
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

March 2016 

Adaptive Route Choice in Stochastic Time-Dependent Networks: Adaptive Route Choice in Stochastic Time-Dependent Networks: 

Routing Algorithms and Choice Modeling Routing Algorithms and Choice Modeling 

Jing Ding-Mastera 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Transportation Engineering Commons 

Recommended Citation Recommended Citation 
Ding-Mastera, Jing, "Adaptive Route Choice in Stochastic Time-Dependent Networks: Routing Algorithms 
and Choice Modeling" (2016). Doctoral Dissertations. 562. 
https://doi.org/10.7275/7940719.0 https://scholarworks.umass.edu/dissertations_2/562 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/7940719.0
https://scholarworks.umass.edu/dissertations_2/562?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


ADAPTIVE ROUTE CHOICE IN STOCHASTIC
TIME-DEPENDENT NETWORKS: ROUTING ALGORITHMS

AND CHOICE MODELING

A Dissertation Presented

by

JING DING-MASTERA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2016

Civil and Environmental Engineering
Department



© Copyright by Jing Ding-Mastera 2016
All Rights Reserved



ADAPTIVE ROUTE CHOICE IN STOCHASTIC
TIME-DEPENDENT NETWORKS: ROUTING ALGORITHMS

AND CHOICE MODELING

A Dissertation Presented

by

JING DING-MASTERA

Approved as to style and content by:

Song Gao, Chair

Moshe Ben-Akiva, Member

John Collura, Member

Jenna Marquard, Member

Richard Palmer, Department Head
Civil and Environmental Engineering
Department



ABSTRACT

ADAPTIVE ROUTE CHOICE IN STOCHASTIC
TIME-DEPENDENT NETWORKS: ROUTING ALGORITHMS

AND CHOICE MODELING

FEBRUARY 2016

JING DING-MASTERA

BE, TIANJIN UNIVERSITY, TIANJIN, CHINA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Song Gao

Transportation networks are inherently uncertain due to random disruptions; mean-

while, real-time information potentially helps travelers adapt to realized traffic conditions

and make better route choices under such disruptions. Modeling adaptive route choice be-

havior is essential in evaluating Advanced Traveler Information Systems (ATIS) and related

policies to better provide travelers with real-time information. This dissertation contributes

to the state of the art by estimating the first latent-class routing policy choice model using

revealed preference (RP) data and providing efficient computer algorithms for routing pol-

icy choice set generation. A routing policy is defined as a decision rule applied at each

link that maps possible realized traffic conditions to decisions on the link to take next. It

represents a traveler’s ability to look ahead in order to incorporate real-time information not

yet available at the time of decision.

A case study is conducted in Stockholm, Sweden and data for the stochastic time-

dependent network are generated from hired taxi Global Positioning System (GPS) traces
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through the methods of map-matching and non-parametric link travel time estimation. A

latent-class Policy Size Logit model is specified with two additional layers of latency in

the measurement equation. The two latent classes of travelers are policy users who follow

routing policies and path users who follow fixed paths. For the measurement equation of

the policy user class, the choice of a routing policy is latent and only its realized path on

a given day can be observed. Furthermore, when GPS traces have relatively long gaps

between consecutive readings, the realized path cannot be uniquely identified.

Routing policy choice set generation is based on the generalization of path choice set

generation methods, and utilizes efficient implementation of an optimal routing policy

(ORP) algorithm based on the two-queue data structure for label correcting. Systematic

evaluation of the algorithm in random networks as well as in two large scale real-life

networks is conducted. The generated choice sets are evaluated based on coverage and

adaptiveness. Coverage is the percentage of observed trips included in the generated choice

sets based on a certain threshold of overlapping between observed and generated routes, and

adaptiveness represents the capability of a routing policy to be realized as different paths

over different days. It is shown that using a combination of methods yields satisfactory

coverage of 91.2%. Outlier analyses are then carried out for unmatching trips in choice set

generation. The coverage achieves 95% for 100% threshold after correcting GPS errors and

breaking up trips with intermediate stops, and further achieves 100% for 90% threshold.

The latent-class routing policy choice model is estimated against observed GPS traces

based on the three different sample sizes resulting from coverage improvement, and the

estimates appear consistent across different sample sizes. Estimation results show the

policy user class probability increases with trip length, and the latent-class routing policy

choice model fits the data better than a single-class path choice model or routing policy

choice model. This suggests that travelers are heterogeneous in terms of their ability

and willingness to plan ahead and utilize real-time information. Therefore, a fixed path
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model as commonly used in the literature may lose explanatory power due to its simplified

assumptions on network stochasticity and travelers’ utilization of real-time information.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Traffic congestion has become a severe problem around the world. According to the

2015 Urban Mobility Report by Texas Transportation Institute (TTI), traffic congestion in

the United States (U.S.) cost 160 billion dollars in 2014. Individual travelers suffer from

congestion which consumes personal time and increase anxiety. According to TTI, in order

to arrive on time for important trips, travelers must now plan for 60 minutes to make a

trip that takes 20 minutes in light traffic. As a result, industry also suffers from congestion

because of reduced productivity of employees and increased scheduling and shipping costs.

This burden of costs are then inevitably passed onto the consumers. Furthermore, congestion

induce impacts to the environment from wasted fuel and emissions.

There are generally two types of congestion, recurrent and non-recurrent. Recurrent

congestion is caused by the insufficient design capacity of a roadway segment under normal

traffic flows. The design capacity is based on the projected flows at the time of design

and may not meet the actual flows at a later time due to prediction errors. Non-recurrent

congestion is due to random disruptions that reduce the capacity, such as incidents, vehicle

breakdowns, bad weather, work zones, special events and so forth. Transportation systems

are frequently subject to these random disruptions resulting in variable and unpredictable

traffic conditions. Thus non-recurrent congestion contributes significantly to the total

congestion. It is estimated by the Federal Highway Administration (FHWA) that 50% of

the congestion in the U.S. is due to unexpected disruptions to the system.
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An important characteristic of congested transportation networks is that traffic variables

such as travel time and flows are stochastic and time-dependent from time to time and

day to day. For example, travel time on a weekday could be very different from that on

weekends, and travel time during morning peak could be very different from that during

mid-day. This characteristic comes from both recurrent and non-recurrent congestion.

Non-recurrent congestion contributes through random disruptions to the networks while

re-current congestion contributes through the fluctuations in number of trips and the spread

of trips over departure times. Travelers with flexible time may shift their departure times

to avoid peak hours. and travelers with non-work trip purposes may cancel a trip on

a particular day. Traffic variables not only are stochastic and time-dependent, but also

have link-wise and time-wise dependency. For example, when an incident happens on the

highway, the link travel times around the incident location and within the incident duration

are correlated. Thus when modeling transportation networks, it is important to capture

these characteristics.

It is widely acknowledged that expanding the current infrastructure to provide increased

capacity, which is typically financially and environmentally constrained, is no longer the

only solution for congestion. Newmeasures to relieve congestion are based on the concept of

making the best use of the current infrastructure, which is the underlying idea of Intelligent

Transportation Systems (ITS). The federal government and many states have developed

such measures to mitigate congestion. One example is a new strategy toward incident

management which provides advanced training of emergency response teams in an effort to

reduce the disruption time. While such strategiesmay help reduce the impacts of disruptions,

a more effective solution may be to provide the travelers with information regarding the

disruptions. With the fast development of sensor and telecommunication technologies,

real-time information is increasingly available for travelers and system operators to make

better decisions in such an uncertain systemwith random disruptions. As a result, Advanced
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Traveler Information Systems (ATIS) have been identified as a potential strategy toward

reducing congestion and improving system reliability.

