclude that dissipation mustn’t occur within this

subset of turbulent structures.

In between the largest and smallest turbulent scales, a mechanism exists to transfer

energy between various size structures down the cascade. This cascade is continu-

ous, and constitutes an energy spectrum present in the flow. Often, the concept

of a turbulent eddy is employed to visualize this and understand the phenomenon

more easily. Eddies of all sizes populate turbulent flows, the largest of which are

affected by the mean flow and the smallest of which are affected by viscous dissipa-
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tion. Operating under the hypothesis that a spectrum of energy across a range of

lengthscales (eddy sizes) exists, turbulence is often visualized in wave space, that is

the energy is represented as a function of wave number, which has units of inverse

length where the length can be considered the size of a representative turbulent eddy.

Keeping this in mind, energy at the highest wavenumbers very roughly corresponds

to that contained within the smallest eddies, while energy at the lowest wavenumbers

is contained within the largest eddies. Characterizing the way in which energy is

distributed throughout this spectrum, specifically through the inertial subrange, was

a task tackled originally by Kolmogorov [17]. Kolmogorov already believed that the

largest structures in the flow could not depend upon viscosity, and the smallest could

not depend on the flow geometry, leaving the inertial subrange, common to both the

large and small scale ranges, to be governed by the dissipation alone. Using this rea-

soning and applying dimensional analysis, Kolmogorov concluded that the energy of

an eddy in this range must be of order (ϵL)2/3 with L the eddy size. This became Kol-

mogorov’s law, stating that the energy of an eddy in the inertial subrange increases

with their length by L2/3. When translated into Fourier (wave) space, this expo-

nent becomes -5/3 [66, 17]. Figure 1.3 illustrates this concept, and introduces three

common families of turbulence models, Reynolds averaged Navier-Stokes (RANS),

Large-eddy simulation (LES), and direct numerical simulation (DNS). While useful

in understanding the role of kinetic energy in turbulence, modern interpretations of

turbulence reveal a more complex dissipation mechanism. Figure 1.3, portions of

which were adapted from the work of Perot and Gadebusch [20, 58], contains a few

new concepts. First, the shape of the energy curve E(κ), with wavenumber κ: The

majority of the energy in a turbulent flow is contained within the largest eddies (at

the smallest wavenumbers), shown by the peak. As the wavenumber increases and

eddy size decreases, the energy decreases. In homogeneous isotropic turbulence a

region exists where E(κ) appears linear on the log-log plot with a slope of approx-
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Figure 1.3. A log-log schematic representation of the energy spectrum E(κ) as a
function of wavenumber κ typically present in a turbulent flow. The locations of
minimum scales at which RANS, LES, and DNS are able to resolve adapted from
[20].

imately -5/3, which was expected. This region, often called the inertial subrange,

was investigated by Kolmogorov [17, 32] and forms the basis for the concept of a

turbulent energy cascade. It is within this region that the energy transfer mechanism

- the cascade - exists. Energy is not being added to the spectrum through shear, nor

is it being taken away through dissipation. It is simply being handed off, from one

scale eddy to another, down to the smallest scales. Another way to think of this is

that eddies in this range are not affected by eddies outside of this range, larger or

smaller [17]. Although the size, nature, and associated decay exponent of this region

are not universally agreed upon, its presence and importance to turbulent physics

are. Furthermore, mounting evidence suggests that this is an overly-simplistic view

of the structures present in a turbulent flow, and that in fact eddies within the inertial

subrange are surely affected by those outside of this range. Figure 1.3 contains three
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labels along the κ axis. These labels denote the extent to which the energy cascade,

and thus the physics of a turbulent flow, are modeled. For example, methods which

employ the Reynolds averaged Navier-Stokes equations (discussed in §1.2.1) model

all scales to the right of the label, that is to say they model the entire spectrum.

Large-eddy simulations (LES) resolve (i.e. solve for) the larger scales (to the left of

the label) while relying on a subgrid model for the scales to the right of the label.

Direct numerical simulation (DNS) numerically solves the equations which describe

turbulent fluid flow thereby resolving all relevant scales (one hopes) and requiring no

model. DNS and LES will be discussed in §1.2.4.

Much research has focused on characterizing and understanding the turbulent

energy cascade, and it has led to numerous insights about the physics of turbulence.

Several physical interpretations of the behavior of turbulent structures, including

vortex or eddy stretching, flow instabilities, complex folding and transformation of

structures, or random convection [17], all attempt to explain the mechanism by which

energy is transferred from the largest eddies downward to the smallest. This is brought

about by the interactions between structures at different sizes and energy levels.

Energy increases when vortices are stretched in the direction of the average velocity

gradient [105]. This is postulated to be the way in which larger eddies transfer energy

to smaller eddies, and so on down the energy cascade. This description of turbulence,

although incomplete, has aided in the development of turbulence models and furthered

understanding of the complex phenomenon.

1.2 Reynolds averaged Navier-Stokes Equations

A brief history of turbulence modeling, along with some fundamental mathe-

matics behind those efforts, is considered. By no means can an exhaustive survey

of turbulence modeling (or even a specific branch of turbulence modeling, such as

Reynolds stress transport models) be presented: it is clearly outside the scope of
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this paper. Instead, the information will serve as a means to contrast past model-

ing efforts with the Oriented-Eddy Collision turbulence model ideas which are taken

from collision models for probability density functions first investigated by Taylor

[96, 97], and extensively investigated by Perot, Pope, Van Slooten, Lundgren, and

others [63, 64, 23, 100, 42, 66].

1.2.1 Derivation

The Navier-Stokes equations exactly describe the motion of fluid but cannot be

solved analytically (the term “exactly” may be somewhat contentious, but it is an

operating assumption here). Direct numerical simulation (DNS) overcomes this issue

by solving the Navier-Stokes equations numerically. This method is the most accurate,

but suffers from an enormous computational cost and for many flows is intractable

even with today’s state of the art computational resources. Reynolds averaged Navier-

Stokes (RANS) approaches model the average behavior of turbulence but require

human intervention in order to be closed. These closure models lead to inaccuracies

in the predictions made by RANS approaches, but also make RANS approaches some

of the most computationally tractable methods available. Large Eddy Simulations

(LES) accurately solve for large scale motions present in the turbulent flow, but resort

to modeling for small scales. The method is less computationally expensive than DNS,

but still suffers from the inaccuracies present in modeling.

The incompressible Navier-Stokes equations, which govern all incompressible, vis-

cous fluid flows, serve as a basis for most turbulence models [17, 66, 105]:

∂ũi

∂t
+ ũj

∂ũi

∂xj

= −1

ρ

∂p̃

∂xi

+ ν
∂2ũj

∂x2
i

(1.1a)

∂ũi

∂xi

= 0 (1.1b)

where xi is a direction in space, ũi is the (total) instantaneous turbulent fluid ve-

locity, p̃ the total pressure, and ν the kinematic viscosity. Equation (1.1a) above
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represents conservation of momentum, while Equation (1.1b) comes about due to the

incompressibility of the fluid, which is equivalent to conservation of mass. For more

details on Reynolds’ derivation, see Appendix C. Equations (1.1a) and (1.1b) can

be further simplified by realizing that, by definition, the ensemble average (denoted

by an overbar) of the fluctuating component of the velocity is zero, u
′
i = 0 and the

ensemble average of the mean velocity is simply the mean velocity:

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂P

∂xi

+ ν
∂2uj

∂x2
i

−
∂u

′
ju

′
i

∂xj

(1.2a)

∂ui

∂xi

= 0 (1.2b)

Equations (1.2a) and (1.2b) represent the basic form of the Reynolds averaged Navier-

Stokes (RANS) equations. The last term in Equation (1.2a), ∂u
′
ju

′
i/∂xj, is the only

one that involves something other than the average velocity or pressure, ui or p. This

term originates from the convective derivative when expanding Equation (C.1a). The

term is the spatial derivative of the Reynolds stress tensor u
′
iu

′
j, and is the average

of the products of the fluctuating velocities present in the turbulent flow [17]. The

term is a rank two tensor, symmetric, and responsible for adding additional unknowns

to Equations (1.2a) and (1.2b), thus making the equation set unclosed. This term

represents the average effect of turbulent convection but is diffusive in nature, in this

case being responsible for diffusing momentum [17]. The thought of a convection

term diffusing is interesting, and is cause for further comment.

To better understand how a convective term might diffuse momentum, it is nec-

essary to make comments on the statistical nature of turbulence. Doing so is appro-

priate, as the formative ideas behind the Oriented-Eddy Collision turbulence model

involve equations which are governed by probability density functions. The topic will

be introduced here and expanded upon later. Taylor first related correlations to tur-

bulence, observing that turbulent motion was diffusive in nature similar to molecular
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diffusion resulting from random molecular motion [96]. Taylor went on to observe

that, while it had been known the average Reynolds stresses were proportional to

spatial velocity correlations, the relationship between temporal velocity correlations

and turbulent stresses plays a key role in defining relevant turbulent lengthscales

[97]. Durbin [17] provides a succinct description of this statistical relationship. If a

set of particles is considered with positions X(t), moved by some velocity u(t), the

trajectories of these particles represent a random collection of positions which have

inherent to them a probability distribution at any given position and time, f(x, t).

The evolution of f(x, t) is chosen to be the standard diffusion equation, namely

∂

∂t
f(x, t) = α

∂2

∂x2
f(x, t) (1.3)

with α as a diffusion coefficient. If the variance ofX(t) is defined asX2 =
∫∞
−∞ f(x)x2dx

then, recognizing that by definition x2f(x) = X2, one can multiply Equation (1.3) by

x2 and integrate. This yields dX2/dt = 2α, which shows that the ensemble average

of a convective quantity, in this case X2, can be diffusive in nature. Related to this is

the Langevin equation, which is relevant to any discussion of turbulence models which

employ PDFs. The Langevin equation is an ordinary differential equation which is

Lagrangian in nature. The Langevin equation follows the motion of something (a

particle, a volume of fluid) through time. The equation was originally developed to

describe the velocity of particles experiencing Brownian motion [40]. The equation

can also describe the velocity of a particle in a turbulent flow and, as stated above, is

related to diffusion processes, in this case turbulent diffusion of momentum [66, 23].

In general, the Langevin equation is a stochastic ordinary differential equation which

describes the physics of a continuous, stochastic (i.e. not deterministic) process that

has no history effects present [40]. Consider velocity u(t) as a discrete stochastic pro-

cess which is described by u(t+∆t) = ru(t)+sξ(t) with ξ(t) a standardized Gaussian

random variable with zero mean, unit variance, and one which is uncorrelated with
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itself in time (ξ(t)ξ(t+∆t) = 0) and uncorrelated with the velocity u(t) for all previ-

ous times, ξ(t+∆t)u(t) = 0 for ∆t > 0 [66]. It can be shown [17] that r = 1− dt/TL

as ∆t → dt with TL the Lagrangian integral time scale (Lagrangian because the corre-

lation function is that of a Lagrangian velocity) and s =
√

(1− r2)σ ≈
√
2dtσ, noting

that σ = u2, the variance of the fluctuating velocity. Substituting in r and s arrives

at u(t+∆t) = (1−dt/TL)u(t)+
√

2dt/TLσξ(t). Completing the transformation from

discrete to continuous and defining the infinitesimal increment du = u(t+ dt)− u(t)

[66], the Langevin equation is obtained [17, 66]:

du(t) = −u(t)
dt

TL

+

√
2u2

TL

√
dtξ(t) (1.4)

noting that the final term in Equation (1.4) may be re-written as
√
dtξ(t) = dW (t)

with W (t) being a Wiener process. A Wiener process represents the most basic

diffusion process with a zero drift coefficient and diffusion coefficient of unity [66].

Equation (1.4) is the stochastic differential equation representing a diffusion process

with drift coefficient −u(t)/TL and diffusion coefficient
√
2u2/TL. Equation (1.4) is

less complex than it appears: the first term simply relaxes u toward the mean value

while the second randomly perturbs u at regular intervals. The Langevin equation is

often employed as a means of numerically solving a PDF-based turbulence model as

will be discussed in Chapter 2. A discussion of the gradient diffusion hypothesis and

turbulent viscosity, while related to turbulence modeling, is tangent to this work and

thus presented in Appendix D.

1.2.2 Reynolds stress transport models

All zero-, one-, and two-equation models (see Appendix D) fundamentally rely on

the Boussinesq approximation (or some variant thereof) as a foundation for modeling.

The basic idea behind these efforts is that the Reynolds stresses are related to the

strain by the eddy viscosity, which is little more than a constant of proportionality re-
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liant on the flow under consideration [105]. For many simple flow situations, including

some which are important to engineers, this works well. The approximation (and thus

any model based on it) fails, however, in some other very important cases. Wilcox

and others [105, 66, 17] provide a succinct list of deficiencies: Any flow subject to

sudden changes in strain (to be precise, changes in the mean rate-of-strain) will cause

problems in eddy-viscosity based models. Curved surfaces, secondary flows, rotating

flows, fully three dimensional flows and any flow with a detached boundary layer also

present obstacles to such models. In addition, the eddy viscosity assumption forces

Reynolds stresses to change instantly when the strain changes, a restriction which

denies the possibility of a loss-of-equilibrium in the flow. A lack of equilibrium be-

tween the stress and mean rate-of-strain does in fact exist in flows such as fully three

dimensional boundary layers [17]. With such a wide variety of flow situations unsolv-

able by eddy viscosity models, it is no surprise that since the 1950s (and surely prior

to that) researchers have endeavored to find an alternative. Returning to the RANS

equations (Equations (C.1a) - (1.2b)) and developing a model for the evolution of the

Reynolds stresses u
′
iu

′
j themselves has a few automatic advantages: First, convection

and diffusion are accounted for and history effects of the flow can be realized more

accurately compared to classic two-equation models [105]. Also, curvilinear flows will

be captured exactly, and the previously assumed relationship between the stresses

and the strain is now obviated, meaning that non-zero Reynolds stresses may exist

even if the mean rate-of-strain is zero [94, 20, 66, 105].

The concept of modeling the transport of the Reynolds stress tensor Rij was first

explored by Rotta in 1951 [79]. Proposing a turbulence model that did not rely

on the Boussinesq approximation was a fairly new idea [105]. All stress-equation

models incorporate PDEs for the components of the Reynolds stress tensor u
′
iu

′
j [71]

or some variant thereof. Returning to the Reynolds averaged Navier-Stokes equations

(Equations (1.2a) and (1.2b)), an equation for the evolution of the Reynolds stresses
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the model captures the asymptotic approach of the Reynolds stress tensor components

reasonably well, as is demonstrated in Figure 6.2. The slope of the relevant Reynolds

Figure 6.2. A closer look at the near-wall asymptotic predictions of Reynolds stresses
in a turbulent channel flow. Data from Moser, Kim, and Mansour [49]: R11 (◦),
R22(△), R33(2), R12(3); compared to results from the model (—). Note that the
sign of R12 has been reversed to enable the use of a log plot.

stress tensor components matches data from Moser, Kim, and Mansour [49] quite

well. Furthermore, very close to the wall the magnitudes of R22 and R12 (noting its

sign has been reversed) agree reasonably well with DNS data. The magnitudes of

R11 and R33, however, are clearly under-predicted. Achieving the proper separation

of scales between R11, R22, R33, and R12 is difficult.

6.2 Discussion

The results presented above show that the Oriented-Eddy Collision turbulence

model is capable of returning a stable, reasonable prediction for the Reynolds stresses

which are the correct order of magnitude and exhibit the proper asymptotic approach

to the channel wall. Attempts to improve the accuracy of the model once the near-wall

reorientation schemes were developed and tested revealed many complications, some

132



of which are discussed at the end of Chapter 3. To begin with, while the standard

diffusion model is employed, the performance of the model is very sensitive to the form

of the turbulent viscosity and time scale. One or more additional production terms

for the eddy orientation vectors are required, the form of which is not entirely known.

The return-to-isotropy model for the eddy orientation vectors was also abandoned for

a novel, albeit expensive approach which was not affected by the coupling between

wall-normal eddy orientation vector production and wall-tangent eddy orientation

dissipation.

These numerous and occasionally major changes to the basic Oriented-Eddy Col-

lision turbulence model indicate that the original two-point correlation decomposition

presented in Chapter 2 may require alteration, or an entirely new decomposition may

be necessary. The crux of the issue lies in taking existing two-point correlation data

for a channel flow from Moser, Kim, and Mansour [49] and translating it in to the

decomposition employed for the Oriented-Eddy Collision turbulence model. This is

an inverse operation which is difficult and may yield many possible solutions. It

is no small undertaking, and is akin to the development of an entirely new turbu-

lence model, which would require tuning and testing with the benchmarks outlined

in Chapter 4.
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CHAPTER 7

IMPLEMENTATION

7.1 Overview

The majority of the initial effort in this project focused on implementing the

Oriented-Eddy Collision turbulence model in an open source collection of computa-

tional fluid dynamics libraries written in C++ called OpenFOAM. Rather than em-

ploying an in-house code, OpenFOAM was chosen to demonstrate that the Oriented-

Eddy Collision turbulence model - a complex, structure-based model - can be im-

plemented in a generic CFD framework with moderate effort. This stands in con-

trast to other structure-based turbulence models which often require complex, highly

customized software operate. Not only does OpenFOAM allow the model to be dis-

tributed widely, but also simplifies validation and benchmarking.

FOAM is unique in that much of the mathematical and numerical framework

required to perform advanced CFD is already in place, available for any user to copy

and modify for their own needs. Despite having a vast assortment of CFD-related

tools, solvers, and utilities, the latest versions of OpenFOAM have few Reynolds stress

transport model implemented. In fact, they often only contain two: The Launder,

Reece, and Rodi (1974) model and a variant, the Launder Gibson RSTM. Adding

the Oriented-Eddy Collision turbulence model to FOAM was not trivial. An entire

collection of transport equations must be carefully handled within FOAM, and the

Oriented-Eddy Collision turbulence model is the first of its type to be implemented

in any FOAM release. In its current form, the Oriented-Eddy Collision turbulence

model employs anywhere from 22 to over 1,200 eddies for simulations. The number of
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eddies available to the code is controlled by how the eddies may be arranged uniformly

on a unit sphere. See Chartrand [10] for more details. Figure 7.1 illustrates the

Figure 7.1. FOAM provides a vast collection of operators.

power of OpenFOAM in that the software provides a wide variety of useful operators

which eases the task of implementing a complex model such as the Oriented-Eddy

Collision turbulence model. The entry in Figure 7.1 constructs the original evolution

equation for qi, and is contained within FOAM’s “fvVectorMatrix” entity, the “fv”

indicating “finite volume”. Similar entities for tensors, “fvTensorMatrix” and scalars,

“fvScalarMatrix” exist. All terms on the left hand side of the equation are cast

implicitly, and as such are part of the matrix on the left hand side of the system to be

solved. This can be thought of as Ax = b with A a rank two tensor (matrix) which

must be inverted, x the vector of unknowns, and b the vector of knowns on the right

hand side. Operators such as“fvm::ddt” are easy to identify: “ddt” takes the time

derivative of its argument, in this “qiINT” which is the current eddy vector. Note

that transport equations such as this are constructed for eddy vectors, Reynolds stress

tensors, and in some cases the scalar kinetic energy for every eddy at every cell location

in the computational mesh. In FOAM, “fvm::” casts the operator in the “finite

volume method”, which essentially places the operator (and resulting term) on the left

hand (implicit) side of the equation, in A. For example, the Laplacian operator (used

for the viscous diffusion term) is cast implicitly for stability purposes. The “SuSp”

operator makes a decision about the location of the source term (and thus whether

it is cast explicitly or implicitly, placed in b or A) based on its sign. Alternatively,
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operators may be cast using “fvc::”, standing for “finite volume calculus”, which is

an explicit casting. This can be thought of as placing the resulting term in b. For

example, the convection term is handled with a call to “fvc::div”, which performs an

explicit divergence operation on the flux ϕ and the eddy vector. The eddy vector

production term −qkuk,i employs an explicit gradient operator (there is no such thing

as an implicit gradient operator) along with FOAM’s inner product, “&”. Finally,

explicit source terms such as the return-to-isotropy Ai and rotation term Bi, which

are constructed beforehand, can simply be added directly to the equation.

7.2 Storing eddy information

For every cell in a computational domain, there exists a collection of eddies in

that cell. For every eddy, there is an associated eddy vector which has an evolution

equation, an associated Reynolds stress tensor with an evolution equation, and a

scalar kinetic energy which has an evolution equation if the “qkR*” or “LkR*” model

variants are employed (see Appendix A). This concept is illustrated in Figure 7.2.

Three pointer lists, of length N (where N is the number of eddies originally seeded

Figure 7.2. Schematic diagram of a collection of eddies that may exist in some
turbulent flow. Note that each set of eddies exists at every cell in the computational
mesh.
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in the flow) are constructed. One is populated with FOAM’s “volVectorField” entity,

which stores a single vector at every cell location, responsible for handling the eddy

orientation vectors. A second contains a “volSymmTensorField” array, which stores

a six component symmetric tensor at every cell, handling the Reynolds stress tensor.

The third (when needed) is a FOAM “volScalarField” which, not surprisingly, stores

a scalar at every cell location, in this case containing the kinetic energy. A subtlety

arises when considering the way in which this information is accessed. If each pointer

list entry is assigned to a specific eddy, operations that span the entire computational

domain are performed one eddy at a time because the pointer lists are iterated through

on a per-eddy basis. To understand this, imagine selecting only the large, downward-

pointing eddy in Figure 7.2 at every cell location and then manipulating one of this

eddy’s associated quantities. The alternative of course it to pick one cell (perhaps

the center cell in Figure 7.2) and select every eddy at that cell, manipulating some

eddy’s associated value at that cell alone. This has advantages and disadvantages.

Accounting for the many, many tensors, vectors, and scalars in any given flow is

trivial, as each pointer list is of size N , each entry corresponding to the kinetic

energy for one eddy at each cell, one eddy orientation vector at each cell, or one

eddy’s Reynolds stress tensor at each cell. This makes performing averages over all

eddies as simple as a summation over all pointer list entries and a division by N.

This choice makes operations that must be performed on every eddy at a given cell

much more difficult, however. Such operations are rare but require extensive looping

over each pointer list at each cell location which is an expensive operation. One of

Figure 7.3. Using variable-sized pointer lists for per-eddy quantities in FOAM.
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the most powerful and useful features of OpenFOAM is the ability to access and

manipulate the components of a vector or tensor field across an entire mesh (i.e.

across all cells and boundary patches) without the need to explicitly access each cell

location. In fact, FOAM’s namesake, “field operation and manipulation”, betrays

the power of this ability and makes the implementation of such a complex model

much simpler in C++. Unfortunately, this feature may only be used if access to one

eddy’s components across the entire computational domain is required, and not the

opposite, where the component of all eddies at a single cell is required. In Figure

7.3, the pointer list addressing is illustrated. If it is sufficient to access a given eddy’s

components (or other associated entities, such as “correctBoundaryConditions”, a

function that updates or recalculates a field’s boundary values) the cell addressing

may be omitted altogether, greatly increasing the efficiency of all such operations.

7.3 Going beyond rank two tensors

The evolution equation the Reynolds stress tensor may includes a term that in-

volves the gradient of the Reynolds stress tensor, as shown in Equation (7.1). This

is a rank two tensor, and its gradient produces a rank three tensor. Unfortunately

rank three tensors are accommodated for in OpenFOAM. The templating is in place,

but no operators can handle such an entity, including the gradient operator. As such,

either the existing operator must be expanded to handle objects of the rank three

tensor type, or a custom function written that could perform the calculation required

in the model.

−D (ν + ν̂t)

[
Rij

K

]
,k

(K),k (7.1)

The first choice, extending the existing gradient operator to handle any rank two

tensor would require immense effort (to make this operator sufficiently general and

interface with the existing operator templates in OpenFOAM) and thus was deemed

more effort than it was worth. The second option, writing a custom function to
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perform the desired gradient in this model was instead completed. Specifically, the

function was created to calculate the inner product of the stress tensor gradient (a

rank three tensor) and the gradient of the kinetic energy (a rank one tensor) which

results in a rank two tensor. A code snippet from the function is provided in Figure

7.4. Future work on the Oriented-Eddy Collision turbulence model in OpenFOAM

may include the creation of a templated, generic gradient operator that can take a

rank two tensor as an input and return a rank three tensor.

Figure 7.4. An example of the custom function written for calculating the gradient
term from Equation (7.1). Note that looping over all cell locations may be avoided
in circumstances when access to one eddy at every cell is permissible.

7.4 Temporal stability

OpenFOAM has available a variety of time stepping schemes which are tied to

the way in which the transport equations are posed within the code. Such schemes

include simple Euler time stepping (which is by far the most commonly used option),

Courant number limited Euler (“CoEuler”), Crank-Nicholson, stabilized local time-

step (“SLTS”), the so-called “backward” scheme, and “local” Euler. Each will be

described briefly below:

• “Euler” - The basic Euler scheme is a first-order Euler implicit/explicit time

derivative using only the current and previous time-step values.
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• “CoEuler” - This is the Courant number limited first-order Euler implicit/explicit

time derivative. The time-step is adjusted locally so that the local Courant

number does not exceed some specified value. This scheme is meant to be used

for steady-state computations with transient codes where local time-stepping is

preferable to under-relaxation.

• “Crank-Nicholson” - This is the classic second-order Crank Nicholson implicit

scheme. It employs the current and previous time-step fields as well as the

previous time-derivatives.

• “SLTS” - This is the stabilized local time-step first-order Euler implicit/explicit

time scheme. In this case, the time-step is adjusted locally so that an advective

equations remains diagonally dominant. Again, this scheme is meant to be used

for steady-state computations which use transient codes. It is most appropriate

for cases in which local time-stepping is preferable to under-relaxation.

• “Backward” - This is the second-order backward-differencing time derivative.

The scheme uses the current and two previous time-step values.

• “Local Euler” - This is a local time-step first-order Euler implicit/explicit tem-

poral derivative scheme. Once again this scheme is meant to be used for steady-

state computations using transient codes.

The ”implicit/explicit” terminology can be somewhat obscure. How does a user

dictate the whether, say, their Euler scheme is implicit or explicit? The key lies in

the way in which the transport equation is cast inside FOAM, namely in the “fvS-

calarMatrix”, “fvVectorMatrix”, or “fvTensorMatrix” objects. These entities contain

transport equations (for a scalar, vector, and tensor, respectively) in matrix form.

These are the objects which are discretized spatially and temporally according to

rules established by the user. Terms cast in “fvm::” (finite volume method), like
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“fvm::ddt” or “fvm::Laplacian (the transient term and Laplacian operator, respec-

tively) are on the left hand side of the “fv*Matrix” entity and are time-stepped using

implicit Euler. The rest of the terms are either written directly or cast as explicit

operators using “fvc::” (finite volume calculus) such as “fvc::grad”, used to calculate

gradients. These are time-stepped using explicit Euler. Most terms written directly

can be made implicit source terms using “fvm::SuSp(α)” or ”fvm::Sp(α)”. The first

makes a decision about implicit/explicit treatment based on the sign of its argument

α; the second always casts its argument implicitly. Some operators, like the gradient,

do not exist in an implicit form in FOAM, thus programmers are limited as to which

terms in their transport equation can be cast implicitly.

At this point it may be appropriate to ask why OpenFOAM’s time derivative

schemes have been summarized, or at least why such a summary wasn’t placed in an

appendix. FOAM’s built-in time schemes are suitable for many applications, but the

Oriented-Eddy Collision turbulence model contains many numerically sensitive terms

in its myriad transport equations that cannot be cast implicitly. As such, one seeks

to increasing the stability of the explicit terms without resorting to a prohibitively

small time step is desirable. Schemes such as Runge-Kutta time advancement [80,

34] are appealing as they are widely employed and provide enhanced accuracy and

stability (depending on the order of the method). A low-storage, three step, second-

order accurate, mixed implicit/explicit Runge-Kutta scheme, similar to the method

employed by Martell [44] has been investigated as an alternative to schemes present

in OpenFOAM. The goal is to both develop and implement such a scheme which

can be folded into the existing FOAM time derivative schemes. Construction and

implementation of such a scheme is not trivial in OpenFOAM.

A method identical to that outlined by Martell [44] was first implemented into

OpenFOAM for use with the Oriented-Eddy Collision turbulence model. This method

was soon abandoned, however, as it was revealed that the method was in fact only
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first order accurate and may have handled implicitly cast terms incorrectly. A new

three-step, second-order accurate method was sought that could handle both implicit

and explicit terms properly. One possible solution is shown below:

• Step 1

ûn+1/2 = un

(
I − α1

∆t
2
L
) (

ũn+1/2−ûn+1/2

∆t/2

)
= S + C (un) + L (un)−G

(
p̃n+1/2

)
−
(
I − α1

∆t
2
L
) (

ûn+1/2−un

∆t/2

)
• Step 2

ˆ̂un+1 = 2ũn+1/2 − un

(I − α2∆tL)
(

˜̃un+1−ˆ̂un+1

∆t

)
= S + C

(
ũn+1/2

)
+ L (un)−G

(
˜̃pn+1

)
− (I − α2∆tL)

(
ˆ̂un+1−un

∆t

)
• Step 3

u∗n+1 = ˜̃un+1

(
I − α3

∆t
2
L
) (

un+1−u∗n+1

∆t/2

)
= S + C

(
˜̃un+1

)
+ L

(
ũn+1/2

)
−G (pn+1)

−
(
I − α3

∆t
2
L
) (

u∗n+1−ũn+1/2

∆t/2

)
Note that u is the velocity (or other quantity being advanced in time). The superscript

denotes the location of u in time: un is the known value at the previous time step,

ûn+1/2, ũn+1/2 ,̂̂ un+1, and ˜̃un+1 are intermediate quantities used by the RK3 scheme.

The same nomenclature is employed for the pressure p. C can be considered any

explicit term (in this case convection) with L any implicit term (in this case the

Laplacian operator). G is the gradient operator (which is explicit) and S is some

other source term. ∆t is of course the time step, I the identity tensor, and α1−3

numerical constants. The complication arises from the fact that, for a given sub-step,

C and L require different arguments. The method shown above should handle both
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implicit and explicit terms properly, provide second-order accuracy, and continue to

have a low storage profile.

There are generally two approaches to implementing a new feature in FOAM.

The first is to spend the effort of creating a generic, templated entity (in this case

a time derivative scheme), fold this code into the existing framework, and then call

the method. While more attractive to the general user, the time required to do

this is often not worth the reward. The initial RK3 scheme was directly coded in

to the Oriented-Eddy Collision turbulence model and employs FOAM’s Euler time

derivative scheme for temporal sub-stepping. FOAM stores the previous values for

a given entity (such as an eddy vector) making implementation easier. Old values

can be easily recalled, and in certain circumstances FOAM’s default behavior can be

overridden using the “.storeOldTime()” function. This was especially useful when

constructing the first RK3 schemes in OpenFOAM as there are a good number of

intermediate arrays to be stored for the Reynolds stress tensor, eddy vector, kinetic

energy, and velocity at each cell for every eddy. The close examination of near-wall

damping and reorientation, boundary conditions, and diffusion in Chapter 5, and the

subsequent changes made to the model and its implementation, halted development

of the new three-step Runge-Kutta time marching method. Temporal stability of the

model was greatly improved, allowing the basic Euler time marching scheme to be

employed for all benchmark cases.