There are various information types and information access types. Information can be

classified as a priori information and online information. A priori information is available

before a trip, which provides the average values and variability of the traffic variables across

days, e.g. the average travel time through a tunnel is 1 minute, but the travel time could be

very high due to incidents which happen once a week on average. Online information is

available during a trip, which provides the values of traffic variables on a specific day and

time, e.g. currently, the travel time through the tunnel is 30 minutes due to a crash. When

the network is stochastic and time-dependent, online information can be very different

from a priori information and that is when online information is beneficial in assisting

travelers avoiding the congestion. ATIS can provide both a priori and online information

to travelers. There are also different types of information access. Smartphone apps such

as Google Traffic and Waze usually contain a database of all roadways and can provide

travelers with travel times on multiple alternative routes. Variable message signs (VMS)

usually provide travelers with travel times of the roadway segment they are traveling on.

Different assumptions should be made based on different types of information access.

The success of ATIS is based on the idea that an better informed traveler can make

a better decision, and collectively many travelers’ better decisions can reduce congestion.

For instance, if information regarding delays on the highway due to an incident is timely

provided to the travelers who plan to take this route, they can make rerouting decisions

which result in a relief in congestion. However, if travelers do not adapt to real-time

information and wait in line for a long time, then congestion certainly cannot be alleviated

by providing real-time information. It is therefore crucial to study whether an individual

traveler makes adaptive route choice decisions utilizing real-time information and how they

make such decisions, and furthermore, what is the network-level impact if many travelers

make adaptive route choice decisions.
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From a network-level planning point of view, the route choices made by travelers have

immense effects on where congestion takes place and the collective of all travelers’ choices

determines the traffic load and distribution, and how we develop transportation policies

to handle the ever growing travel demand. As part of regional transportation planning

activities, travel demand modeling (TDM), which estimates travel behavior and travel

demand for a future time frame, is a powerful tool to assist decision makers in making

informed decisions on proposed plans and policies. Route choice modeling is an essential

part in TDM, but the route choice models applied in TDM are usually very basic with

simplified assumptions of fixed path choice behavior. In a congested network, however,

the traffic conditions affect travelers route choice behavior, which in turn affects the traffic

conditions. Although this interaction between supply and demand can be captured by a

conventional dynamic traffic assignment (DTA) model in a deterministic and static network

with fixed path choice assumptions, it cannot be captured in a stochastic time-dependent

network without a more realistic route choice model. The development of ATIS in assisting

travelers’ decisions has renewed the interest of developing more sophisticated route choice

models to model the real-time information effect and adaptive route choice behavior.

While it may seem simplistic to implement ATIS, the effects to the transportation

network must be evaluated. For example, the installation of VMS informing travelers

of delays and alternative routes due to an incident on a highway is expected to reduce

congestion and hence system costs. Travelers route choice decision with information are

generally better from those without information, and collectively better decisions by many

travelers would result in less congestion. Yet it is also anticipated that not all drivers will

utilize the information being provided. Furthermore, the induced traffic diversions could

have a direct impact to the local roadways. Therefore, a crucial component in designing and

evaluating ATIS is an understanding of travelers adaptive route choice behavior in response

to a wide range of traveler information access in a network with dynamic and random traffic

conditions. This understanding could be utilized to predict the effectiveness of ATIS and
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provide justification of its costs associated with installation and operation. The cost-benefit

analysis of ATIS requires a model which allows travelers to make adaptive route choice

decisions with the real-time information and derives metrics on network performance such

as total travel time and travel time reliability. These metrics can then be translated to

monetary values and compared to those in the network without ATIS.

Then what are the scopes of adaptive route choice behavior? A traveler makes decisions

based on his or her knowledge of the available alternatives and their attributes. This

knowledge is periodically updated by both personal experience and exogenous information,

and as a result the decisions might be revisited and revised. In other words, a traveler

"adapts" to the decision environment. The time scale at which route choice adaption

happens can be broadly divided into two types: day-to-day and within-day. In a day-to-day

context, a traveler’s route choice today might be different from yesterday due to information

collected yesterday during the trip. In a within-day context, route choice could be revised

en route, e.g., taking a detour upon receiving information on a crash on the bridge along

the original route. This dissertation focuses on within-day adaptive route choice, where the

real-time information reflects travel conditions at or close to the decision time. For a recent

review of empirical day-to-day route choice studies, please refer to [Balakrishna et al.,

2013].

Within-day route choice is arguably the most researched area of traveler response to

ATIS, which predicts the route a traveler would take when traveling between an Origin-

Destination (OD) pair. Three types of route choice models (fixed path models, adaptive

path models, and routing policy choice models) have been studied based on three types

of travelers (non-adaptive, reactive, and strategic, respectively). Early on, most studies

focused on fixed path models. They assume that a traveler is non-adaptive who chooses a

fixed path at the origin of a trip and follows it till the end, not accounting for any real-time

information provided en-route. Travelers’ route choice behavior in an uncertain network

with real-time informationwill conceivably be different from that in a deterministic network.
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With real-time information provided en-route, travelers could make route choice decisions

at intermediate nodes based on the current situation in order to avoid delay downstream.

Thus over time, there was a new focus on adaptive path models. An adaptive path model

assumes that a traveler is reactive and route choice is a series of path choices at each node.

A reactive traveler behaves as if no additional information or diversions would happen in the

future and choose from the set of paths from the current node to the destination, even though

in reality they might switch to another path at the next node. Although an adaptive path

model could account for diversions from an initial chosen path, it assumes that travelers are

simply reactive to information on-the-spot and do not plan ahead for real-time information

that will be available later in the trip. Most recently, a few studies focused on routing policy

choice models, which assume travelers are strategic in planning ahead for future events and

travelers have some expectations for the real-time information downstream. Both reactive

and strategic travelers adapt to real-time information at intermediate nodes; the difference

between a reactive and strategic traveler lies on whether the decision at an intermediate node

takes into account future information availability and diversion possibilities. A strategic

traveler fully considers the future information availability and the possible actions they

might take at all future nodes. Therefore they decide what next link to take but not the

next path to destination. However, studies on routing policy choice models have only

been carried out with stated preferences (SP) data, where individuals state their preference

under experimental conditions such as surveys. Therefore, there has been a gap in the

literature that this dissertation now addresses: the estimation of a routing policy choice

model under real-time information using revealed preference (RP) data, where individuals

reveal their preference through the choices already made such as observed GPS traces. A

recent overview of models that account for real-time information en-route can be found in

[Abdel-Aty & Abdalla, 2006], [Balakrishna et al., 2013], and [Chorus et al., 2006].

6



1.2 Literature Review

1.2.1 Optimal Routing Policy Algorithms

The optimal routing policy (ORP) calculation is a building block of any choice set

generation algorithm. There are only a limited number of studies exploring theORPproblem

in STD networks with explicitly represented time and various assumptions on network

stochasticity and information availability. Some studies investigate real-life networks, but

have simplified assumptions on network stochasticity and information availability. Others

study such complicated problems but are not so practical as to be applied to real-life

networks.

[Hall, 1986] studied for the first time the time-dependent version of the ORP problem

and demonstrates in an STD network, adaptive decision rules are more effective than fixed

paths. [Chabini, 2000] produced a dynamic programming algorithmbased on the concept of

decreasing order of time, which is optimal in the sense that no algorithms with better worst-

time complexity exist. The algorithm is later described in [Gao, 2004]. [Miller-Hooks &

Mahmassani, 2000a] developed a label-correcting algorithm for determining the adaptive

least-expected time hyperpaths from all nodes to a select destination assuming time-wise

and link-wise stochastically independent link travel time random variables. [Miller-Hooks,

2001] compared this algorithm with the dynamic programming algorithm in [Chabini,

2000] computationally. It is Similar to the TDLTP (Time-dependent Least-time Problem)

algorithm in [Ziliaskopoulos & Mahmassani, 1993] for determining least-time paths in

deterministic, time-dependent networks. In [Boyles, 2009], a label-correcting algorithm

is proposed for the online shortest path problem in cyclic graphs and is demonstrated on

a medium-sized transportation network. [Boyles & Waller, 2011] described a network

contraction procedure and demonstrated adaptive routing algorithms on three networks of

varying size. In [Boyles, 2012], an approach is presented for replacing a regional network

with a smaller one, and is applied to a regional network representing the Austin, Texas
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metropolitan area. [Boyles & Waller, 2010a] and [Boyles & Waller, 2010b] studied traffic

assignment problems in real-life network.

[Gao & Chabini, 2006a] studied the ORP problems in STD networks, where link travel

times are modeled as random variables with time-dependent distributions. It established the

first framework for ORP problems in STD networks, providing a comprehensive taxonomy

of the studied problem, based on information access and network stochastic dependency,

designing an algorithm (Algorithm DOT-SPI) to one of the variants, particularly pertinent

in traffic networks, where the network dependency and the value of information are taken

into account. However, Algorithm DOT-SPI is not intended to be deployed in practice, as in

practice it is difficult to obtain the a priori joint realization and the run time of the algorithm

is high due to the fact that the problem variant it solves is an intrinsically difficult problem.

Based on Algorithm DOT-SPI, Algorithm LC-CDPI has been designed in [Ding &

Gao, 2012], which is the first algorithm practical for large-scale networks that considers

complete time-wise and link-wise stochastic dependency. This algorithm is introduced in

Section 3

1.2.2 Choice Set Generation

The first step in route choice modeling is choice set generation. For real-life networks,

there may exist a large number of routes/routing policies for an origin-destination (OD) pair.

Thus a subset of reasonable alternatives needs to be generated. For path choice set generation

there are deterministic and stochastic algorithms [Frejinger, 2007]. Commonly used

deterministic methods include link elimination [Azevedo & Martins, 1993], [Srinivasan

& Dhakar, 2013], [Rieser-Schussler & Axhausen, 2012], link penalty [de la Barra &

Anez, 1993], labeling [Ben-Akiva & Ramaswamy, 1984], constrained k-shortest paths

[Van der Zijpp & Fiorenzo-Catalano, 2005], and branch-and-bound ( [Friedrich &Wekeck,

2001] for public transportation networks, [Hoogendoorn-Lanser, 2005] for multi-modal

networks and [Prato & Bekhor, 2006] for private transportation networks). Stochastic
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methods include simulation [Ramming, 2002], [Prato, 2011], and doubly stochastic choice

set generation [Bovy & Fiorenzo-Catalano, 2006]. [Bekhor & Ramming, 2006] provides

a comprehensive comparison of a large number of path choice set generation algorithms

using a data set from Boston. [Prato, 2012] suggests that transportation modelers should

implement stochastic path generation techniques with average variance of its distribution

parameters, and correction for unequal sampling probabilities of the alternative routes in

order to obtain satisfactory results for coverage of "postulate chosen route", and reproduction

of "true model estimates". A number of routing policy choice set generation algorithms are

investigated, which are generalizations of the link elimination and simulation methods for

path choice set generation.

1.2.3 Route Choice Models

1.2.3.1 Fixed Path Models

Fixed path models refer to probabilistic route choice models in deterministic networks

which differ from deterministic route choice models. In deterministic route choice models,

the probability of choosing a path is 100%. Deterministic route choice models can also be

applied in STD networks with attributes being random variables. This dissertation focuses

on probabilistic route choice models.

Once the choice sets are generated, the next step in route choice modeling is the

estimation of a route choice model which predicts the route a traveler would take when

traveling between an OD pair. Most route choice models are only based on deterministic

networks. They assume that a traveler makes a complete route choice at the origin of a

trip and do not account for any real-time information provided en-route. For example,

early on the most widely used model is the Multinomial Logit (MNL) due to its attractive

closed-form formula. However, the MNL model assumes the error terms are identically

and independently distributed (i.i.d) which are not true in networks with many overlapping

paths. To address this issue, the C-Logit model [Cas, 1996] and Path Size Logit model
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[Ben-Akiva & Bierlaire, 1999] are proposed based on the logit model. Notably, the Path

Size Logit model has been successfully implemented based on RP data in Dynamic Traffic

Assignment (DTA) in a subnetwork of Beijing, China [Ben-Akiva et al., 2012]. Later

on, more complicated models are developed such as Error Component model [Bolduc &

Ben-Akiva, 1991], Multinomial Probit [Yai et al., 2002], latent route choice models with

network-free data [Mahmassani, 2001], models assuming a universal choice set estimated

based on a sampling approach [Frejinger et al., 2009], and models assuming a universal

choice set estimated trough repeated link choices based on a dynamic discrete choice

approach [Fosgerau et al., 2013]. Due to the complexity of these models, however, they

have yet to be applied in routing policy choice models in uncertain networks based on RP

data.

1.2.3.2 Adaptive Path Models

Some researchers model adaptive route choice behavior by successively estimating a

sequence of non-adaptive path choice models at each node and updating the attributes of

alternative paths to the destination to reflect real-time information. In principle all fixed

path models mentioned in 1.2.3.1 can be applied this way. The simulation-based traffic

prediction models in DynaMIT [Ben-Akiva et al., 2011] and DYNASMART [Fosgerau

et al., 2011] are such examples, which update the path choice at intermediate decision nodes

according to the latest network travel times. These models are calibrated over aggregate

measurements such as counts and speeds, in which route choice parameters are among the

calibration variables. In this regard, adaptive path models have been calibrated as a part of

traffic prediction models in real-life networks.

A large body of research on route choice in response to real-time information focuses

on binary route switchings in real life, e.g., [Polydoropoulou et al., 1996], [Chatterjee

& McDonald, 2004], [Peeta & Ramos, 2006], [Tsirimpa et al., 2007], or more advanced

hypothetical ATIS in SP surveys, inwhich travelers are directly asked about their preferences
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for route choice in hypothetical situations, e.g., [Mahmassani & Liu, 1999], [Srinivasan

& Mahmassani, 2003], [Abdel-Aty & Abdalla, 2004], [Peeta & Yu, 2005], [Bogers et al.,

2005], [Abdel-Aty & Abdalla, 2006]. In all of these studies, travelers are assumed to

respond to real-time information on the spot, and the complete decision process is a series

of path choices, each of which is based on updated traffic conditions revealed by real-time

information at the time of decision. The implicit assumption is that a traveler is myopic and

cannot look ahead for future information and such behavior is adaptive path choice.