The Oriented-Eddy Collision turbulence model was also implemented into an in-

house C++ code, “OEC++”, as a means of increasing performance for wall-bounded

flows and as an independent verification of the model outside of the OpenFOAM

framework. A portion of the channel flow effort was done using OEC++. This work

revealed that the difficulties experienced in capturing wall-bounded turbulent flows

were independent of implementation, and therefore a result of the model itself.
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CHAPTER 8

DISCUSSION & CONCLUSIONS

This work demonstrates the Oriented-Eddy collision turbulence model’s ability to

capture both equilibrium and non-equilibrium turbulent flows. In addition, the model

remains stable at long times and when subjected to highly anisotropic flow conditions.

The Oriented-Eddy Collision turbulence model precisely captures isotropic, homoge-

neous decaying turbulence as well as the rotating decay cases. Further refinement

of the dissipation-like term which handles frame rotation may result in predictions

even closer to experimental / direct numerical simulation data. The model is capable

of returning the theoretical solution to turbulent flows in the rapid distortion theory

limit, setting it apart from most other turbulence models. The inclusion of turbulent

structure information is imperative to capturing linear turbulence, and this physical

information is captured in the Oriented-Eddy Collision turbulence model by using

turbulent eddy orientation information. While adding to the overall cost and com-

plexity of the method, the benefits are obvious. Casting the Oriented-Eddy Collision

turbulence model in a form similar to familiar Reynolds stress transport models aids

comprehension and enables the user to employ traditional solution methods.

Basic turbulent flows over solid boundaries, including decaying turbulence near

a wall and turbulent channel flow, have been investigated as a means of validating

the theory developed in Chapter 5. Agreement was good for near-wall decay when

compared to direct numerical simulation data from Perot and Moin [60] at short times,

but limitations in the DNS domain size make long-time data difficult to assess. Larger-

domain DNS is required to complete this validation. Simulations of turbulent channel
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flow revealed weaknesses in the model which were not trivial nor related to tuning

alone. Efforts to accurately predict channel flow discovered and addressed many

issues with the Oriented-Eddy Collision turbulence model, but called into question

the two-point correlation decomposition which constitutes the basis of the model.

It should be noted that the Oriented-Eddy Collision turbulence model is an or-

der of magnitude more computationally demanding than existing Reynolds averaged

Navier-Stokes models. This implies that in a turbulent Navier-Stokes calculation,

the computational effort required to calculate the turbulence with the Oriented-Eddy

Collision turbulence model is now roughly equal to the computational effort required

to calculate the mean flow. This is not particularly expensive, and corresponds to

the appropriate level of effort considering the turbulence physics represents roughly

half of the total physics of most turbulent flow problems. The Oriented-Eddy colli-

sion modeling approach remains orders of magnitude less computationally demanding

than large eddy simulation (LES). The Oriented-Eddy collision modeling approach

therefore occupies a useful niche in the cost versus accuracy trade off, allowing much

higher levels of predictive accuracy than traditional Reynolds averaged Navier-Stokes

models at a cost significantly less than large eddy simulation.

Several modeling and development goals have been met, and are summarized here:

• The original Oriented-Eddy Collision turbulence model was evaluated for sta-

bility both far from and close to solid boundaries. Five different variants of

the model were developed with varying success. Eventually, the more complex

alternatives were abandoned for a simpler model which accounted for inhomo-

geneity. The final version is capable of performing well when subject to a battery

of canonical turbulent flows as well as several simple wall-bounded flows.

• New theory as to the the behavior of the Oriented-Eddy Collision turbulence

model near solid boundaries has been developed and tested. The model is

capable of predicting various turbulent quantities such as Reynolds stresses,
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kinetic energy, and dissipation with reasonable accuracy. It was discovered that

near-wall damping and reorientation plays a vital role in energy redistribution

amongst eddy orientation vectors and Reynolds stress tensors.

• Alternatives to the standard diffusion model, including statistical diffusion and

“average eddy” diffusion were developed and tested, with varying success. Even-

tually, the standard model was employed, with lessons learned about the be-

havior of turbulent viscosity in the model.

• The turbulent viscosity was scrutinized and completely reformulated to more

accurately capture near-wall physics.

• Boundary conditions for shear-free and no-slip surfaces were developed for the

eddy orientation vectors and Reynolds stress tensors. Solid boundary treat-

ments were tested using basic wall-bounded turbulent flows.

• Implementation of the Oriented-Eddy Collision turbulence model was refac-

tored, increasing the code’s efficiency and decreasing its length and code com-

plexity.

• The basis for the homogeneous version of the model has been explicated, and

the mathematical foundations of the new near-wall theory documented.

Several publications have directly resulted from this research, including The Oriented-

Eddy Collision Turbulence Model by Michael B Martell Jr and J Blair Perot, which

has been accepted for publication in the journal Flow, Turbulence, and Combustion.

This paper is the first to introduce the Oriented-Eddy Collision turbulence model to

the turbulence modeling community, and covers the basic formulation of the model as

well as canonical benchmarks. A second paper, The Oriented-Eddy Collision Turbu-

lence Model in Wall-Bounded Flows, is in progress for submission to the same journal.
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This second paper aims to summarize the progress made toward creating a structure-

based turbulence model which works in simple, wall-bounded flows. In addition, a

talk, “The Oriented-Eddy Collision Model” was presented at American Physical So-

ciety’s annual Division of Fluid Dynamics Meeting, in Baltimore, MD, in November

of 2011.

Finally, several lessons have been learned throughout the course of this research:

• Turbulence modeling is difficult, and no model is ever perfect or complete. The

Oriented-Eddy Collision turbulence model is no exception.

• Structure-based models, while more computationally expensive than classic

Reynolds averaged Navier-Stokes models, offer new hope in an old and tired

field of research. Although they fell out of fashion in the mid- to late 1990s,

they are returning, with new publications from E. Akylas, S.C. Kassinos, and

others. The ability to capture rapid pressure strain and non-local effects in

wall-bounded flows goes a long way toward a truly generic model.

• While the OpenFOAM framework is an excellent tool for computational fluid

dynamics, much effort was wasted in this project on implementation difficul-

ties. When developing and testing a new turbulence model - especially one as

complex as the Oriented-Eddy Collision turbulence model - it is best to use an

in-house code. Efficiency, parallelism, and other “high-level” concerns should

be addressed after the basic model is complete.

• If OpenFOAM is to become the de facto standard for research-level computa-

tional fluid dynamics, more effort must be placed on including higher-level time

marching schemes as well as the ability to handle and operate on tensors above

rank two.

• The quality and availability of either direct numerical simulation or experi-

mental data for basic, canonical turbulent flows is severely lacking. Without
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modern, well-documented, accurate benchmarks, turbulence modeling is greatly

impeded.

• A negative result is often more useful than a positive result.
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APPENDIX A

MODEL VARIANTS

A.1 The “qR” model

The original Oriented-Eddy Collision turbulence model is presented here, begin-

ning with the transport equation for the eddy orientation vector qi, as a means of

comparison for variants considered later in this section:

qi,t +∇ · (ujqi) = (A.1a)

− qkuk,i (A.1b)

− 1

3

(
ανq2 +

1

τR

)
qi (A.1c)

− (Ai + CΩqi) (A.1d)

+
1

3
[(ν + νT ) qi,k],k (A.1e)

+Wi (A.1f)

with Expression (A.1a) the material derivative of the eddy vector qi, Expression

(A.1b) the production term, Expression (A.1c) the dissipation with eddy turnover

time,

1

τR
=
(
Kq2

)1/2
(A.2)

Expression (A.1d) is the return-to-isotropy model,

Ai = − 1

τR

(
CQ

1 + CBν/νT

)[
3
qiqk

q2
− δki

]
qk (A.3)
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and the rotation model,

− 1

τR

[
(qkΩ∗

k)
2/q2

20q2K + 0.25(Ω∗
k)

2

]
qi (A.4)

with Ω∗
k = ϵijkuk,j + Ωi. Expression (A.1e) accounts for viscous diffusion, a trouble-

some term which will be discussed in detail later (§3.3). Turbulent viscosity is defined

as

νT =

(
K2

Kq2

)1/2

(A.5)

Note that Wi (Expression (A.1f)) was added to represent the near-wall reorientation

necessary to achieve the proper asymptotic behavior of qi and Rij as they approach

a solid boundary. This is discussed in §5.3.1.

The evolution equation for the Reynolds stress tensor is cast as:

Rij,t +∇ · (ukRij) = (A.6a)[
ui,k +

(
qiql
q2

− δil

)
2u∗

l,k

]
Rkj +

[
uj,k +

(
qjql
q2

− δjl

)
2u∗

l,k

]
Rki

(A.6b)

−
(
ανq2 +

1

τR

)
Rij (A.6c)

− Aij (A.6d)

+Mij (A.6e)

+ [(ν + νT )Rij,k],k (A.6f)

−D (ν + νt)

[
Rij

K

]
,k

(K),k (A.6g)

− E (ν + νt)
(K),k
K

(K),k
K

Rij (A.6h)

+Wij (A.6i)

with return to isotropy and the orthogonality term defined as
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Aij =
CAij

τR

(
νT

νT + CDn
A ν

)[
Rij −K

(
δij −

qiqj
q2

)]
(A.7)

Mij =

(
Rlj

qi
q2

+Rli
qj
q2

)
(Al + CΩql) (A.8)

again noting that Wij (Expression (A.6i)) has been added to the Reynolds stress

equation to represent the wall reorientation applied to the tensor as a result of eddy

vector rotation (Wi, Expression (A.1f)) and the orthogonality constraint. This term

and its variants are discussed in §5.3.1. The expressions preceded by the constants D

and E (terms (A.6g) and (A.6h), respectively) warrant discussion. The first involves

the gradient of the Reynolds stress tensor. For models without normalized stress

tensors these terms are

−D (ν + νt)

[
Rij

K

]
,k

(K),k (A.9)

and

−E (ν + νt)
(K),k
K

(K),k
K

Rij (A.10)

in the Reynolds stress equation (for both models based on qi and qi/q
2 = Li). For

those involving the normalized Reynolds stress tensor R∗
ij = Rij/K (which will be

introduced shortly), the term of interest in the Reynolds stress equation is

(2−D) (ν + νt)
[
R∗

ij

]
,k

(K),k
K

(A.11)

The terms in the Reynolds stress equation (Expressions (A.9) and (A.10)) and by ex-

tension that in the normalized Reynolds stress equation (Equation (A.22)) come from

expanding the last term in the original Oriented-Eddy Collision turbulence model

model formulation and help ensure the near-wall asymptotic behavior of the model.

Note that D is often chosen to be 2, thus eliminating the extra term in the R∗
ij evo-

lution equation, which is desirable considering it can cause numerical difficulty near

walls. E is chosen to be zero in an attempt to ensure that q2 (the average eddy vector

magnitude) approaches a solid boundary like (2/α) /y2 where α is a tunable constant,
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usually set to α = 15.0. Note that OpenFOAM currently does not support tensors

above rank two, the implementation of terms which employ such tensors is discussed

in §7.3. This early version of the Oriented-Eddy Collision turbulence model differs

little from the version used at present.

A.2 Moving from “q” to “L”

At a shear-free (slip) wall, turbulent eddies may align themselves to be tangential

to (in the plane of) the wall and the magnitude of the eddy should remain unchanged,

making this type of boundary condition somewhat easier to understand. No-slip

wall boundary conditions for the eddy orientation vectors qi present a conundrum.

Intuitively, one might suspect that the size of a turbulent eddy approaches zero as the

eddy approaches a no-slip wall. This, however, implies an infinite boundary condition

on qi (which, recall, has units of inverse length). This is of course not feasible. In

an attempt to avoid this problem, the Oriented-Eddy Collision turbulence model was

once again re-cast to evolve the eddy length itself, Li = qi/q
2, which has units of

length and thus can be set to zero at no slip walls. It was suspected that this form

of the Oriented-Eddy Collision turbulence model would be stable at solid boundaries

and numerically tractable. Evolving a quantity like the eddy vector qi is troublesome

as the quantity goes to infinity at a solid boundary if the eddy length scale goes to

zero. This is a problem separate from non-local pressure effects, which are addressed

in Chapter 5.

The requirement of infinite boundary conditions applied to the eddy orientation

vectors qi led to the re-casting of the Oriented-Eddy Collision turbulence model in

terms of Li = qi/q
2 which has solid boundary conditions of Li = 0. Note that a

hat ˆ indicates a model quantity based on Li rather than qi. The derived evolution

equation for the new eddy vector:

152



DLi

Dt
= −

(
δin − 2

LnLi

L2

)
(Lkuk,n)

+
1

3

(
αν

(
1

L2

)
− 2ν

|L|,k|L|,k
L2

+
1

τ̂R

)
Li

−
(
δin − 2

LnLi

L2

)(
Ân + ĈΩLn

)
+

1

3
[(ν + ν̂T )Li,k],k + Ŵn (A.12)

with Ŵn once again representing the near wall rotation term, discussed later. Note

the addition of 2ν
|L|,k|L|,k

L2 in the dissipation term of Equation (A.12) which comes

from converting the qi evolution equation to one which uses Li. Similar to its original

form, the return to isotropy model is written as:

Ân =
CAi

τ̂R

[
ν̂T

ν̂T + CDn
A ν

] [
3N̂kn − δkn

]
Lk (A.13)

with the isotropy tensor N̂kn is now defined as

N̂kn =

(
LnLk

(L2)2

)
(

1
L2

) (A.14)

and the turbulent viscosity is cast as

ν̂T =

(
K2(
K 1

L2

))
1
2

(A.15)

The time scale is now written

1

τ̂R
=

(
K

(
1

L2

)) 1
2

(A.16)

The system rotation term for the Li-based model becomes

ĈΩ =
1

τ̂R

{
(LkΩk

∗)2/L2

20.0
(

1
L2

)
K + 0.25(Ωk

∗)2

}
(A.17)
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Note that 1
3

(
αν
(

1
L2

)
− 2ν

|L|,k|L|,k
L2 + 1

τ̂R

)
Li in Equation (A.12) above is an approxi-

mation. The exact derivation (or conversion) from the qi-based model to the Li-based

model returns a dissipation term similar to that in the original casting of the model,

namely

1

3

(
αν

(
1

L2

)
+

1

τ̂R

)
Li

with several additional terms added the Li evolution equation:

−2

3
(ν + ν̂T )

1

L2

(
L2
)
,k
Li,k +

2

3
(ν + ν̂T )L

2

{(
Ln

L2

)
,k

(
Ln

L2

)
,k

}
Li (A.18)

With the above model for the eddy length scale Li, a corresponding model for the

Reynolds stress tensor, now based on Li, can be constructed:

DR̂ij

Dt
=

[
ui,k +

(
LiLl

L2
− δil

)
2u∗

l,k

]
R̂kj +

[
uj,k +

(
LiLl

L2
− δjl

)
2u∗

l,k

]
R̂ki

−

(
αν

(
1

L2

)
+

1

τ̂R

)
R̂ij − Âij + M̂ij +

[
(ν + ν̂t) R̂ij,k

]
,k

(A.19)

−D (ν + ν̂t)

[
R̂ij

K

]
,k

(K),k − E (ν + ν̂t)

[
R̂ij

K

]
,k

(K),k + Ŵij

Note the similarities between the version of the stress tensor evolution equation based

on the original eddy vector qi and its current form. The return to isotropy of the

Reynolds stresses based on Li is written as

Âij =
CAij

τ̂R

{
ν̂T

ν̂T + CDn
A ν

}[
R̂ij −K

(
δij −

LiLj

L2

)]
(A.20)

and the corresponding orthogonality term

M̂ij =
(
R̂ljLi + R̂liLj

)(
Âl + ĈΩLn

)
(A.21)
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A.3 Adding kinetic energy

While the use of Li in place of qi avoided the infinite boundary condition conun-

drum, stability of the model in wall-bounded flows was still difficult to attain. In an

attempt to ensure stability at solid boundaries, the Oriented-Eddy Collision turbu-

lence model model was again recast to evolve the Reynolds stresses normalized by the

kinetic energy, R∗
ij = Rij/K. This necessitated an evolution equation for the kinetic

energy K in addition to those for qi and R∗
ij. The eddy orientation vector equation

was unchanged by this operation and in addition was not suspected as the reason for

near-wall instability. An evolution equation for the normalized Reynolds stress tensor

R∗
ij was adopted:

∂R∗
ij

∂t
+∇ ·

(
ukR

∗
ij

)
= P ∗

ij − A∗
ij +M∗

ij +∇ · (ν + νt)∇R∗
ij

+(2−D) (ν + νt)
[
R∗

ij

]
,k

(K),k
K

+W ∗
ij (A.22)

and the evolution equation for the kinetic energy was derived as:

∂K

∂t
+∇ · (ujK) =

[
ui,k +

(
qiql
q2

− δil

)
2u∗

l,k

]
Rki −

(
ανq2 +

1

τR

)
K

−A∗
kk +M∗

kk + [(ν + νT )K,k],k − E (ν + νT )
(K),k(K),k

K
(A.23)

noting again that the equation for qi is unaltered. In Equation (A.22), P ∗
ij a modified

form of the production term:

P ∗
ij =

[
ui,k +

(
qiql
q2

− δil

)
2u∗

l,k

]
R∗

kj

+

[
uj,k +

(
qjql
q2

− δjl

)
2u∗

l,k

]
R∗

ki (A.24)

which is the same as Pij (Expression (A.6b)) except it involves R∗
ij as opposed to Rij.