1.2.3.3 Routing Policy Choice Models

Recent studies investigate the response before the information is received for travelers

with looking-ahead abilities. They find that a traveler does not need to commit to a

particular route, but instead can decide later at a switching point based on then revealed

traffic conditions, and choose the route with a shorter travel time for the remaining trip. The

option value of downstream real-time information thus could potentially make a collection

of alternatives that share a common starting link more attractive than other links out of the

same decision node. Therefore, the travelers respond to the information upstream of the

actual point where it is received. Such travelers are said to take routing policies, which

loosely speaking, are decision rules applied at each link that map possible realized traffic

conditions to decisions on the link to take next. It represents travelers’ ability to look

ahead in order to incorporate real-time information not yet available at the time of decision.

The first routing policy choice model was developed in [Gao, 2005] estimated based on

synthetic data and a simplified network. Later [Gao et al., 2008] studied two types of

models that account for travelers’ adaptation to real-time information: an adaptive path

model and a routing policy choice model also based on synthetic data and a simplified

network. Empirical studies of the routing policy choice to this date have only been carried

out with SP data, e.g. [Razo & Gao, 2010], [Razo & Gao, 2013], [Tian et al., 2011].
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1.2.3.4 Route Choice without Choice Set Generation

Some studies avoid choice set generation in the context of route choice model estimation

and assume a universal choice set. [Frejinger et al., 2009] presents a new paradigm for

choice set generation by assuming that the choice sets contain all paths connecting each OD

pair, and a sampling approach was proposed to generate subsets of paths suitable for model

estimation. Despite the fact that this approach avoids the bias in model estimation, the

application is not feasible when calculating the probability of routes in the universal choice

sets. [Fosgerau et al., 2013] proposes a dynamic discrete choice approach for consistently

estimating route choice model parameters based on path observations through repeated link

choices. The approach does not require choice set generation or sampling. It currently only

applies to non-adaptive path choices.

1.2.4 Travel Time Reliability

Many different approaches exist formodeling reliability (variability). Themost common

approach is to assume that travelers see reliability as a direct source of inconvenience,

similar to the way travel time is viewed. Furthermore, different model forms and measures

of reliability have been explored to study the values of reliability. Reliability ratio is the ratio

of reliability and travel time. Studies have shown that model forms influence the reliability

ratio ( [Yan, Yan], [Prato et al., 2014]) and so does the method of measuring reliability.

The most common measure is travel time standard deviation [Small et al., 1995]; others

include the difference between the 90th percentile and the 50th percentile of the travel time

distribution [Lam & Small, 2001], the difference between the 80th percentile and the 50th

percentile [Small et al., 2005], and the coefficient of variation [Small et al., 1995]. A large

number of studies have estimated the value of the reliability ratio. Results range from about

0.10 to over 3.00 with differences across model types, measures of reliability, data types,

time periods, and trip purposes. ( [Small et al., 1999], [Batley & Ibanez, Batley & Ibanez],
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[Li et al., 2010], [Prato et al., 2014], [Yan, Yan], [Lam & Small, 2001], [Ghosh, 2001]).

Table 1.2 shows a summary of some recent reliability ratio studies.

The estimated ratios in RP studies ( [Lam & Small, 2001], [Small et al., 1995], [Liu

et al., 2007], [Li et al., 2010]) are generally higher than the ones from SP studies ( [Small

et al., 1995], [Small et al., 1999], [Small et al., 2005]). [Ghosh, 2001] and [Yan, Yan]

find RP estimates to be of higher value in comparison to SP estimates. [Small et al.,

2005] concluded that SP studies underestimate the values compared to those in RP studies.

[Hensher, 2010] investigation suggests that part of the difference may be due to the method

in which the SP data is used in model estimation. The SP experiment design, particularly

the way of presenting of travel time reliability, also has a critical influence on the valuation

of travel time reliability [Batley & Ibanez, Batley & Ibanez]. In addition, some studies

found the trip purposes affects reliability ratio. For example, [Li et al., 2010] showed that

the disutility incurred when arriving early is higher than arriving later for non-commuters;

while commuters would pay much more to avoid a late arrival, given the consequence of

being late. Furthermore, some other studies show that time periods affect reliability ratio.

( [Prato et al., 2014], [Liu et al., 2007]) showed that the value of reliability and travel time

are higher for the peak period due to possible penalties for being late and consequently

possible time pressure.

Table 1.1. Summary of model studies

Fixed Path
Models

Adaptive Path
Models

Routing Policy
Models

SP Data RP Data SP Data RP Data SP Data RP Data
Hypothetical
Simplified Net-
works

Yes Yes Yes Yes Yes Yes

Real-Life Net-
works

Yes Yes Yes Yes Yes No
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Table 1.2. Summary of travel time reliability studies

Paper Data
Type

Measure of
Reliability

Coefficient/
Value
of Time
($/hour)

Coefficient/
Value of
Reliability

Reliability
Ratio

Small et al
(1995)

SP Coefficient
of Variation

-0.1051 -0.3463 NA

Small et al
(1995)

SP Standard De-
viation

-0.0996 -0.1263 1.27

Small et al
(1999)

SP Standard De-
viation

3.92 12.6 3.23

Ghosh (2001) SP/RP 90th-50th
percentile

11.81(Joint)
36.06(RP)

12.50(Joint)
47.51(RP)

1.06(Joint)
1.32(RP)

Hensher
(2001)

SP Uncertainty
or
contingency1

NZ$8.7 NZ$5.0 0.57

LamandSmall
(2001)

RP 90th-50th
percentile

22.87 15.12(Male)
31.91 (Fe-
male)

0.66(Male)
1.39 (Fe-
male)

Yan (2002) RP 80th-50th
percentile

16.40-17.16 18.52-33.39 1.10-1.952

Small et al
(2005)

RP 80th-50th
percentile

21.46 19.56 0.91

Hollander
(2006)

SP(bus) Standard De-
viation

£4.2 £0.42 0.1

Lui (2007) RP 80th-50th
percentile

7.7-31.44 21.34-39.99 0.93-3.163

Batley and
Ibanez (2009)

SP(Rail) Standard De-
viation

£15.4 £31.8 2.07

Li et al (2010) SP Standard De-
viation

22.52 (Com-
mute) 8.18
(Non-
commute)

35.87 (Com-
mute) 21.04
(Non-
commute)

1.59 (Com-
mute) 2.57
(Non-
Commute)

Prato et al
(2014)

RP 90th-50th
percentile

DDK148.67
(Peak)
DDK76.55
(Off-peak)

DDK228.95
(Peak)
DDK115.59
(Off-peak)

1.54 (Peak)
1.51 (Off-
peak)

1Uncertainty of travel time is defined as the extra time the traveler allowed for in order to ensure
he/she arrived at the destination at the planned time. It is equivalent to a contingency time
2Varies across model types (ordered-logit with different ways of categorizing the period [0,1])
3Varies across time periods (5am-10am)
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1.3 Challenges and Contributions

In the literature, fixed path models and adaptive path models introduced in Section

1.1 have been estimated in both hypothetical simplified networks and real-life networks

based on both SP and RP data. Routing policy choice models have also been estimated

in hypothetical simplified networks based on SP data. However, the estimation of routing

policy choicemodels in real-life networks under real-time information usingRPdata remains

an unexplored area.

This dissertation thus contributes to the state of art by conducting the first RP study

of routing policy choice using Global Positioning System (GPS) data, specifically in the

following two aspects:

• Estimation of the first adaptive route choice model using RP data, where a potential

adaptive traveler is provided with real-time information. A latent-class, latent-choice,

latent-path Policy Size Logit model is used to capture strategic behavior. This is a

significant step toward building a more accurate traffic prediction model under real-

time information.

• The design and implementation of computer algorithms for choice set generation in

real-life large STD networks, where link travel times are stochastically dependent

random variables. Such algorithms are not only critical to the model estimation in the

current research, but can also potentially be applied in other route choice and traffic

network research due to its generality.

RP studies of adaptive route choice (adaptive path and routing policy choice) in real

life networks impose challenges in data collection. Three major types of data are needed:

travelers’ chosen routes, network conditions, and travelers’ information access. The first

two types of data are increasingly more available due to the advent of GPS technologies.

For example, [Papinski et al., 2009] compared the planned and actually chosen routes

(observed by GPS) of travelers and found that 20% of surveyed travelers switch routes
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for various reasons (one of them being ATIS). There have been a large number of GPS

data collection efforts throughout the world, e.g., [Spissu & Sanjust, 2011], [Pillat &

Friedrich, 2011] [Rieser-Schussler & Axhausen, 2012], especially with the ever increasing

popularity of GPS-enabled smart phones. A number of route choice models have been

estimated using GPS data, e.g., [Frejinger & Bierlaire, 2007]. The third type of data,

however, is not available from passive GPS traces especially in a dynamic context where

the information content changes over time and space, and must be collected through surveys

or other monitoring devices such as video cameras. In the case study of this dissertation,

taxi GPS traces from Stockholm, Sweden are used to generate chosen routes and link travel

times.

Another challenge of RP routing policy choice studies is computational. The underlying

network for adaptive route choice is conceivably more complicated than that for a fixed path

choice model, as travel times are usually represented as time-dependent random variables

to support modeling the dynamic and adaptive nature of the behavior. The alternative in the

choice set is a routing policy, and the choice set generation thus requires repetitive executions

of an ORP algorithm, which in general is much more time consuming than shortest path

algorithms in deterministic networks. There have been a large number of algorithmic studies

which generate optimal routing decisions depending on traffic conditions revealed by real-

time information in a stochastic network, e.g., [Miller-Hooks & Mahmassani, 2000b],

[Waller & Ziliaskopoulos, 2002], [Gao & Chabini, 2006b], [Gao & Huang, 2012]. An

efficient ORP algorithm applicable in large-scale real-life networks is developed and applied

in this dissertation ( [Ding & Gao, 2012]).

1.4 Dissertation Structure

This dissertation has been structured as follows. Chapter 2 begins by introducing

the modeling framework including model specification and estimation, and choice set

generation. Chapter 3 presents the ORP algorithm LC-CDPI as a building block of choice
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set generation. Chapter 4 presents a network data processing methodology, which may

be used to process real-life network data for the modeling framework. In Chapter 5 these

methodologies are implemented in a real-life network, Stockholm, Sweden. In Chapter 6

the conclusions are made and anticipated results and future directions are introduced.
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CHAPTER 2

MODELING FRAMEWORK ANDMETHODOLOGIES

2.1 Network, Information, Route Choice Behavior

The networks aremodeled as stochastic time-dependent (STD), inwhich link travel times

are jointly distributed time-dependent random variables. The STD network is denoted as

G = (N,A, T, P ), where N is the set of nodes, A the set of links with |A| = m, T the

set of time periods {0, 1, ..., K − 1}, and P the probabilistic representation of link travel

times. Beyond time period K − 1, travel times are static and deterministic. T (i, j, k, t) is

the deterministic turning movement penalty from link (i, j) to link (j, k) at time t.

Belonging to the link travel time representation, a "support point" is defined as a

distinctive value that a discrete random variable can take, or a distinctive vector of values

that a discrete random vector can take depending on the context. Thus a probability mass

function (PMF) of a random variable (or vector) is a combination of support points and

the associated probabilities. A joint probability distribution of all link travel time random

variables is used: P = {v1, v2, ..., vR}, where vi is a vector with a dimension K × m,

i = 1, 2, ..., R, and R is the number of support points. The rth support point has a

probability pr, and
∑R

r=1 pr = 1. When link travel time observations from multiple days are

available, a support point can be viewed as a day, R is the number of days, and pr = 1/R,

∀r.

The example in Figure 2.1 and Table 2.1 illustrates the concepts of support points and

event collections. This STD network has three links and three time periods: 8:00 AM, 8:20
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AM, and 8:40 AM. Therefore there are nine random travel time variables, each for a link at

a time period. Each support point, r1, r2 and r3, has a probability of 1/3.

Table 2.1. Example of support points and event collections

Time Link r1 r2 r3

8:00 AM
(0,1) 20 20 20
(1,2) 30 30 30
(0,2) 40 40 40

8:20 AM
(0,1) 20 20 20
(1,2) 30 30 20
(0,2) 40 40 30

8:40 AM
(0,1) 20 20 30
(1,2) 20 30 20
(0,2) 40 30 30

Figure 2.1. Network for the example of support points and event collections

With the help of online information, the travelers become more certain about the future

or the network becomes less stochastic. To model this effect of information in reducing

uncertainty, the concept of the event collection is introduced as a set of support points that

are compatible with the revealed information at a given node and time. For instance, a

traveler starts a trip at 8:00 AM. At the departure time, all the support points are the same,

so the traveler is not sure which support point the network is in. Therefore event collection

at 8:00 AM contains the set of all three support points. By the time 8:20 AM, there are

two possibilities in the network - if the link travel times are 20, 30, 40, the traveler knows

the network is in support point 1 or 2; if they are 20, 20 and 30, then the traveler knows

the network is for sure in support point 3. Thus there are two event collections at 8:20 AM

with one event collection containing the first two support points and the other containing
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the third support point. By the time 8:40 AM, if the traveler is in the first event collection

at 8:20 AM and if they learn additional information that travel time is now 20, 20, and 40,

they then know we are in support point 1, or otherwise we are in support point 2; if the

traveler is in the second event collection at 8:20 AM, since it has already been a singleton

they do not need any additional information. Therefore, there are three event collections at

8:40 AM each containing one support point and the network has become deterministic.

Real-time information is assumed to include realized travel times of certain links at

certain time periods. For example, perfect online information (POI) includes realized travel

times on all links up to the current time, while global pre-trip information includes realized

travel times of all links up to the departure time. See [Gao & Huang, 2012] for discussions

on a number of real-time information access. The passive GPS traces of taxi drivers used

in this study cannot tell us what real-time information the drivers have. POI is assumed,

since taxi drivers are in general highly sensitive to traffic conditions and stay informed at

all times. The discussion in the remainder of the dissertation is therefore specific to POI.