The same is true for the modified orthogonality term M∗
ij:
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M∗
ij =

(
R∗

lj

qi
q2

+R∗
li

qj
q2

)
(Al + CΩql) (A.25)

which is simply the orthogonality termMij (Expression (A.6e)) operating on R∗
ij. The

eddy orientation vector equation remains the same thus both the eddy orientation

return-to-isotropy term and system rotation term CΩql are unchanged. The Reynolds

stress return to isotropy term A∗
ij is slightly different from the one found in the original

Oriented-Eddy Collision turbulence model model (Expression (A.6d)) and is shown

below:

A∗
ij =

CAij

τR

[
νT

νT + CDn
A ν

] [
R∗

ij −
(
δij −

qiqj
q2

)](
K

K

)
(A.26)

noting that the average kinetic energy K is normalized by the local (per-eddy) kinetic

energy K = 1
2
Rii. The “extra” term in the kinetic energy equation is

−E (ν + ν̂T )
(K),k(K),k

K
(A.27)

and comes from the corresponding terms in the Reynolds stress evolution equation,

Equations (A.9) and (A.10). The near-wall reorientation term W ∗
ij is identical to Wij

except it now operates on R∗
ij rather than Rij. Again, this term is addressed in §5.3.1.

Evolving R∗
ij allows the per-eddy Reynolds stress Rij to be calculated via Rij = R∗

ijK

which does not present problems when K = 0. Once completed, the new qi, K, R∗
ij

(“qkR*”) casting of the Oriented-Eddy Collision turbulence model was tested using

the same basic cases that were employed for the original qi, Rij (“qR”) model. Results

from the two models matched closely for all benchmark cases (discussed in Chapter

4) and are presented later in this chapter (see Figure A.1).

A.4 Combining the two ideas

A fourth version of the Oriented-Eddy Collision turbulence model which combines

the new eddy orientation vector Li and the normalized Reynolds stress tensor Rij
∗
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was created in hopes that the two variations would provide the most stability near

solid boundaries. The equation for the evolution of Li is again unchanged (as was the

case with the transition from “qR” to “qkR*”), but the Reynolds stress and kinetic

energy evolution equations are obviously affected. Note that terms which are both

normalized by the kinetic energy K and are based on Li carry both a hat ˆ and an

asterisk. Keeping this in mind, the Reynolds stress evolution equation takes a familiar

form:

DR̂∗
ij

Dt
=

[
ui,k +

(
LiLl

L2
− δil

)
2u∗

l,k

]
R̂∗

kj +

[
uj,k +

(
LjLl

L2
− δjl

)
2u∗

l,k

]
R̂∗

ki (A.28)

− Â∗
ij + M̂∗

ij +
[
(ν + ν̂t) R̂

∗
ij,k

]
,k
+ (2−D) (ν + ν̂t)

[
R̂∗

ij

]
,k

(K),k
K

+ Ŵ ∗
ij

Once again D and is a numerical constant typically set to D = 2, thus zeroing second

to last term in the evolution equation and avoiding potential numerical stability issues.

The return to isotropy term for the Reynolds stresses corresponding to the normalized

stress tensor model based on Li:

Â∗
ij =

CAij

τ̂R

{
ν̂T

ν̂T + CDn
A ν

}[
R̂∗

ij −
(
δij −

LiLj

L2

)](
K

K

)
(A.29)

with the orthogonality term written as

M̂∗
ij =

(
R̂∗

ljLi + R̂∗
liLj

)
(Âl + ĈΩLn) (A.30)

As was the case with the previous normalized stress tensor variant of the Oriented-

Eddy Collision turbulence model, an evolution equation for the kinetic energy K is

required. In this case, this equation is constructed using the new eddy orientation

vector Li:
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DK

Dt
=

[
ui,k +

(
LiLl

L2
− δil

)
2u∗

l,k

]
R̂ki −

(
αν

(
1

L2

)
+

1

τ̂R

)
K − Â∗ + M̂∗

+ [(ν + ν̂T )K,k],k − E (ν + ν̂T )
(K),k(K),k

K
(A.31)

where Â∗ = (1/2)Âii
∗
and similarly M̂∗ = (1/2)M̂ii

∗
. Unfortunately, as was the

case with the other forms of the Oriented-Eddy Collision turbulence model model

variants, the “LkR*” version was also unstable when simulating simple wall bounded

flows. The high Reynolds number shear flow of Matsumoto et al. [47] was employed

to validate the derivations and implementations of the model variants. Figure A.1

shows a comparison of each model variants’ performance: §4.6 presents additional

Figure A.1. Anisotropy data Aij =
(
Rij/K

)
−2δij/3 at ReT = 152 from Matsumoto,

Nagano, and Tsuji [47]. A11 (◦), A22(△), A33(2), A12(3); compared to results from
the Oriented-Eddy Collision turbulence model: “qR” (—), “LR” (- - -), “qkR*” (· · · ),
“LkR*” (–·–).

data from Matsumoto, et al. as a means of validating the current version of the

Oriented-Eddy Collision turbulence model in the presence of shear. As seen in Figure

A.1, the three additional models match the original “qR” variant: “qkR*”, which

normalizes the stress tensor by the kinetic energy and has a transport equation for
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the kinetic energy, “LR” which used the eddy length vector Li rather than the original

qi, and “LkR*” which employs both the eddy length vector Li and the normalized

stress tensor Rij∗ = Rij/K. The four model variants are stable (even over long

periods of time) and return solutions within 2% of one another and within 5% of the

shear data.
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APPENDIX B

HOMOGENEOUS INITIAL CONDITIONS

The initial conditions for the eddy orientation vectors and stresses must be ad-

dressed. In theory, the more orientations used in the model, the better the repre-

sentation of the underlying physics. Based on the number of eddies N , each cell in

the computational domain is populated with N Reynolds stress tensors, and N eddy

vectors. For isotropic initial conditions, the eddy orientations are sampled uniformly

on a sphere. The magnitude of the eddy vectors governs the dissipation, so these vec-

tors must initially be scaled to have the correct magnitude for a given initial kinetic

energy and Reynolds number. The initial eddy vectors are scaled by the positive root

to the following quadratic equation (with roots β):

[
ν
(
q2K0

)
α
]
β2 +

[(
K0
) 3

2
q2

1
2

]
β =

(K0)
2

νReT 0 (B.1)

where K0 and ReT
0 are the average initial kinetic energy and turbulent Reynolds

number. Recall that the average eddy magnitude is calculated by q2 = 1
N

∑
q2.

The Reynolds stresses are set by the initial average Reynolds stress tensor R0
ij and

the corresponding eddy orientation by the equation

Rij
IC = 3

[
R0

ij −
qkqi
q2

R0
jk −

qkqj
q2

R0
ik +

qsR0
stqt

q2
δij

]
− 3

2

(
δij − qiqj

q2

)
R0

kk (B.2)

These initial stresses are always orthogonal to the corresponding orientation. They

have the correct kinetic energy for each orientation in as much as they sum to the
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initial Reynolds stress (R0
ij) when the orientations are distributed on a sphere (that

is, when they are isotropic).

For the model variants which employ the alternate length scale Li (the “LR” and

“LkR*” models), Equation (B.2) can be replaced by

[
ν
1

N

∑((
1

L2

)
K0

)
· α

]
β2 +


(
K0
) 3

2

|Li|

 β =

(
K0
)2

νReT
0 (B.3)

again noting that with |Li| = [(1/N)
∑

(L2)]
1
2 similar to the equation for q2 above.

If the orientations are initially isotropic then

Nik =
1

N

∑ qiqk
q2

=
1

3
δik (B.4)

and the desired Reynolds stress initial condition is recovered. If the orientations are

not initially isotropic, the desired Reynolds stress initial condition is only approx-

imately reproduced. Again for the for the “LR” and “LkR*” variants, the initial

Reynolds stresses are:

Rij
IC = 3

[
R0

ij − Li ·
(
R0

jk · 1
Lk

)
− Lj ·

(
R0

ik · 1
Lk

)
+ Ls ·

(
R0

st · 1
Lt

)
· δij
]

− 3
2

(
δij − LiLj

L2

)
·
(
R0

kk

)
(B.5)

The turbulent Reynolds number ReT
∗ is recalculated once it is employed for the initial

eddy vector and stress tensor scaling:

ReT
∗ =

K
2

νϵ
=

K
2

ν
[

1
N

∑
(q2K) να+K

3
2 |qi|

] (B.6)
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And for the “LR” and “LkR*” model variants:

ReT
∗ =

K
2

νϵ
=

K
2

ν

[
1
N

∑(
K
L2

)
να+ K

3
2

|Li|

] (B.7)

The somewhat unusual form of the turbulent Reynolds number formulations in Equa-

tions (B.6) and (B.7) comes from the fact that the Oriented-Eddy Collision turbulence

model has no specific prescriptions for the dissipation ϵ, thus requiring the complex

denominator that accounts for both the low and high Reynolds number expressions

for the dissipation.
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APPENDIX C

REYNOLDS AVERAGING

Reynolds [30] realized that the instantaneous turbulent velocity ũi can be broken

into two components, the average velocity ui and the fluctuating velocity u
′
i such that

ũi = ui + u
′
i [17, 66]. This definition can be substituted into Equations (1.1a) and

(1.1b) (noting that a similar decomposition was performed with the pressure):

∂(ui + u
′
i)

∂t
+ (uj + u

′

j)
∂(ui + u

′
i)

∂xj

= −1

ρ

∂

∂xi

(p+ p
′
) + ν

∂2

∂x2
i

(uj + u
′

j) (C.1a)

∂

∂xi

(ui + u
′

i) = 0 (C.1b)

After Reynolds decomposition, Equations (C.1a) and (C.1b) are then ensemble aver-

aged. Ensemble averaging originates from averaging fields of variables. In this case,

the fields of interest are velocity ũi = ui + u
′
i and pressure p̃ = p + p

′
. An ensemble

average relies on the field being statistically stationary, meaning it is invariant in the

statistics collected over time, space, or realizations [17, 66]. For example, if statistics

collected at a given instant are independent of those taken at any other instant, time-

averaging said field would be a form of ensemble averaging. It is important to note

that the Navier-Stokes equations are not necessarily statistically stationary in time

as they include an unsteady term, nor are they necessarily statistically “stationary”

space [17]. As such, “averaging” Equations (C.1a) and (C.1b) does not necessarily

imply simple temporal or volume (spatial) averaging. Instead, ensemble averaging

can be defined as the average of discrete samples taken at different realizations of

some experiment or simulation. Note that in most homogeneous, statistically steady
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turbulent flows, the ergodic hypothesis applies, meaning that temporal, spatial, and

ensemble averaging are equivalent [94, 105]. Due to the fact that most turbulent flows

are in fact not homogeneous, temporal averaging is most often used.
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APPENDIX D

GRADIENT DIFFUSION & TURBULENT VISCOSITY

D.1 Background

In order to understand zero-, one-, and two-equation models, it is necessary first

to understand the underlying assumptions of these models. Returning to Equations

(1.2a) and (1.2b), note that the Reynolds stress tensor, Rij = u
′
iu

′
j is unclosed.

The turbulent viscosity hypothesis, first introduced by Boussinesq in 1877 [6] (also

called the Boussinesq hypothesis), stated that the shear (Reynolds) stress present in

a boundary layer flow is simply the product of some eddy (turbulent) viscosity and

the streamwise (in the x direction) mean velocity gradient normal to the wall (in the

y direction):

Rij = −νT
∂u1

∂x2

(D.1)

Of course, at the time little was known about turbulence (it would be another twenty

years before Osborne Reynolds proposed his famous decomposition of the Navier-

Stokes equations [30]), and Boussinesq’s idea stemmed from observations of shear

stress in the flow, not about the (still-unnamed) Reynolds stress tensor. A coordinate-

invariant version of the model claims the deviatoric portions of the Reynolds stresses

are proportional to the mean strain rate:

Rij −
1

3
Riiδij = −2νT

(
∂ui

∂xj

+
∂uj

∂xi

)
(D.2)

recalling that Ui is the average, not fluctuating, velocity and δij is the Kronecker

delta. This implies that the transfer of momentum caused by turbulent flow could be
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modeled by a so-called “eddy viscosity” νT , a rate-of-strain equation for the Reynolds

stresses. The idea for such a relation stems from, and is similar to, the gradient

diffusion hypothesis [66, 105], which states that, for some scalar in a flow, the velocity

vectors and gradient vectors of that scalar are aligned. This assumption is false even

for simple flows, but is a good place to begin describing turbulence. At the end of the

19th century, molecular transport was better understood than turbulent fluid flow,

and it is no surprise that many in the then-fledgling field of turbulent research sought

analogies between the two. This idea formed the basis for Boussinesq’s hypothesis

- essentially assuming that the behavior of unknown turbulent fluctuations could

be replaced by better understood random molecular fluctuations [105]. The eddy

viscosity hypothesis claims that the anisotropic part of the Reynolds stress tensor is

aligned with the strain rate (also a tensor). The hypothesis states that all independent

components of the anisotropy and strain tensors are simply related through the eddy

(or turbulent) viscosity νT . Equation (D.2) establishes an equilibrium between the

Reynolds stresses and the mean rate of strain, which is not always the case - Rij and

the mean strain can be temporally misaligned.

Eddy viscosity is assumed to be a combination of a length and time scale, or a

length and velocity scale [71, 94, 66, 17, 105]:

νT ∝ l20
τ0

(D.3a)

νT ∝ ũ0l0 (D.3b)

The eddy viscosity νT is prescribed before a simulation begins. More specifically, a

turbulent length scale l0 and turbulent time scale τ0 are set by using knowledge from

experimental results or previous simulations. Often, the eddy viscosity will be cast as

a velocity scale and length scale [66] where the length and velocity scales l0 and ũ0 are

known (or guessed) ahead of time for a given flow. Inherent to this is the assumption
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that turbulence can be described by a single length and time scale. This is completely

at odds with reality, as turbulent flows contain a multitude of relevant length and time

scales. As a brief aside, one may wonder why such an approach may be sufficient for,

say, molecular motion but not for turbulent flows. Specifically, collections of molecules

(in a mixture of gasses, for example) can in fact have a variety of disparate length

and time scales. Yet, an “eddy viscosity” approach can describe the physics of such

a gas. The subtle but important key to understanding the difference lies not in the

presence of many length and time (or velocity) scales, but in how those scales relate

to the scale of the velocity gradients present. In the example gas mixture, the length

and velocity scales over which the collection of molecules interacts is usually orders

of magnitude smaller than the gradients present. Because of this, the molecules are

always close to the flow’s velocity in a local sense. This means that the molecular

distribution is Maxwellian and shifted by the mean flow, but otherwise unaltered [66].