At a given time period t, the available real-time information is represented by a joint

realization of travel times on all links at time periods 0, 1, . . . , t. The joint realization

corresponds to a unique subset of compatible support points, defined as an event collection,

EV , which represents the conditional distribution of link travel times given the realization

of link travel times. As more information becomes available, the size of an event collection

decreases or remains the same. When an event collection becomes a singleton, the network

becomes deterministic.

When a traveler is at the start of link (i, j) at time t with event collection EV , he/she

makes a decision to take the next link (j, k). Upon arrival at node j (end of link (i, j)),

he/she will be in a different time period due to the traversal time on link (i, j) and the

turning penalty T (i, j, k, t). He/she will also have a potentially different event collection

EV ′, which accounts for realized link travel times between t and the arrival time at node

j. He/she continues the routing decision process based on dynamically involved event
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collections. Define x as a state with three elements: link (i, j), time t and event collection

EV . A routing policy µ is therefore defined as a mapping from all possible states to the

decision of the link to take next, µ : x 7→ (j, k).

A routing policy can capture traveler’s looking-ahead capability in that the decision at

state x depends on the evaluation of all possible future states throughout the remainder of

the trip by following each outgoing link. Specifically, the fact that more information will

be available in the future is represented by the series of EV ′ that could be encountered.

A routing policy is realized as a path on a given support point (day), and the realized

path topologies potentially vary from day to day due to the randomness of travel times and

information.

2.2 An Illustrative Example of Routing Policy Choice

A network example is designed in Figure 2.2 and Table 2.2 to illustrate the concept of

routing policy choice in a STD network. The network consists of two time periods, six

nodes including a dummy node d′, and six links including a dummy link 6 going out of the

destination d with a zero travel time. There are two support points, each with a probability

of 0.5, for the joint distribution of ten travel time random variables (links 1, 2, 3, 4, and 5

at time periods 0 and 1). Travel time beyond time period 1 are the same as those in time

period 1 in either of the two support points. All turning penalties are assumed to be zero.

Two paths are available: link 1 - link 2 - link 4 (path 1) and link 1 - link 3 - link 5 (path 2).

At time 0, there is only one possible event collection (v1, v2), as travel times on all links are

the same across the two support points. At time 1, there are two possible event collections,

v1 and v2.
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Figure 5.2. Example of an unmatched trip due to an GPS error

In addition, there are some trips containing unusually long detours, which could be

caused by the traveler having a intermediate destination. One example is shown in Figure 5.3

in which the traveler takes a long detour south before traveling north to the final destination.

There are 18 trips involving such intermediate destinations. A trip with an intermediate

destination are can be manually divided into two trips and the major trip is kept for model

estimation. Coverage is further improved by breaking up such trips.

Figure 5.3. Example of an unmatched trip due to due to a second destination
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Furthermore, some other trips are not covered around downtown area because there are

too many combinations of different routes in the downtown grid network. One example is

shown in Figure 5.4 in which one GPS link is not covered by any generated paths. One

solution to improve the coverage is to reduce the overlap threshold, while another solution

is to generate more alternatives in choice set generation. For this dissertation, the former

solution is adopted and it is shown that the coverage can be increased to 100% for 90%

overlap calculated based on distance.

Figure 5.4. Example of an unmatched trip due to downtown grid network

Table 5.3 shows a summary of different methods that improve the coverage.

Table 5.3. A summary of different methods that improve the coverage

Method # of new match-
ing trips

Overlap Improved
Coverage

Path choice set generation 456 100% 91.2%
Correct GPS errors 12 100% 93.6%
Breakup trips with interme-
diate destinations

7 100% 95%

Reduce overlap threshold
downtown grid network trips

26 90% 100%
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5.3.3 Adaptiveness

Based on the concept of adaptiveness, there are two extreme cases: if a routing policy

realizes as the same path on all different days, the routing policy adaptiveness should be

1 divided by 56, which equals 0.0179; if a routing policy realizes as a different path on

all different days, the the routing policy adaptiveness should be 56 divided by 56, which

equals 1. For an observed trip, the adaptiveness of an adaptive routing policy choice set is

averaged over all routing policies in the choice set.

Results show that 440 out of the 456 matched adaptive routing policy choice sets

have adaptiveness bigger than 0.0179, indicating that most routing policies are realized

as different paths over days. The average adaptiveness is 0.113, and the median is 0.103.

Those routing policies that are realized as the same paths over days are eliminated from the

adaptive routing policy choice sets and moved to the corresponding path choice sets if not

already included. The adaptiveness histogram is shown in Figure 5.5.

The adaptiveness of the adaptive routing policy choice sets increases with Trip expected

travel time, as shown in Figure 5.6. Trip expected travel time is averaged over all routing

policies in the choice set for a given trip. This trend is intuitive, as longer trips generally

motivate travelers to consider more carefully of their travel plans as well as allow for more

diversion opportunities.
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Figure 5.5. Adaptiveness histogram for the adaptive routing policy choice sets of matching
trips

Figure 5.6. Adaptiveness vs. expected travel time for the adaptive routing policy choice
sets of matching trips
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5.3.4 Path Choice Set Benchmark

Based on a different data set of 997 trips, the adaptive routing policy choice set is

compared to a benchmark of fixed path choice set as conventionally used for route choice in

the literature utilizing the same methods, link elimination and simulation methods. Table

5.4 illustrates the comparison of coverage between adaptive routing policy choice sets and

fixed path choice sets. This comparison is an indication that the adaptive routing policy

choice sets could provide better coverage than the fixed path choice sets. However, since

not all the possible means to improve either type of choice sets have been exhausted, future

work is needed to provide a more conclusive comparison.

Table 5.4. Comparison of coverage on varying choice set types and methods for the
Stockholm case study

Choice Set
Type

Choice Set Gen-
eration Method

OD
Pairs

Overlap
Threshold

Matched
OD Pairs

Coverage

Adaptive
Routing
Policy
Choice Sets

Link Elimination 997 1 633 0.63
997 0.8 788 0.79

Link Elimination
and Simulation

997 1 803 0.81
997 0.8 917 0.92

Fixed Path
Choice Sets

Link Elimination 997 1 563 0.56
997 0.8 718 0.72

Link Elimination
and Simulation

997 1 583 0.58
997 0.8 737 0.74

5.3.5 Improvements on Optimal Routing Policy Efficiency

When Algorithm LC-CDPI is applied in the Stockholm case study, the running time for

choice set generation is still found to be high when a reasonable time period length is used.

Therefore, efforts are made to further reduce running time based on the methodologies

introduced in Section 3.6. In the base case, a total study duration of 4 hours is applied

to every single trip. However, the trip length is only around 10 to 30 minutes and thus a

customized study duration for each trip is calculated. A uniform buffer time of 1 minute is
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used for both before and after the trip. The 900 seconds time period length in the base case

is also too long to render a realistic solution and thus an appropriate time period length of

12 seconds is decided based on link travel time histogram, computer memory, and running

time.

Table 5.5 presents a summary of methods in improving the running time in the case

study.

Table 5.5. A summary of methods that improve the optimal routing policy efficiency in the
case study

Method Time
Period
Length

# Time Pe-
riods

Running
Time per
Destina-
tion

Base Case 900s 16 87s
Large file support inMicrosoft Visual Stu-
dio 2013 C++ and newer

NA NA NA

Two-queue data structure for the label cor-
recting algorithm

900s 16 22s

Appropriate time period length 12s NA NA
Customized study duration for each trip 12s Customized 286s
Enqueue affected states 12s Customized 270s
Latest state time & Earliest link arrival
time

12s Customized 254s

5.4 Model Estimation

5.4.1 Systematic Utility Functions

The attributes of Long Trip Dummy and Alternative Specific Constant (ASC) are in the

membership function for policy user probability. Long Trip Dummy is a dummy variable

that equals 1 if shortest path travel time is bigger than the threshold of 900 secs, and 0

otherwise.

The deterministic utility functions for path and policy choice are linear in parameter

with attributes of Expected Travel Time (min), Travel Time Range (min), interaction term
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between Travel Time Range and Airport Bound, # of Signals, # of Left Turns, # of

Functional Class Changes, Average Speed (m/s), as well as dummy variables for Min

Expected Travel Time, Max Expected % of Highway Distance, and Min # of Functional

Class Changes. For routing policies, the attributes are averaged over all support points. The

parameters of Policy Size and Path Size are fixed at 1 to correct for the correlation between

alternatives due to overlapping paths. The attribute of Travel Time Range (the difference of

the maximum and minimum travel time) is shown as an example of travel time reliability

measure, while other different measurements are also estimated. Such measurements

include travel time standard deviation, variance, percentile (difference between 95 percentile

and median travel time), and coefficient of variation (the ratio of the travel time standard

deviation and the mean travel time). The interaction term between Travel Time Range

and Airport Bound equals Travel Time Range if traveling airport bound and 0 otherwise.

Average Speed is calculated as distance divided by Expected Travel Time. The parameter

sets for the two classes travelers differ by a scale (Path Parameters = Scale × Policy

Parameters), as introduced in Section 2.3.

5.4.2 Latent-Class Routing Policy Model Estimation

All model estimation was performed using BIOGEME Python 2.0 ( [Bierlaire, 2003]

and [Bierlaire, 2008]). Table 5.6 presents the model estimation results of the latent-class

routing policy choice model based on the 456 matching trips in choice set generation.

With a logit formmembership function, it cannot be directly checked whether the policy

user probability is significant at a certain level based on the parameters statistics. Therefore,

to prove that the policy user probability is not zero or one, the corresponding path model

(restricting path user class probability = 1) and routing policy model (restricting policy user

probability = 1) are also estimated. The attributes in the restricted models are similar to

those in the unrestricted model except there are no Scale or membership function related

parameters. The loglikelihood ratio test is then performed on the unrestricted latent-class
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routing policy model over the two restricted models. Since -2(-243.573 + 235.178) = 16.790

and -2(-252.034 + 235.178) = 33.712, and χ(0.90, 3) = 6.251 at 90% level of confidence,

it can be concluded that the unrestricted model has a significant improvement in fit and

the null hypothesis of homogeneous traveler behavior can be rejected, i.e., travelers are

heterogeneous in terms of their ability and willingness to plan ahead and utilize real-time

information. Therefore, there could be potential biases when simplified assumptions are

applied that travelers follow fixed path choice under real-time information. An appropriate

route choicemodel for uncertain networks should take into account the underlying stochastic

travel times and traveler heterogeneity in terms of real-time information utilization.

The signs and magnitude of the estimates seem reasonable. Long Trip Dummy estimate

is positive and significant at 0.1 level indicating travelers tend to be more strategic in longer

trips. As most considered attributes, Expected Travel Time and Min Expected Travel Time

Dummy parameters are significant at 0.1 level and have negative effect on travelers route

choice. # of Signals and # of Left Turns estimate show that alternatives with less signals

and left turns are preferred. # of Functional Class Changes and Min # of Functional

Class Changes Dummy estimates suggest that travelers also prefer not to switch on/off

highways frequently. Speed is also an important factor that affects travelers’ route choice.

For instance, given two alternatives of same travel times, many travelers choose the one with

faster speed even if it has longer distance. This phenomenon is greatly related to travelers’

preference on highways (highway bias). Thus highways also play a very important role,

which is further substantiated by Max Expected % of Highway Distance Dummy estimate.

The estimate indicates that travelers favor the alternative with longer highway distance on

highways E4 and E18. The ratios of the estimates also seem reasonable. For example, the

ratios suggest that 1 minute in travel time is equivalent to about 3 signals, 1.8 left turns, 6

intersections, and half of a functional class change.
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While Policy Size and Path Size are fixed at 1, the parameter sets for the two classes

travelers differ by a scale. Scale being significant at 0.1 level indicates that policy users and

path users have different behavioral perceptions on route choice.

The measures of travel time reliability are also estimated, including travel time range,

standard deviation, variance, coefficient of variance, and percentile. However, they are not

significantly different from 0 at 0.1 level, indicating travelers are risk neutral in this case

study. An interaction term between travel time reliability and airport bound is also estimated

and found to be significantly different from 0 at 0.1 level, indicating airport bound travelers

are more risk averse than downtown bound travelers probably because they are trying to

catch a flight. Travel time reliability can be included to have a potentially better model

as it might provide more explanatory power in prediction, or models with a larger sample

size. Moreover, there could be other ways to capture travel time reliability to improve the

significance of this reliability and in turn the overall model fit. Such measures include more

advanced model form for risk attitude, e.g., expected utility theory (using non-linear value

functions), prospect theory (using non-linear value functions and probability weighting

functions).

Table 5.7 presents the estimation results for the latent-class routing policy model based

on different sample size of mathcing policies. As shown in Table 5.3, after applying

different coverage improvement methods, the number of matching trips is first increased to

475 without relaxing overlap threshold. The number of matching trips is further increased

to 500, which is full sample size, by relaxing overlap threshold to 90% only for unmatching

downtown grid network trips. Two additional models are estimated based on increased

sample sizes. As expected, the estimates appear consistent across different sample sizes

and the final loglikelihood decreases when the sample size increases.
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Table 5.6. Estimation results for latent-class routing policy model and restricted models

Latent-class policy model Policy User Probability=1 Path User probability=1
Parameters Estimate t-stat Estimate t-stat Estimate t-stat
ASC -2.00 -1.57 NA NA
Long Trip Dummy
(SPT>900 s)

3.88 1.71 NA NA

Expected Travel Time
(min)

-1.28 -3.19 -0.685 -5.17 -0.638 -4.87

Travel Time Range (min) 0.0710 0.39 0.110 0.94 0.0433 0.46
Travel Time Range * Air-
port Bound

-0.835 -1.71 -0.506 -2.05 -0.445 -1.82

# of Signals -0.428 -2.26 -0.195 -2.06 -0.217 -2.71
# of Left Turns -0.712 -2.07 -0.332 -1.58 -0.444 -2.21
# of Functional Class
Changes

-2.77 -3.33 -1.40 -5.86 -1.23 -6.43

Average Speed (m/s) 2.27 2.73 1.01 4.81 1.15 4.94
Min Expected Travel Time 3.04 5.29 1.33 2.26 1.21 3.63
Max Expected % of High-
way Distance