Turbulence, on the other hand, does not share this separation of scales enjoyed by

molecular motion and thus assuming an equilibrium is physically wrong. Turbulent

flows often have features (eddies, the surrogate for molecules in the analysis above)

that are on the same order as the mean flow, meaning there is no massive separation

of scale between the eddy interactions and the gradients present in the flow; the

distribution describing a turbulent flow is decidedly not Maxwellian. Furthermore,

assuming that turbulence may be described by its kinetic energy K, which is a scalar

quantity, makes any model based on this assumption unable to capture anisotropy in

the turbulence. Important physical phenomena, such as heat transfer and separation

in boundaries rely on anisotropy, and cannot be captured by any model with such

shortcomings. There are, however, flow situations where such assumptions can admit

a reasonable description of the flow, such as high Reynolds number cases far from

solid boundaries [66].
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D.2 Zero-equation / Algebraic models

Zero-equation, or algebraic, models employ a partial differential equation (PDE)

solely for the mean velocity field and do not contain any PDEs for turbulent quantities

[71]. These models are commonly used by engineers due to their simplicity and speed.

More popular in the 1960s and 1970s, they have been replaced in more recent years

first by one- and two-equation models, and increasingly by large eddy simulation,

Reynolds-stress models, and direct numerical simulation as computational resources

increase in size and efficiency. These models use the Boussinesq approximation and

solve for the Reynolds stresses by simply multiplying an eddy viscosity (of various

forms) with the mean strain rate tensor [105]. Eddy viscosities, which are assumed

to be a property of the turbulent flow in question, are constructed from a prescribed

mixing length which must be known a priori. This makes any such model incom-

plete, as the equations cannot be solved by knowledge of their initial and boundary

conditions alone. One of the simplest algebraic models is one which assumes uniform

eddy viscosity throughout the flow in any direction other than the mean flow. Such

models are often applied to planar free-shear flows [66], and pose the eddy viscosity

as only a function of x, the streamwise direction:

νT =
uclc
ReT

(D.4)

with uc and lc a characteristic velocity and length, and ReT the turbulent Reynolds

number. All three parameters must be specified, limiting the usefulness of this model

to free shear flows and crippling it elsewhere.

Prandtl, who is credited with being the first to observe the boundary layer in 1904

[105], proposed one of the first zero-equation models in 1925 [91, 67]. He surmised

that coherent “particles” of fluid would group together and move with the mean flow.

In flows with shear present, he further believed that the momentum (in the shear
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direction) of a given collection of particles would remain unchanged for some distance,

which he called the mixing length [105]. Prandtl established the eddy viscosity as

νT = l2m

∣∣∣∣du1

dx2

∣∣∣∣ (D.5)

where in this case the model is applied to near-wall regions, x2 is the wall normal

direction, u1 the mean streamwise velocity, and the mixing length lm is prescribed,

usually as a function of position, in the viscous and mean flow regions over the solid

boundary. The mixing length can be thought of as a counterpart to the mean-free

path of a gaseous molecules, taken from the kinetic theory of gasses [105], and is rep-

resentative of a “characteristic” turbulent structure (eddy) size or a lengthscale for

turbulent dispersion [17]. The model is typically used for stationary boundary layer

(two-dimensional) scenarios [66]. Van Driest [18] proposed a damping correction for

the mixing-length model that is included in many algebraic models. To remove some

of the difficulties in defining the turbulent length scale from the shear-layer thickness,

Baldwin and Lomax [4] proposed an alternative algebraic model [105, 66] which re-

places the mean normal velocity gradient in Equation (D.5) with the magnitude of the

rate-of-rotation tensor, yielding νT = l2mΩ [66, 4]. Smagorinsky [87] proposed another

alternative, whereby the magnitude of the rate of strain tensor was employed, such

that νT = l2mS. Some zero-equation models find their greatest application in the flow

of jets and wakes. They assume the eddy viscosity involves only some constant c, the

width of the jet or wake l, and a mean velocity scale ∆u, which may be the differ-

ence between the center line and far field velocities. The turbulent viscosity becomes

νT = c∆ul. In any case, such models are severely limited by the need to provide a

length scale which reduces to guessing one for a given flow; they neglect history effects

present in the flow; and they are unable to calculate the turbulent kinetic energy [94],

not to mention more complex problems such as anisotropy. Furthermore, the lack of
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scale separation between the eddy size and mean flow makes Prandtl’s analogy to the

kinetic theory of gasses unfounded [17].

D.3 One-equation models

One-equation models add to zero-equation models a PDE that describes the be-

havior of a turbulent velocity scale [71], thus having prescriptions for both the mean

velocity and turbulent velocity scales. This is done in hopes of providing the ability to

calculate the turbulent kinetic energy and to account for history effects in the calcu-

lation of the eddy viscosity [94]. Both Prandtl [68] and Kolmogorov [32] determined

that the turbulent viscosity should be calculated using the turbulent kinetic energy,

setting νT = lK1/2, where in this case the velocity scale is K1/2. In order use the

kinetic energy K in the definition of νT , it was necessary to introduce a means of

determining the kinetic energy, and thus a transport equation for K was developed

[94, 66]. The insight shared by both Prandtl and Kolmogorov was that the eddy

viscosity was affected by the flow’s history, information of which was contained in the

turbulent kinetic energy [105]. One equation models suffer from several deficiencies,

including a hold-over from algebraic models in that a turbulent lengthscale must still

be defined. In addition, the models are not applicable to low Reynolds number flows

and cannot be used at or close to solid walls [94].

The Spalart-Allmaras model is a relatively new and popular one-equation model

used primarily for aeronautical flows, two-dimensional mixing layers, wakes, and other

boundary layer applications [89, 88] that is unique in that it prescribes a transport

equation for the eddy viscosity directly. This was done in an attempt to circumvent

the problems of algebraic and other, older one-equation models while avoiding the

computational cost and complexity of two-equation and stress transport models [66].

The model still relies on a length scale, in this case the distance from a solid boundary,

in order to be fully specified. This distance is not prescribed but is in fact calculated,
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making this length scale one which is set automatically. Although the model is capable

of achieving good results near walls at high Reynolds numbers, it fails to predict

several simple quantities, such as the decay of the turbulent viscosity in isotropic

turbulence [66]. Clearly, improvements must be made to zero- and one-equation

models.

D.4 Two-equation models

Two-equation models add an additional PDE for the turbulent length scale, thus

having equations for the mean velocity, the turbulent velocity scale, and the turbu-

lent length scale [71]. All models prior to two-equation models were incomplete, in

that they required a priori knowledge of the flow in order to work, namely by the

prescription of a mixing length or other length scale. Two equation models have no

such requirements, as they are fully specified by their initial and boundary conditions

(with some exceptions, noted below). The addition of a third PDE was driven by the

desire to eliminate the need to prescribe an essentially ad-hoc length scale. Addition-

ally, one requires at least two equations in a model in order to predict (rather than

prescribe) a turbulent length scale [91]. The K − ϵ model and its myriad variants are

the most widely used turbulence models to date [17]. With certain wall-prescriptions

to handle solid boundaries, these models can provide fast, reasonable answers for a

variety of turbulent flows. As with the previously considered models, K− ϵ must pro-

vide for the evolution of the eddy viscosity νT . The model makes several assumptions

about turbulent flows, including the observation that at high Reynolds numbers, the

dissipation and production rates are close in magnitude, and that the ratio of the

Reynolds stresses to the kinetic energy u
′
iu

′
j/k ≈ 0.3. This yields a length scale

l0 = K3/2/ϵ and time scale τ0 = K/ϵ. From this, referring to Equation (D.3a), νT can

be rewritten as [17, 29]:

νT = Cµ
K2

ϵ
(D.6)
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where Cµ is a given constant (usually = 0.09) and ϵ is the dissipation present in

the flow. Thus, the K − ϵ model must describe the time and space evolution of the

kinetic energy K and the dissipation ϵ which it does so through model equations, the

details of which will not be covered here. The model was originally devised to improve

solutions in regions of flow with low turbulent Reynolds numbers (such as turbulent

boundary layers) [29], and it assumes that the production of dissipation is controlled

by the anisotropy tensor and velocity gradients, while the destruction of dissipation is

set by the turbulent length and time scales [94]. There are many shortcomings of such

a model: those inherited from the eddy viscosity hypothesis, as well as the inability

to integrate the K and ϵ equations to solid boundaries. Another deficiency is that the

K − ϵ model assumes homogeneous turbulence, and specifically that K/ϵ, which is

analogous to a turbulent time scale evolution equation, may be replaced in the model

by a timescale itself and the evolution of the time scale modeled. In non-homogeneous

flow, this assumption is not valid as there exists a non-trivial diffusion term which

would need to be less than zero to satisfy the model [17]. The K − ϵ model suffers

from other shortcomings, including a tendency to over predict skin friction [17] and

a reliance on wall functions to handle physics near solid boundaries.

The K − ω model is similar to the K − ϵ model and was originally proposed by

Wilcox [105]. It is based on the principle, mentioned above, that one may model

the evolution of the turbulent time scale itself rather than dissipation. It overcomes

the difficulties arising from non-homogeneous flow by instead considering the inverse

time scale, ω = ϵ/K [17, 105]. Wilcox’s 1988 paper [104] sets the eddy viscosity as

νT = K/ω. The K−ω model suffers from free-stream sensitivity, and also is unable to

correctly predict shear stress present in flows with strong or adverse pressure gradients

[17]. In some cases, the K − ω model and K − ϵ model are used in conjunction, the

former being employed near solid boundaries (and away from free-stream conditions)

and the latter employed away from solid boundaries. This approach is often used
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to help model turbulence transition, and can be found in so-called SST (shear stress

transport) models.

Finally, Kolmogorov proposed what may have been the first two-equation model

in 1941 [91, 32, 105]. Amazingly, years before the advent of the K − ϵ and K − ω

models (that is, K − ω models of the sort proposed by Wilcox, Speziale, and others

[83, 85, 37, 107, 104]; Kolmogorov also used ω as a inverse time scale), Kolmogorov

proposed a means of describing turbulent flows which employed an equation for two-

thirds of the turbulent kinetic energy and an inverse time scale which was proportional

to dissipation [91, 32]. Kolmogorov’s model lacked a production term, which is based

on the belief that the inverse time scale is only associated with small scale motions

and is otherwise unaffected by the mean flow. This is not entirely correct, as it is

in fact the largest scales present in a turbulent flow that govern relevant time scales

[105, 66]. Kolmogorov’s model also lacked molecular diffusion and, as is the case with

many other two-equation models, it cannot be easily employed near a solid boundary.

D.5 Non-linear eddy viscosity models

Previous zero-, one-, and two-equation turbulence models, based on eddy viscos-

ity, assumed a linear relationship between eddy viscosity and other turbulence quan-

tities. Although able to capture certain important physics (especially in isotropic

and homogeneous flows), these linear models have problems near solid boundaries,

along streamline curvature, at high strain rates, and at stagnation points [11]. Mod-

els were proposed that incorporate a quadratic relationship between the strain and

stress tensors such as the non-linear K − l and K − ϵ proposed by Speziale [92], and

others that incorporate a cubic relationship, so called “cubic eddy-viscosity” models

[11]. Essentially, these models extend the Boussinesq approximation by adding to

it “higher order terms” in a series expansion of the original relationship [105]. The

cubic eddy-viscosity model developed by Craft, Launder, and Suga [11] worked back-
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wards from a more complicated stress transport model (in this case, simplifying an

algebraic stress transport model, the likes of which are not considered in this paper)

in order to arrive at an approximation for the Reynolds stresses. Such models can

be considered as more general versions of their linear cousins. The Craft, Launder,

and Suga [11] model uses the aforementioned cubic stress-strain relationship which

allows the model to capture physics that other linear models cannot while retaining

the same level of computational cost. The authors tested the model on plane channel

flow, curved channel flow, and a turbulent impinging jet. They discovered that the

cubic model performed reasonably well for all cases considered even in the presence of

dominant anisotropy, solid boundaries and curvilinear streamlines [11]. Although not

as accurate as stress transport models, the cubic model showed promise as a viable

alternative to the classic K − ϵ model for solving engineering flows in commercial

software.

The v2 − f model transport equations have in them the previously-established

K and ϵ equations, but with modifications that attempt to increase dissipation near

walls and thus improve the solution for the kinetic energy returned by the model. This

is done so by introducing two additional partial differential equations, one of which

attempts to capture the elliptic behavior of pressure. Capturing the fluctuating parts

of the pressure is crucial near solid boundaries, as this enforces important near-wall

turbulent behavior. Any directional information is an improvement over the eddy-

viscosity assumption which cannot account for anisotropy. Solid boundaries tend to

damp wall-normal transport; this phenomena is crucial to the evolution of turbulence

near walls. Any model that can (roughly) capture these physics without resorting to

complicated tensor transport equations is very useful for engineers.
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APPENDIX E

THE PISO ALGORITHM

The PISO, or Pressure Implicit with Splitting of Operators, algorithm was origi-

nally developed by Issa [25] as a pressure-velocity calculation method for non-iterative

solutions to unsteady, compressible flows. Since its original form, it has been adapted

for use as an iterative solution method for both steady and unsteady flows [102]. Many

non-steady solvers in OpenFOAM employ the PISO algorithm. Before the method is

described, however, it is necessary to discuss the Semi-Implicit Method for Pressure-

Linked Equations, or “SIMPLE”, algorithm originally developed by Patankar and

Spalding [54]. The PISO algorithm is essentially an extension of the SIMPLE algo-

rithm that includes one additional correction step [102]. To begin with, the SIMPLE

algorithm is outlined below.

Patankar and Spalding’s SIMPLE algorithm [54] is a guess and check method

for evaluating pressure on a staggered grid. It evaluates the convective fluxes (per

unit mass) though a cell’s face using “guessed velocity components” [102, 54, 3].

In addition, a “guessed pressure field” is employed to solve both the momentum

and pressure correction equations. This “guessed pressure” is obtained from the

continuity equation and used to obtain a pressure correction field. This pressure

correction field is finally used to update the velocity and pressure fields [102]. The

algorithm begins with a guessed velocity and pressure field and aims to iteratively

improve these guessed fields until convergence has been obtained. The basic SIMPLE

procedure is outline below for a laminar, steady flow, adapted from [54, 102, 19]:

1. First, a pressure field p∗ is guessed.
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2. Then, the discretized momentum equation is solved using p∗. This results in u∗i , the
“guessed” velocity.

3. A similar procedure may be employed for any arbitrary field dependent on p∗ or u∗i ,
say the scalar ϕ∗.

4. At this point, all “guessed” quantities - p∗, u∗i , ϕ
∗, etc. - are available.

5. A pressure correction field p
′
is defined the difference between the “correct” pressure

field p and the guessed field p∗ as the “correct pressure” field p is defined as p = p∗+p
′
.

6. Next define the velocity correction is the same manner: u
′
i = ui − u∗i .

7. Set up the momentum equation which describes the velocity correction.

(a) Equations for the “correct” velocity ui and “guessed” velocity u∗i are known.
Subtract these two momentum equations.

(b) To obtain the equation for the velocity correction u
′
i, substitute its definition into

the equation formed above. A momentum equation involving only the velocity
correction u

′
i is obtained.

(c) SIMPLE’s main approximation involves arbitrarily discarding contributions
(to convection and diffusion) from neighboring cells’ u

′
i in the u

′
i momentum

equation as they are unknown. This is difficult to justify, and contributes to the
slow convergence of the method [19].

(d) The above approximation results in the u
′
i “momentum equation” only contain-

ing known information about gradients in the pressure correction field p
′
, cell

areas, etc.

8. The simplified equation for u
′
i is now substituted into ui = u∗i + u

′
i to obtain ui

recalling u∗i is known.

9. The corrected velocity ui may now be employed in the continuity equation to obtain
an expression for the pressure correction p

′
.

10. Finally, the corrected pressure may be found via p = p∗ + p
′
recalling p∗ in known.

11. Now knowing p and ui, any other unknown quantities may be found that depend on
the velocity or pressure, such as ϕ.

12. The solution converges as p∗ → p meaning p
′ → 0.

The procedure outlined above was originally employed for steady flows where each

iteration corresponded to a time step. It can, however, be employed in some form at

each time step for unsteady flows where accurate flow history matters. Note that sev-

eral variations of the original SIMPLE algorithm exist, including “SIMPLE Revised”

(SIMPLER) [53] and “SIMPLE-Consistent” (SIMPLEC) [99]. These alternatives
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were created because step 7(c) above is quite drastic. Neglecting the unknown veloc-

ity corrections is hardly justified. An alternative approach involves performing two

velocity corrector steps, one which neglects the unknown term and the second which

approximates the unknown based on the previous velocity sub-step’s information.

This is the PISO algorithm.

The PISO algorithm begins with a predictor step in which, just as in SIMPLE, the

discretized momentum equations are solved with a “guessed” pressure p∗ yielding the

intermediate velocities u∗
i . The algorithm then takes two corrector steps. The first

step uses SIMPLE’s corrector step to yield a second intermediate velocity, u∗∗
i , which,

unlike the first intermediate velocity u∗
i , satisfies the discrete continuity equation [102].

In the simple algorithm, this step was denoted as ui = u∗
i + u

′
i (and also employed

to find the pressure). Now, write this as u∗∗
i = u∗

i + u
′
i. This definition is then

substituted into the continuity equation to yield the pressure correction equation.

This is then solved for the pressure correction p
′
. Finally, p

′
is employed to solve

for u∗∗
i . In the SIMPLE approach, u∗∗

i would be considered the final velocity, and

a new iteration would begin. In PISO, however, a second corrector step follows.

The discretized momentum equation for the twice-corrected velocity u∗∗∗
i is formed

using twice-corrected pressure p∗∗∗ and the previous corrected velocity u∗∗
i . Herein lies

the crux of the PISO algorithm: the second corrector step drastically improves the

guessed velocity and pressure by employing the previously-corrected velocity value in

the twice-corrected momentum equation rather than simply neglecting it.

The twice-corrected momentum equation involves the second pressure correction

field p
′′
. The twice corrected pressure p∗∗∗ can be found via p∗∗∗ = p∗∗ + p

′′
. Use of

the twice-corrected velocity u∗∗∗
i in terms of u∗∗

i and p
′′
(in the discretized continuity

equation) yields an expression for p
′′
, which can then be solved to obtain p

′′
. Finally,

the twice-corrected pressure can be solved via p∗∗∗ = p∗∗ + p
′′
= p∗ + p

′
+ p

′′
[102].

Now, everything needed is known to solve for the twice-corrected velocity u∗∗∗
i via its
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momentum equation. u∗∗∗
i and p∗∗∗ are considered the “correct” velocity and pressure

at this iteration. The algorithm is outlined below, adapted from [102]:

1. Guess p∗, u∗i and some ϕ∗ if necessary.

2. Repeat the first three steps of the SIMPLE algorithm

(a) Solve the momentum equation → u
′
i

(b) Solve the pressure correction equation → p
′

(c) Correct the pressure and velocity → u∗∗i , p∗∗

3. Solve the second pressure correction equation → p
′′

4. Correct the pressure and velocity

(a) p∗∗∗ = p∗ + p
′
+ p

′′

(b) u∗∗∗i = f(u∗i , p
′
, u∗∗i , p

′′
), all of which are known.

5. The corrected pressure and velocity are the final answers, p = p∗∗∗, ui = u∗∗∗i .

6. Solve for any remaining quantities such as ϕ using new p, ui. Repeat until convergence
is satisfied for ϕ, if necessary. No further iterations are considered necessary
for p or ui [102, 25].

The methods outlined above were originally developed for steady, “boundary-layer“

(i.e. parabolic) flows but may be altered to work in unsteady flows. The method

outlined by Patankar and Spalding [54] purposefully uncoupled the lateral and lon-

gitudinal pressures but later forms of the algorithm do not do this. The discretized

momentum and continuity equations mentioned above for the SIMPLE and PISO

algorithms will of course include a transient term in addition to the spatial deriva-

tives. In the case of the SIMPLE algorithm, the iterative method above is applied

at every time step until convergence is reached. In contrast, PISO is a considered a

non-iterative approach as the solutions for p∗∗∗ = p and ui = u∗∗∗
i are considered the

final solutions for the pressure and velocity. For transient PISO, the non-iterative

algorithm is applied at every time step in an unsteady flow until steady state (not to

be confused with convergence) has been reached. Issa [25] pioneered this approach,

showing the temporal accuracy for pressure is on the order of ∆t3 and momentum

O(∆t4) [25, 102]. This is why the answers for pressure and velocity obtained by the
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PISO algorithm at every time step (assuming a suitably small time step) are consid-

ered to be “accurate enough” to progress to the next time step. The PISO method

has been employed extensively in OpenFOAM [27, 81] as it is less expensive than the

implicit SIMPLE algorithm (or its variants) and has been tested extensively.

As is discussed by Jasak [27], Rusche [81] and others, alternatives exist to predictor-

corrector methods such as PISO. Simultaneous algorithms exist (see, for example,

Caretto et al. [7] and Vanka [101]) but are only feasible for simulations with small

meshes and a limited number of unknown quantities. As such, PISO, SIMPLE and

related methods are widely employed for handling coupled pressure-velocity systems.

The Oriented-Eddy Collision turbulence model implementation in OpenFOAMmakes

use of the unsteady PISO algorithm as most flows of interest will be unsteady, tur-

bulent flows.
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APPENDIX F

A PRIMER ON TURBULENT TRANSITION

F.1 Introduction & Background

Fluids moving below a certain critical velocity are often steady and smooth. Their

governing equations exhibit well-behaved, tractable solutions. Some unsteady fluid

flows, such as Stokes’ problems, are also well behaved and solvable. While rare,

these laminar flows have been studied for over a century and are readily observable

[106]. Most real-world flows are turbulent, however, and admit few closed solutions

or simplistic descriptions. The phenomenon of a fluid passing from the laminar to

turbulent regime - that is, turbulent transition - is complex. Transition is a function of

many variables, including the velocity of the flow, the geometry of the surroundings,

and fluid properties such as kinematic viscosity. Modern research efforts attempt to

use stability analysis to understand the mathematics behind transition, characterize

transition experimentally, and devise models to predict transition in a variety of flow

circumstances. This section provides historical context and a brief overview of these

three topics.

Prior to the 1930s, experimentalists lacked the tools necessary to observe rapid

pressure and velocity fluctuations that are present in all turbulent flows [106]. As

such, they aimed to predict the mean properties of a flow. They were successful up

to the point where instabilities began to appear, after which they could not accu-

rately predict the mean velocity profile, pressure drop, or other basic flow properties.

Friction factors and boundary layer behavior were equally difficult to predict. When

considering flow over a flat plate, for example, the Blasius solution for skin friction
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drastically under predicts observed values during turbulent transition [106] - that is,

in flows above a critical velocity. Furthermore, the Blasius solution fails to capture

the velocity dependence of the skin friction in fully turbulent flows [106]. Abrupt

changes can also be observed in the friction factor in a pipe (departing from the

laminar prediction) as a result of turbulent transition.

The ability to understand and predict fluid behavior during and after transition is

of paramount importance to the engineer. Early work by G.G. Stokes and others [17]

showed that Poiseuille flow in a pipe was a solution to the Navier-Stokes equations up

to some fluid velocity after which pressure drop versus flow rate predictions failed [17].

Rather than blaming the equations of his namesake, he argued an unsteady solution

to the Navier-Stokes equations was needed [17]. Osborne Reynolds considered the

odd phenomenon of the yet-unnamed turbulent transition in his 1883 paper on the

subject [106, 69, 66]. Reynolds formulated a non-dimensional group proportional to

the flow velocity, the pipe diameter, and the inverse of the fluid viscosity now called the

Reynolds number. This parameter is used extensively in the analysis of transitional

and turbulent flows [22]. He discovered that below a Reynolds number (based on pipe

diameter) of ReD = 2300, ink injected upstream of a contraction into a tube remained

in a coherent stream centered in the pipe. Above this Reynolds number, Reynolds

observed unsteady undulations in the ink. Further increasing the fluid velocity caused

the ink to lose its coherent structure and diffuse throughout the pipe. This observation

corresponded to the flow becoming fully turbulent [106]. Advances in measurement

techniques after Reynolds’ time enable high fidelity, instantaneous characterization

of laminar, transitional, and fully turbulent flows. Such observations have revealed

that within transitional flows, velocity measured at certain points exhibits sudden

bursts separated by regions of stable flow [106]. This instability and ’burst’ behavior

is characteristic of turbulence itself - understanding the mechanisms of transitions

aids in the characterization of the turbulence phenomenon.
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In general, all fluid flows are laminar below a certain critical Reynolds number.

This Reynolds number is geometrically dependent. As stated above, for pipe flow

this Reynolds number is typically 2, 100 ≥ ReC ≥ 2, 300 [14]. For a flat plate, this

number is typically higher, ReC ≈ 60, 000, with the Reynolds number based on the

distance from the leading edge [14], while for a sphere or cylinder this number is

higher still, ReC ≈ 200, 000 based on the object diameter [14]. Identifying turbulent

transition is also geometry dependent. Pressure and skin friction measurements are

common - transition in a pipe flow is associated with an increase in the drag and

friction coefficient. The opposite is true for flow over a sphere or similar object -

a transitional or fully turbulent flow shows a drop in these metrics [14]. As Deen

[14] and others point out, these critical Reynolds numbers are approximate - it is

impossible to exactly predict when transition will begin even in carefully controlled

experiments, which is primarily due to both large- and small-scale flow perturbations

’tripping’ turbulence. Care can be taken to reduce disturbances to the flow whereby

an increase in the critical Reynolds number is affected for a given geometry by and

order of magnitude or more [14]. Additionally, the exact transitional Reynolds number

is difficult (or impossible) to determine due to the intermittent nature of transition.

Transition does not occur all at once - instead, it is typical for several mechanisms to

gradually force a laminar to turbulent switch. For example, while transition can be

observed in a pipe at Reynolds numbers as low as Re ≈ 2, 000, typically such a flow is

not fully turbulent until Re ≈ 3, 000 [14]. Different mechanisms dominate transition

depending on the geometry, initial and boundary conditions, as well as secondary

physics which may be relevant to a given flow.

F.2 Types of transition

Transition occurs as a result of the excitation of existing instabilities in a flow,

summarized by Henningson and Alfredsson [22]. This phenomena is often referred to
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as the “receptivity” problem, as it involves how receptive certain flow instabilities are

to existing perturbations. As such, the flow environment is critical to understanding

receptivity, and thus transition. The majority of the mathematical methods presented

in §F.3 focus on linear stabilities; these suffice when the perturbations to flow are

small. Large disturbances, however, lead to non-linear instabilities and, as such,

more complex math. The growth of linear instabilities is thus modified and the

instabilities become “saturated” [22]. This “saturated”, non-linear condition makes

the instabilities particularly susceptible to relatively small flow perturbations, which

lead to so-called “secondary” instabilities, which eventually lead to turbulence. This

three-stage process summarizes turbulent transition. Secondary instabilities are a

function of their originating primary instabilities [22].

The concept of receptivity should not be understated. While most linear stability

analysis is concerned with “internally perturbed” instability, in fact the majority of

instability, and thus transition itself, is tripped by some external factor. A flow’s

sensitivity to these external perturbations is key to understanding the subsequent

transition mechanism which evolves. As Henningson and Alfredsson point out, per-

turbations to the mean flow, roughness, sound and other vibration modes, and so

forth, all affect the way in which an internal disturbance is entrained into a flow’s

boundary layer [22] . While some external disturbances are easy to quantify, one of

the most common - free stream turbulence - is practically impossible to character-

ize in any form that could be employed for stability analysis. The so-called “PSE”

method, discussed in §F.5, may be one solution to this problem [22].

In many situations, instabilities which lead to transition grow from a boundary

layer. As such, it is instructive to examine a simple case of free-stream perturbation-

induced instability in a boundary layer. Goldstein, as cited by Henningson and Al-

fredsson [22], derived an equation for disturbances in a laminar boundary layer subject

to a“small amplitude free-stream disturbance” [22]:
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∂u
′
1

∂t
+ u1

∂u
′
1

∂x1

+ u2
∂u

′
1

∂x2

+ u
′

1

∂u1

∂x1

+ u
′

2

∂u1

∂x2

= − ∂p

∂x1

+
1

R

∂2u
′
1

∂x2
2

(F.1)

where u
′
i and ui are the disturbance and mean velocities, respectively, is physical

space, p the pressure, and 1 and 2 the streamwise and wall-normal directions, respec-

tively. Asymptotic solutions to Equation (F.1) can be formulated which interface with

the Orr-Sommerfeld equations [22] , discussed in §F.3. While useful, Equation (F.1)

is limited to two dimensions. In reality, all boundary layers exist in three dimensions

and dimensionality effects may dominate. As Henningson and Alfredsson [22] discuss,

there exists little work exploring fully three-dimensional effects. Below, transition due

to exponential instabilities will be considered, where instabilities are contained within

the flow in question (as opposed to external) and are modeled linearly. This will be

followed by comments on bypass transition where the normal “slow” growth of insta-

bility is altogether avoided due to the presence of large amplitude perturbations to

the flow.

F.2.1 Transition from Exponential Instabilities

For the most part, transition occurs due to primary instabilities becoming “satu-

rated” and secondary instabilities forming within a given flow. The nature of these

crucial secondary instabilities is in large part a function of the nature of the pri-

mary instability, the environment of the flow, and the nature of the perturbations

present. When considering mathematical descriptions of instability, the underlying

assumptions dictate the secondary behavior, which may be verified with carefully

controlled experiments, discussed in §F.5. Observations of secondary instability in

“Tollmien-Schlichting” (TS) waves [22] reveal a regular, three-dimensional peak and

valley configuration is responsible for transition. The key lies in the velocity profiles

which exhibit an inflection point. As will be discussed in §F.3, the presence of an

inflection in the mean velocity profile is often an indication of instability, and in this
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case high frequency instabilities are of primary interest [22]. In the case of TS-wave-

like primary instability subjected to high-frequency perturbations, which are aligned

in the streamwise direction, transition occurs rapidly and is referred to as “K-type”

transition. “H-type” transition is similar to K-type except that it occurs more slowly.

It is often associated with free (that is, not forced) transition found in nature [22].

The structure of H-type transition differs from K-type in that, which is composed

of peak-and-valley features, they are not aligned with the mean flow but are instead

staggered. The period of this staggered arrangement is interesting as it is actually

lower than the frequency of the primary instability [22].

In the special case of vortical flows, secondary instabilities grow and subsequently

dissociate. This breakdown leads to transition. These instabilities, which may be in

the form of Görtler vortices, cross-flow vortices, and vortices in curved and rotating

flows [22], tend to have both symmetric and anti-symmetric configurations. The

nature of the instability configuration dictates the temporal evolution of the secondary

instability. In the more complex cases of separated and shear flow transition scenarios,

the concept of secondary instabilities still applies in most cases, and appears to be

extremely sensitive to the nature of the “background” disturbance [22]. In some

cases, the presence of fully three-dimensional disturbances dictates the growth of

instability - if initially present, such disturbances may dominate the perturbation

modes. If introduced after the primary instability has become established, however,

they may play little to no role in transition, suggesting secondary instabilities are

not important to transition in such cases [22]. It is interesting to note that some

experiments observed instability waves which exhibited Kelvin-Helmholtz-like vortex

roll up, resulting in so-called “ribs” and “rollers” [22].
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F.2.2 Bypass Transition

Previously discussed transition mechanisms rely on a specific primary instability

mode - Tollmein-Schlichting (TS) waves. These lead to secondary instabilities (for the

most part), which lead to transition itself. There exists a class of transition scenarios

where this instability path is avoided altogether, and transition occurs rapidly. In the

context of §F.2.1, bypass transition is transition that emanates from linear instabilities

other than those that are exponential in nature [22]. Following Henningson and

Alfredsson [22], bypass transition will be considered in the context of four physical

circumstances: streamwise vortices, or streaks; oblique waves; free-stream turbulence;

and finally local perturbations and turbulent patches [22].