2.28 2.55 1.50 2.85 1.06 3.14

Min # of Functional Class
Changes

2.49 2.96 2.57 7.50 1.03 2.32

Scale for TwoClass Param-
eters

0.435 3.98 NA NA

Sample Size 456 456 456
# of Parameters 13 10 10
Adjusted Rho Square 0.637 0.618 0.639
Initial Loglikelihood -679.577 -680.029 -695.987
Final Loglikelihood -233.542 -249.786 -241.480
NA indicates that the parameter is not included in a model
Policy Size and Path Size are fixed at 1
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Table 5.7. Estimation results for latent-class routing policy model with different sample size of matching trips

Coverage=91.2% Coverage=95.0% Coverage=100%
Parameters Estimate t-stat Estimate t-stat Estimate t-stat
ASC -2.00 -1.57 -2.23 -1.60 -2.17 -1.65
Long Trip Dummy
(SPT>900 s)

3.88 1.71 3.60 1.75 4.40 1.20

Expected Travel Time
(min)

-1.28 -3.19 -1.15 -2.91 -1.06 -3.36

Travel Time Range (min) 0.0710 0.39 0.162 0.94 0.116 0.79
Travel Time Range * Air-
port Bound

-0.835 -1.71 -0.894 -1.96 -0.756 -1.94

# of Signals -0.428 -2.26 -0.266 -1.86 -0.227 -1.96
# of Left Turns -0.712 -2.07 -0.992 -2.83 -0.843 -2.72
# of Functional Class
Changes

-2.77 -3.33 -2.30 -3.49 -2.07 -4.12

Average Speed (m/s) 2.27 2.73 1.82 2.63 1.60 2.82
Min Expected Travel Time 3.04 5.29 2.78 5.07 2.45 5.09
Max Expected % of High-
way Distance

2.28 2.55 1.78 2.23 1.57 2.51

Min # of Functional Class
Changes

2.49 2.96 2.19 2.40 2.14 3.03

Scale for TwoClass Param-
eters

0.435 3.98 0.491 3.86 0.549 4.62

Sample Size 456 475 500
# of Parameters 13 13 13
Adjusted Rho Square 0.637 0.611 0.612
Initial Loglikelihood -679.577 -715.786 -740.793
Final Loglikelihood -233.542 -265.223 -274.532
Policy Size and Path Size are fixed at 1
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

This dissertation studies the first adaptive route choice model based on individual-level

GPS observations in real-life large-scale networks, where travelers can revise their route

choices based on real-time information. This model can be incorporated into a traffic

prediction model to enhance its capability to evaluate transportation network management

strategies and policy measures, especially those pertaining to ATIS. A case study is carried

out in a real-life network, Stockholm, Sweden, based on GPS data from hired taxis. First,

efficient computer algorithms are designed and implemented for choice set generation in

real-life large STD networks, where link travel times are stochastically dependent random

variables. Next, a latent-class, latent-choice, latent-path Policy Size Logit model is spec-

ified. Combined routing policy choice sets are then generated, where the routing policies

represent alternatives that allow re-routing. The choice sets are then evaluated based on

coverage and adaptiveness. It is shown that using a combination of different methods yields

a satisfactory coverage of 91.2%. Outlier analyses are then carried out for unmatching

trips in choice set generation. It is shown that the coverage can be increased to 95% after

correcting the errors in the GPS observations. It is also shown that 100% coverage can be

reached if relaxing the overlap threshold to 90% based on distance to capture those trips

not matching due to the downtown grid network. Benchmark analyses comparing policy

choice sets and path choice sets based on link elimination and simulation methods are also
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carried out on a different data set and the results indicates that a policy choice set could

potentially provide better coverage and capture the adaptive nature of route choice. The

adaptiveness evaluation shows that most of the routing polices are adaptive and realized as

different paths on different days.

A latent-class routing policy model is first estimated based on the 91.2% coverage (456

trips). Two additional models are then estimated based on the 95% coverage (475 trips)

and 100% coverage (full sample). The estimates in the three models appear consistent

across different sample sizes. The Loglikelihood ratio test is performed on the unrestricted

model (latent-class routing policy model) over two restricted models (path model and

policy model) based on the 456 trips. The results indicate that travelers are heterogeneous

in terms of their ability and willingness to plan ahead and utilize real-time information.

Thus a fixed path model as commonly used in the literature may lose explanatory power

due to simplified assumptions of network stochasticity and travelers’ utilization of real-

time information. Therefore, an appropriate route choice model for uncertain networks

should consider the underlying stochastic travel times and traveler heterogeneity in terms

of real-time information utilization.

6.2 Future Directions

Since the advances in GPS technology make it possible to track individual route choices

of travelers, GPS taxi data is utilized for this route choice study. However, this type of passive

monitoring cannot generate observations regarding the information access of travelers, and

the fact that the information in a dynamic network changes over time and space makes

it more difficult. This study circumvents this difficulty by assuming POI access, but it

hardly represents real-life situations. First, travelers’ do not consider link travel time but

path travel time. Second, travelers do not make rerouting decisions at every node but at

important diversion points such as bridges and tunnels. For example, a VMS message

"Incident ahead - 30 min to Summer Tunnel" indicates path travel time including multiple
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links and travelers may only make one rerouting decision during their trip which is at the

tunnel. Therefore more realistic information access are outside the scope of this dissertation

and are to be explored in future studies. Drivers’ information access can be obtained through

a number of means, for example, periodic survey questions delivered to smartphones in real

time after some major diversion points are traversed, location prompted recall survey at

the end of day, and records of in-vehicle GPS navigation systems that provide real-time

information.

GPS data also cannot generate socio-economic attributes of travelers, such as driving

experience, education, and trip purpose. Such attributes can be obtained through SP surveys

and combined with RP data in future studies. These socio-economic attributes could also

be included in the membership function for the policy user probability. Currently the

probability only depends on the trip attributes such as trip length, but it is hardly transferable

to another driver population.

Adaptive path users as introduced in Section 1.2.3.2 is not studied from this dissertation,

and thus a future direction is to include such users as a third latent-class and investigate

the existence, or lack thereof, adaptive path choice behavior. An even more complex

way of modeling routing policy choice is successively estimating a sequence of routing

policy choice models at each decision node in a similar fashion that adaptive path choice is

modeled, whereas this dissertation assumes that the travelers choose a routing policy only

in the beginning of the trip.

The accuracy of real-time information is the basis for routing policy choice modeling.

However, the information provided to travelers is not necessarily always precise or timely in

operational settings since it requires considerable ammounts of data processing. Adapting

to poor information may not be helpful or may even be harmful to travelers. Furthermore,

after repeatedly making bad route choice decisions due to poor information, travelers could

lose trust and eventually ignore real-time information. Therefore, a potential future direction

is to investigate the impacts of poor information on adaptive route choice.
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While this research mainly contributes to planning models, the ORP algorithm has the

potential to be applied in operation settings as well. The running time of the ORP algorithm

is around 4 minutes, which is not timely for providing real-time route guidance to travelers

in real-time. However, if its running time can be further reduced or if an effective heuristic

can be proposed, it may potentially provide travelers with better route guidance in uncertain

networks with real-time information.

In addition, as introduced in Section 1.2.3.4, a new realm of route choice study is to

estimate route choice models without choice set generation, or link-based dynamic discrete

choicemodels. So far such studies have only been carried out on path choicemodels in static

and deterministic networks. Therefore, a potential future direction is to explore link-based

dynamic discrete choice models for routing policy choice.
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