Instabilities resulting from streamwise vortices (streaks) are often studied in the

context of plane Poiseuille flow with random perturbations (noise) present in the

background [22]. Once a streak is established, a spanwise oscillation begins to form.

Alternatively, oblique transition results from the generation of large amplitude streaks

via oblique waves which exhibit the same secondary instability as the classic stream-

wise vortex case. In both cases, exponential growth of the secondary instability

eventually trips transition [22]. Experiments studying oblique transition reveal large

amplitude streaks are particularly sensitive to non-stationary perturbations [22]. In

addition, such transition can occur at relatively low perturbation amplitudes when

compared to similar TS instability scenarios [22]. Berlin, Lundbladh, and Henningson

(as cited by Henningson and Alfredsson [22]) observed that oblique transition appears

to be universal in nature; that is, all such transition in this regime is produced by

transient growth of streaks and subsequent “lift up” and breakdown of said streaks

due to secondary instability mechanisms [22].

Free stream turbulence plays an important role in many bypass transition scenar-

ios. Numerous real-world flows transition due to free stream turbulence, including

flow within turbo-machinery, in external aerodynamic flows, and flows within wind
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tunnels [22]. This last case is of particular importance as often wind tunnel exper-

iments require precise control over turbulence, which cannot be obtained without a

basic understanding of transition. Characterizing the relationship between free stream

turbulence and transition is very difficult. At “high” free stream turbulence levels, a

Reynolds number based on “momentum loss thickness” [22] can be formulated and

used to predict the minimum transition Reynolds number. This is not the case for

lower levels of free stream turbulence, where there exists little experimental agree-

ment and thus little theory [22]. Matsubara (as cited by Henningson and Alfredsson

[22]) showed that initially, instability due to free stream turbulence takes the form of

classic streamwise streaks inside the boundary layer with spanwise periodicity. They

are unusual in their behavior and shape - they tend to grow downstream and be quite

large. The presence of these streaks eventually lead to low-level perturbations within

the mean flow and lead to a collapse to turbulence. Regions of strong streak activity

tend to break down into turbulent patches or “spots” which grow in both size and

number downstream and lead to a fully turbulent transition [22]. Despite these useful

qualitative observations about the nature of free stream turbulent transition, there

exists no clear mathematical relationship between the level of turbulence in the free

stream and the nature of the resulting transition.

The last transition scenario considered is that of local perturbations and turbulent

patches or “spots”. These are directly related to the “lift up” behavior exhibited by

streamwise streaks, and their behavior is often what leads to a fully turbulent bound-

ary layer transition. Gustavsson (as cited by Henningson and Alfredsson [22]) was one

of the first to characterize the nature of such instabilities, and separated them into

a dispersive and convective portion, one which tended to spread perturbation waves

and the other which tended to advect such waves [22]. Other observations of patches

revealed strong linear growth across a range of disturbance scales in perturbations,

which were aligned spanwise to the mean flow [22]. Additionally, the formation of
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these turbulent spots can be described as a three phase process: initially, rapid re-

distribution occurs which tends to damp small scale perturbations. Second, streaks

and other streamwise vortices develop according to linear theory. Third, these streaks

break apart at local “peaks” and collapse into turbulence. While this and other de-

scriptions of free stream and local patch turbulence transition modes are useful, much

research is still required to gain a better understanding and characterization of this

complex and ubiquitous process.

F.3 Mathematical concepts

The mathematical analysis of transition can be traced to Rayleigh and his contem-

poraries [22] who were concerned with characterizing instability in parallel flows [22].

While doing so, they devised a method of analyzing exponentially growing and decay-

ing linear wave disturbances and discovered that in two-dimensional parallel inviscid

flow, a mean velocity profile inflection point was necessary for a disturbance to grow

and trip transition [22]. These ideas were later applied to the Navier-Stokes equations

by Sommerfeld and Orr [22] to investigate dominant disturbance wavelengths and fre-

quencies. These co-called “normal modes” were employed by Heisenberg, Tollmien,

G.I. Taylor and others to understand instability in a limited number of flows. Early

stability analysis showed reasonable agreement with experiments when predicting the

dominant unstable mode (in a given flow situation) as well as the lowest possible

critical Reynolds number at which transition could begin [22]. By the late 1940s the

Tollmien solution to the Orr-Sommerfeld wave equations was validated experimen-

tally, and fluid dynamicists had a basic mathematical representation of transition.

Unfortunately, the linear nature of the Orr-Sommerfeld analysis makes it unsuitable

to determine a precise transition Reynolds number, even for a simplified flow scenario

[22]. To overcome this limitation, work by Ingen, Smith, and Gamberoni correlated

linear wave theory with experimentally-observed transition to further characterize
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and predict transition [22]. They determined that disturbances often grew as e9 in

certain “low-disturbance” environments [22]. While this early work was useful, it

relied on simplified mathematical analysis and empirical observation, and provided

only a basic tool for predicting transition.

The governing equations for fluid flows - that is, the Navier-Stokes equations -

are repeated so often in existing literature that to do so here would be pointless.

Instead, familiarity with these equations is assumed, and instead focus is placed on

a few simple ideas regarding stability analysis. Begin with Reynolds decomposition

applied to Navier-Stokes. The total velocities and pressures can be decomposed into

mean and fluctuating components, or “laminar” and “disturbance” contributions to

the flow [22]:

ũi = ui + u
′

i , p̃ = p+ p
′

(F.2)

Then use this to obtain the “disturbance equation”, that is the equation for the

fluctuating velocity u
′
i, viz. [22]
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with ρ the fluid density and ν the kinematic viscosity. The corresponding continuity

equation is [22]

∂u
′
i

∂xi

= 0 (F.4)

Considering the energy is of critical importance to stability and transition analysis,

the equation for “disturbance energy” can be derived by multiplying Equation (F.3)

by the disturbance velocity u
′
i and employing the continuity equation [22]:
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where the rate of strain tensors are defined as

Sij ≡
1

2

(
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∂xj
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)
(F.6)

and
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As is described by Hallbäck, et al. [22], the Reynolds-Orr equations for the total

disturbance energy per unit volume EV =
∫
V

1
2
u

′
iu

′
idV can be obtained from Equa-

tion (F.5) above by employing the divergence theorem, assuming no-slip boundary

conditions and making some assumptions about the nature of the disturbances:

dEV
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= −

∫
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2
u

′

iu
′

jSijdV − 2ν

∫
V

s
′

ijs
′

ijdV (F.8)

noting the integration is performed over the entire flow volume. Equation (F.8) above

is important in the prediction and modeling of transition. It is currently impossible

to completely characterize turbulent transition. As Henningson and Alfredsson point

out [22], the equations of motion, an accurate description of the mean flow field, a

complete description of the relevant geometry, and knowledge of all relevant distur-

bances (both within the flow and external) must be known. This, of course, is not

possible. Even if it were, the interaction between disturbances and the flow field

(specifically, the boundary layer, which is the focus of Henningson and Alfredsson’s

work) is unknown. As such, general descriptions of the flow, such as the ratio of

the current to initial disturbance energy at time progresses, lim
t→∞

EV (t)/EV (0) are

employed. In fact the disturbance energy can be used to categorize the stability of

a general flow. If there exists some flow where lim
t→∞

EV (t)/EV (0) → 0, this flow is

stable and will not transition. If, for some small perturbation, the flow remains stable

when the initial perturbation energy is below some limit EV (0) < δ, then this flow is
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conditionally stable. If the perturbation may grow to infinity without transition then

the flow is globally stable. Finally, if the time derivative of the disturbance energy is

always less than zero dEV (t)/dt < 0 for all t > 0, the flow is monotonically stable [22].

Most often, the Reynolds number of the flow is associated with the stability. Much

effort has been spent on determining the Reynolds numbers at which a given flow is

monotonically stable, globally stable, and above which the flow is linearly unstable

[22]. Unfortunately, this approach only provides a gross or ideal picture of transition,

and only applies to disturbances which grow in time. While such cases are relevant

for simple flow geometries, in the real world transition is often tripped by a physical

feature, that is disturbances enter into the flow at a fixed location in space and fur-

ther characterization is required [22].. In this case, the spatial growth, perhaps along

with the temporal growth, is required. Describing the size and nature spatially is not

well defined, especially if one employs kinetic (disturbance) energy. Often, simplistic

measures such as the maximum streamwise velocity are employed [22].

The Reynolds-Orr equation is derived by neglecting non-linear terms [22]. As

such, equation (F.8) represents the mean flow energy exchange and viscous dissi-

pation. There is no linear energy growth term present. In order to represent this

simplified case, such a term must be constructed. Henningson and Alfredsson outline

the basic steps [22] based on the governing equations for infinitesimal perturbations

to a mean flow. Ignoring their characterization of the equations in wave number

space, they conclude that, for the normal velocity component u
′
2 and normal vorticity

ω
′
2 = ∂u

′
1/∂x3 − ∂u

′
3/∂x1 in parallel flows, noting again 2 is the direction of variation

and 1 the streamwise direction:
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and
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Assuming the normal velocity u
′
2, the normal velocity derivative ∂u

′
2/∂x2, and the

normal vorticity ω
′
2 have zero (no-slip) boundary conditions and are bounded in the far

field, and assuming prescribed initial conditions, the behavior of a linear perturbation

to the flow is fully characterized. Henningson and Alfredsson describe interpretations

of the forcing terms resulting from casting the vorticity equation (F.10) in wave

number space and the use of inviscid linear stability theory to provide a kinematic

description of this so-called “vortex tilting” [22]. Their analysis provides some clues

as to solution methods for linear stability problems, and relies heavily on the Rayleigh

equation. An important conclusion can be drawn from this effort: the mean velocity

profile must include an inflection point (that is, ∂2u1/∂x
2
2 = 0) in the domain at

hand in order to achieve exponential inviscid instability growth. Dispersive effects,

so-called “wave packets”, two-dimensional effects such as the “lift up effect”, and

algebraic instabilities are all considered within the realm of inviscid instabilities [22].

To consider viscous instabilities, Henningson and Alfredsson employ simple par-

allel flows keeping true to the work of Rayleigh and others. The Orr-Sommerfeld and

Squire equations are used in wave number space once again along with complex ar-

guments as to the eigenmodes of the given stability problem. While this provides an

interesting delve into the vagaries of Fourier-space stability analysis, there is no clear

advantage to this work except perhaps to highlight the deficiencies in the assumptions

of the Orr-Sommerfeld equation. Of more interest to the engineer is the considera-

tion of numerical solutions to stability problems, specifically of the Orr-Sommerfeld

equation. For a simple case such as plane Poiseuille flow, only symmetric solutions

become unstable, and only one unstable mode exists [22]. For three-dimensional

cases, Squire’s theorem may be employed to reduce the fully three-dimensional Orr-

Sommerfeld equation to two dimensions. In fact, work by Squire concluded that

stability in parallel flows is inherently two-dimensional [22]. When considering two-
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dimensional boundary layer stability, the basic Orr-Sommerfeld equations, which de-

scribe temporal but not spatial instability growth, cannot be used directly. Nor-

mal mode analysis may be employed, but additional complications arise from the

streamwise-direction dependence of the flow (i.e. the growth of the boundary layer).

Modifying the Orr-Sommerfeld equation to account for streamwise dependence largely

failed until the inception of the “PSE” method [22], which has enjoyed moderate suc-

cess in predicting instability in more complex flows [22].

Three-dimensional flows, such as boundary layers over swept wings, rotating discs,

cones, and spheres are also considered by Henningson and Alfredsson [22]. Velocity

profiles for such flows may be approximated using similarity solutions such as the

Falkner-Skan-Cooke solutions, the stability of which is considered by Henningson

and Alfredsson. In essence, specialized solutions to the Orr-Sommerfeld equation

can be successfully employed in certain regimes, such as the aforementioned swept

wing [22]. Body forces are also important to the physics of instability, such as those

present in curved or rotating channel or boundary layer flows. Streamline curvature

with centrifugal forces and system rotation with Coriolis forces are of interest. For

such flows, stability analysis relies on information from experiments, which indicates

spatially growing streamwise vortices are the primary form of instability [22], whereas

in rotating channel flow stratification occurs in the Coriolis force [22] leading to the

primary instability mode. In the complex case of curved boundary layer flow that

may also be rotating, Görtler vortices play a dominant role and necessitate non-local

stability analysis [22]. The PSE method, outlined in section F.5, is required.

F.4 Experimental work

Capturing turbulent transition experimentally is difficult. Notwithstanding the

trouble associated with collecting temporally and spatially accurate flow field infor-

mation, the nature of transition and its extreme sensitively to flow conditions and
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environmental perturbations makes controlling such experiments a monumental task.

Much of the discussion in §F.2 hinted at experiments from which qualitative (and

occasionally quantitative) assessments were made. Section F.5, which briefly outlines

transition models, discusses the need for excellent empirical data. This section is

brief, as nearly every experiment designed to characterize turbulence - whether for

validation or design purposes - differs. Traditionally, data was collected with hot-

wire apparatus. More recently, the use of laser-Doppler velocitometry, particle image

velocitometry, and other similar optical methods has allowed experimentalists to re-

solve two-dimensional flow field data and in some cases three-dimensional data as

well. Access to such rich data is only now being utilized in the transition modeling

community.

The most basic experiments to study turbulence, such as those performed by

Rayleigh, are mostly parallel flows such as plane Poiseuille flow. Here, simply in-

creasing the Reynolds number will lead to reasonably well-ordered natural transition.

Linear stability analysis captures this scenario well, and is an excellent first step.

In a similar vein, Blasius boundary layer flow can be investigated to validate basic

tenets of the Orr-Sommerfeld equations, as well as the work done by Squires [22].

Two dimensional boundary layers and flows with a constant pressure gradient have

also been employed to test these basic linear theories. Separated flows, and three-

dimensional boundary layers, are difficult to capture numerical or experimentally, but

have nevertheless been employed to validate simple linear approaches [22]. Flow over

a swept wing is a common case to consider, as are flows over rotating disks, cones,

spheres, and cones at some angle of attack. Curved channel flow, as well as rotating

channel flow, have been employed by many to investigate the relative stabilizing and

destabilizing effects curvature tends to have on transition and the underlying primary

and secondary stability modes.
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Experimentally testing specific transition scenarios can be difficult. For example,

analyzing the receptivity of a boundary layer to a two- or three-dimensional distur-

bance requires a precise description of all relevant, dominate perturbation modes.

Only recently could the secondary instability in vortical flows be captured by numer-

ical methods thus verifying both the flow and the model’s ability to predict it [22].

Bubble flows have been employed often to understand transition in both separated

and free shear turbulent flows. For bypass transition scenarios, clever apparatus have

been devised to subject plane Poiseuille flow to oblique waves by means of “ribbons”

which affect the mean flow [22]. Free stream turbulence is easier to achieve, but

often such cases are riddled with uncharacterized, unknown external disturbances,

which can have a drastic effect on the turbulence trip location and time. The recent

availability of direct numerical simulation, especially of turbulence near a wall, has

helped to characterize the vortices and streaks present there, and has aided in the

understanding of so-called “lift up” scenarios which can lead to transition.

F.5 Models for transition

A complete survey of available transition models is impossible in this context

considering the breadth of options, each which their own niche. In addition, the

relationship between transition and turbulence models is complex, and a survey of

turbulence models is impossible in this setting. Furthermore, the descriptions of tur-

bulence transition scenarios provided in §F.2 would lead the astute reader to conclude

that simple, accurate transition models are impossible to formulate, which is generally

the case [22]. There is no universal turbulent transition model outside of numerical

procedures such as direct numerical and large eddy simulation. While appropriate for

simple flow geometries and lower Reynolds numbers, the computational cost associ-

ated with DNS and LES is prohibitive in many cases. Thus, models are required. As

Henningson and Alfredsson [22] point out, all current modeling approaches (excluding
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turbulence models that have been “enhanced” to capture transition, discussed later)

require empirical input. Generally, models come in two categories. First, simplistic

models employ information about boundary layer shapes and Reynolds numbers. At

best, these predict transition location and perhaps a critical Reynolds number. The

second category of models are often complex and rely heavily on experimental data.

While they may provide better flow field predictions, they are limited in applicability

and not useful for understanding transition mechanisms [22].

This section focuses on single point transitions models, with the noted exception

of the PSE method, reserved for the end. As is summarized by Savill [22], most

methods employ so-called “single point” transition models, where laminar flow is

simply “switched off” and a turbulence model “switched on.” It is understood that

this is a drastic simplification, and assumed turbulence is tripped at one instant

and at one physical location. Another approach uses experimental data to guess a

location and time for transition to begin, and subsequently modifies the eddy viscosity

empirically to roughly predict the onset of fully developed turbulence [22]. These

simplistic methods are most often used in conjunction with equally simplistic algebraic

turbulence models, and, similar to industry’s use of basic turbulence models, represent

the most widely used transition model type for design to date [22].

Two equation models, such as the Jones and Launder’s popular K − ϵ as well as

Wilcox’s K − ω model (and their many variants), have been shown to predict turbu-

lent transition quite well on their own [22]. Whenever employing traditionally high

Reynolds number turbulence models to predict an inherently low Reynolds number

transition case, it is necessary to either add terms to the model to account for low

Reynolds number behavior or assume transition can be captured by essentially adding

some scaled combination of a laminar and turbulent solution [22]. As is detailed by

Savill [22], the first method assumes that transition is governed by the diffusion of

free stream turbulence into the boundary layer or laminar region. This would essen-
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tially model all transition as bypass transition, that is, transition which circumvents

the natural stages of instability development and directly breaks down streaks and

secondary instabilities into turbulence. While applicable in some scenarios, this is

clearly not a universal case. Despite this limitation, single point methods are the

most widely used in industry [22]. The second basic method is not inherently lim-

ited in its range of applicability, but requires experimental data and therefore loses

some generality and is subject to the underlying empirical data upon which it may be

based. Neither modeling scenario is capable of capturing the process of events that

leads to transition. In addition, receptivity, growth, secondary effects, and patchiness

are lost. Intermittency models attempt to make up for this deficiency specifically [22],

and have enjoyed moderate success.

Another alternative are so-called “low Reynolds number” turbulence models, which

were designed to model slow moving, near-wall flows. These models lack specific

prescriptions for transition [22], and are not considered further. Yet other models

attempt to linearly combine simpler models to account for intermittency, but exper-

iments reveal these flow regimes to be much more than a simple addition of laminar

and turbulent flows [22]. All of the models presented thus far suffer from several com-

mon problems. First, they assume that transition is governed by the diffusion of free

stream turbulence in to a laminar boundary layer. Second, they cannot account for

any non-local effects, and third, they cannot account for inviscid damping [22]. The

use of second moment closures has advantages, especially when attempting to cap-

ture bypass transition. Reynolds stress transport approaches can capture free stream

turbulence anisotropy, properly capture the effects of supplied strain, and predict the

production of shear [22]. This being said, such models are still (mostly) single point

closures, and cannot capture non-local information [22].

As discussed previously, the linear exponential model “eN” models instability

waves linearly. Despite its simplistic take on transition, it is quite successful in pre-
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dicting transition for simple flows. It is a local method and therefore cannot account

for strong directional dependence, which is often seen in free stream turbulence tran-

sition scenarios. It also fails to capture the non-linear wave behavior, which tends to

occur just prior to a trip into turbulence. In addition, the reaction of a boundary

layer to external perturbations (receptivity) cannot be accounted for. Some attempts

to consider free stream turbulence have been made with varying success [22]. A

non-local alternative to the eN method is the PSE (parabolized stability equation)

method of transition modeling [22]. This method predicts linear transition scenarios

but outperforms the classic eN method. In addition, it is capable of accurately cap-

turing some non-parallel flow scenarios, where eN cannot. As is often the case, the

PSE method requires a priori knowledge of a transitional flow, often gathered from

experimental data. As Bertolotti summarizes [22], this method contains a collection

of nonlinear parabolic partial differential equations that smoothly transition a given

flow into turbulence. Small disturbances are amplified similar to classical stability

approaches. These methods are limited, however, to slowly changing disturbance and

geometry regimes, and generally cannot predict temporal evolution of instability.

The PSE method requires a flow which is independent of the spanwise direction

[22], similar to the Orr-Sommerfeld equations. In addition, the PSE contains all of the

terms in the Navier-Stokes equations which vary slowly in the downstream direction

and can be solved and integrated directly in the streamwise direction [22]. Steady

disturbances can be captured directly, which includes distortions in the mean flow.

Disturbance history is present, and can capture some receptivity behavior [22]. The

methods is limited by the number of disturbance modes it can handle, more by numer-

ical cost considerations than mathematical. Notably, PSE methods cannot capture

bypass transition as they rely on the “natural” slow growth methods in classic insta-

bility analysis. In addition, flows which change rapidly in the streamwise direction,

such as stagnation [22]. Non-linear versions of the PSE method are a recent addition
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to the modeling tool chest [22]. These methods can capture both the linear and then

non-linear growth present before collapse to turbulence occurs. This ability decouples

the modeling approach from empirical tuning, but still requires detailed information

about initial perturbation levels and a guess as the receptivity of the boundary layer

to external influences [22].

A summary of the “state of the art” of turbulence modeling is provided by Savill

[22]. Unsurprisingly, models used in industry cannot predict transition to any de-

gree of accuracy. Low Reynolds number models must account the effects of solid

boundaries on shear and dissipation in order to predict transition to any degree of

accuracy. These models should provide damping that is not completely based upon

wall distance, and should include streamwise position-based damping corrections as

well. Low Reynolds number stress transport models are appealing as they capture

more physics than their simpler zero-, one-, and two-equation counterparts. Initial

and free-stream condition sensitivity plagues all modeling approaches, as does the

necessity to employ large and expensive computational meshes to capture transition

in complex flow geometries. Research directions should include hybrid modeling ap-

proaches and the use of PSE and intermittency transport approaches [22].

F.6 Summary

Transition is a complex, ubiquitous phenomenon that has enjoyed over 100 years

of intense research. The limitations of current experimental methods make capturing

empirical data difficult. The tightly coupled behavior of instability growth with exter-

nal perturbations and eventually fully-turbulent flow makes a complete mathematical

description impossible, at least currently. Advances in computational resources within

the last 30 years has enabled numerical tools such as DNS and LES to step in and

take the place of experiments in certain simple, low Reynolds number flows, but the

need for comprehensive, accurate experimental data is still paramount. Interestingly,
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LES has added support to the popular theory that instabilities do exist in wave-like

configurations and streamwise free stream turbulent vortices and turbulent patches

do form just prior to transition [22].

Modeling approaches vary widely when considering turbulent transition. They

suffer from the same “pigeon hole” problem that many modern turbulence model

exhibit - working well in a limited regime, and often horribly inaccurate outside of

a small set of relatively simple flows. Modifications to Reynolds stress transport

approaches, or the linear and non-linear PSE methods show the most promise, but

still require much improvement. It is of questionable use, however, as LES is poised to

become a dominate tool in the prediction of transition, despite its crippling reliance

on inaccurate subgrid scale models and the need to capture the very physics that

LES ignores or relegated to said simplistic SGS model. Overall, it is of no surprise

that the topic of turbulent transition is covered little in graduate level fluid and

turbulence texts considering the topic appears to still be in its infancy. As with some

turbulence approaches, numerical solutions may be the ultimate tool for predicting

and characterizing transition.
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APPENDIX G

EDDY LOG LAYER ANALYSIS

Recall from §3.3.2 that the magnitude of the eddy viscosity νT was called into

question, and an estimate for Cν sought. An estimate for the coefficient scaling the

second dissipation-like term in the qi transport equation, Cp, can also be calculated.

Similar log layer analysis for the dissipation can be found in multiple sources [66, 17].

A brief summary will be provided here. Begin with the transport equation for the

eddy orientation vector qi,

Dqi
Dt

= −qkuk,i + Cp(
qnqm
q2

un,m)qi − CΩqi −
1

3

(
ανq2 +

1

τR

)
qi

− Cq
1

τR

[
3 qkqi
qjqj

− δki

]
qk + [(ν + νt)qi,k],k + Cg(ν + νt)

(
qn,kqn,k

q2

)
qi (G.1)

The evolution equation for the average eddy magnitude q2 is desired, as it is a direct

corollary to dissipation and therefore useful in log layer analysis. Multiply through

by 2qk,

Dq2

Dt
= −(1− Cp)(2qiqkuk,i)− 2CΩqiqk −

2

3

(
ανq2 +

1

τR

)
q2

− Cq
2

τR

[
3 qkqi
qjqj

− δki

]
qkqi +

[
(ν + νt)q

2
,k

]
,k

− 2(ν + νt)qi,kqi,k + 2Cg(ν + νt)(qn,kqn,k) (G.2)

and then average over all eddies.
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Dq2

Dt
= −(1− Cp)(2qiqkuk,i)− 2CΩqkqn − 2

3

(
ανq2 +

1

τR

)
q2

− Cq
2

τR

[
3 qiqkqiqk

q2
− q2

]
+
[
(ν + νt)q2,k

]
,k

− 2(ν + νt)qi,kqi,k + 2Cg(ν + νt)(qn,kqn,k) (G.3)

In the log layer u1,2 = u∗

κy
, and q2 = A2

y2
. Recall the turbulent viscosity is defined as

νT = Cν

(
K2

Kq2

) 1
2
= Cν

(1.88u∗)y
A

and the turbulent timescale 1
τR

=
(
Kq2

) 1
2
= 1.88u∗A

y
.

Note that u1,2 =
u∗

κy
= 3.2 1

τ
so 1

κ
= 3.2∗1.88A = 2.44 and thus A = 0.405. Substituting

in these values,

Dq2

Dt
= 0 = − (1− Cp)

(
2q1q2

u∗

κy

)
− 2CΩ

u∗

κy
q3q3 −

2

3

(
0.762u∗

y

)
q2

− Cq2

(
0.762u∗

y

)[
3
qiqkqiqk

q2
− q2

]
+
[
(ν + νt)q2,k

]
,k

− 2Cν(4.64u
∗y)qi,kqi,k + 2CνCg(4.64u

∗y)(qn,kqn,k) (G.4)

This reveals that that q1q2 ∝ 1
y2

if the only production term in the q2 equation (the

first term above) is large. Thus the other components of qiqj most likely behave in a

similar manner, at least in the log layer. Using these assumptions,

0 = − (1− Cp)

(
q1q2

u∗

κy

)
− CΩ

u∗

κy
q3q3 −

1

3

(
0.762u∗A2

y3

)
− Cq

(
0.762u∗A2

y3

)[
3y2qiqkqiqk

A2q2
− z∗

]
+

[
Cν2

(
4.64u∗A

2

y3

)]
+ Cν(Cg − 1)(4.64u∗)

(
A2

y3

)
(G.5)

Further simplifying,
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0 = (1− Cp)
−q1q2

q2
(0.4)− CΩ(0.4)

q3q3

q2
− 0.0417

− Cq(0.125)
[
3qiqkqiqk

q2q2
− 1
]
− (0.0417)

(
3qiqkqiqk

q2q2

)
+ Cν (1.52) + CνCg(0.761) (G.6)

Finally, this becomes

0 = (1− Cp)(0.1)− CΩ(0.13333)− 0.0417 + Cν(0.761) (Cg − 1) (G.7)

This suggests that the eddy viscosity νt should be smaller, with Cν = O(0.1). In

addition, inspection of the corresponding log layer analysis for dissipation [66, 17]

suggests Cp ≈ 0.4. Note that several rotation models may be employed in the above

analysis yielding similar results. For example, CΩ could be represented by any of the

rotation models defined previously with only minor changes to the values calculated.
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APPENDIX H

NOTES ON “AVERAGE EDDY” DIFFUSION

Recall from §3.3.2 a diffusion scheme for the eddy orientation vectors qi and local

Reynolds stress tensors Rij was sought as an alternative to the standard diffusion

model ∇ (ν + νT ) · ∇ϕ. One such method proposed the construction of a so-called

“average eddy ellipse”, an ellipsoid which represents all of the eddy orientation vectors

(and possibly all of the local Reynolds stress tensors) at a given location in physical

space. This ellipsoid could be polled by neighboring cells in order to obtain the eddy

vector magnitude in the direction of interest (i.e. the direction of the local qi) even if

the neighboring cell has no eddy pointing in the required direction. While this method

was eventually abandoned for the classic diffusion model, the procedure to construct

such an ellipsoid is still of interest. Given a discrete set of eddy orientation vectors,

a “best fit” surface can be constructed around said vectors which roughly represents

the eddy structure at any given cell. While theoretically possible, constructing such

a surface representing the “average Reynolds stress tensor” surface is difficult as it

exists in a higher dimension.

In general, an ellipsoid is given by the formula xTAx = 1 where A is a symmetric,

positive definite matrix. The goal is to solve for the “best-fit matrix” given data for

x. In this case, the data is in the form of the existing eddy orientation vectors qi.

This takes the form xiAxxx
i + yiAyyy

i + ziAzzz
i + 2xiAxyy

i + 2xiAxzz
i + yiAyzz

i = 1

for every data point i. Formulating the ideas above in matrix form,
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x1x1 y1y1 z1z1 x1y1 x1z1 y1z1

x2x2 y2y2 z2z2 x2y2 x2z2 y2z2

...
...

...
...





Axx

Ayy

Azz

Axy

Axz

Ayz


=



1

1

1

1

1

1


(H.1)

where x1, y1, and z1 are the three components of the “first” eddy orientation vector

and the superscripts do not imply exponents. Note that dimensions of this matrix are

6 × N , where N is the number of eddy orientation vectors available for the best fit.

Unfortunately, there are more equations than there are unknowns, and a least-squares

fit must pre-multiply the transpose of the matrix in order to arrive at a square system

which is solvable. Doing so results in,

ℑ
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where
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∑
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∑
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wixixix1y1

∑
i
wixixix1z1

∑
i
wixixiy1z1∑

i
wiyiyixixi

∑
i
wiyiyiyiyi

∑
i
wiyiyizizi

∑
i
wiyiyixiyi

∑
i
wiyiyixizi

∑
i
wiyiyiyizi

.

..
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..

.

..
.
..

 (H.3)

This is essentially a 6 × 6 matrix problem which is symmetric and positive definite.

Note that wi are weighting factors which can be used to preferentially weight the ith

orientation. This solution has the minimum error to the unsolvable problem above.
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With the weights wi = 1, the vector A becomes Nij = qiqj/q2. Note that

MijnmAnm = Nij where Mij and Nij are derived from summations. Let N̂(ij) = qiqj

be a vector of tensors and N(ij) =
∑

N̂(ij) and M(ij)(nm) =
∑

N̂(ij) ⊗ N̂(nm). The goal

is to solve Anm = [Mijnm
−1]Nij. Given a vector qi, another vector must be found

which intersects the ellipse. That intersection will provide an estimate of the mag-

nitude of the vector pointing in the direction of interest. This new vector, q∗n = αqn

is the vector required to calculate diffusion for this method. The ellipse equation

requires that q∗n lies on the surface of the ellipse, thus α2qnAnmqm = 1 and therefore

α = [qnAnmqm]
−1/2.
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