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total revenue of meeting patient demands; timely access rate is the percentage of patients 

can who get access to care; and continuity rate presents the percentage of patients who 

see their own physician. Our model provides the optimal value of * * *
1 2, ,...,p p p

MN N N , and 

the optimal allocation of patients to physicians (i.e., for each panel that how many 

patients should see their own physician, and how many of them should be diverted to a 

different physician). 

 The computational complexity of our model heavily depends on the number of 

scenarios, which is the most influential factor, and the number of physicians. We tested 

the model of the general formulation using IBM ILOG OPL 6.3 on a PC with Intel 2 

Cores Dual 2×3G CPU and 8GB memory. For three physicians with 100,000 scenarios, it 

takes 50 hours to get the results when the relative MIP (Mixed Integer Programming) gap 

tolerance is set to 1%. Although our stochastic integer programming model can 

theoretically investigate the value of flexibility for any flexibility configuration with any 

number of physicians, the time-consuming nature of the optimization and evaluation 

makes it impractical. Fortunately, a computationally effective sample average 

approximation method was proposed by S. Solak [34] to provide an efficient solution 

approach for two-stage stochastic integer programming problems. The basic idea of the 

sample average approximation method used in our research is to create a manageable 

number of samples/scenarios to produce an estimation of the optimal objective value and 

corresponding first stage solutions. We then further run a large number of scenarios to 

have a precise estimation of the objective value based on the fixed first stage solution. 

This process is repeated over a number of replications to provide confidence intervals and 
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statistical guarantees on the quality of the estimation. To allow for a fair comparison, the 

2-chain, full flexibility and dedicated case use the same set of scenarios. 

 To investigate the value of flexibility for three physicians under different levels of 

system utilization, we first focus on the symmetric demand distributions (i.e., all panels 

generate identically distributed demands) to gain insights on its effectiveness to hedge 

against demand uncertainty. We then analyze the impact of asymmetric demand 

distributions, where flexibility additionally helps to balance the average supply and 

demand across providers. We also use several cases in which the demand ratio between 

prescheduled and open access demand changes significantly. 

  

 4.3.1 Results for three physicians with symmetric demand distributions 

 Following the findings of Bennett and Baxley (2009) [33], we assume a typical no 

show rate for pre-scheduled demand of 25%, and a 10% no show rate for open access 

demand. Thus, we assign the revenue of scheduling one pre-scheduled demand as 0.75, 

and 0.9 for seeing one open access patient. These values stand for the actual show rates. 

To encourage continuity in the system, we assume that there is a 0.05 cost of seeing 

patients from another physician's panel. System utilization in our model is defined as the 

ratio of the expected total demand for the clinics and total available capacity. For instance, 

in a practice with three physicians, suppose each physician has a demand rate of 10 for 

prescheduled appointment and 14 for open access demand. The total expected demand is 

10×3+14×3=72, and the total capacity is 24×3 = 72, therefore, the system utilization is 

100%. To make the system under-/over-utilized, a factor varying from 0.4 to 1.6 will be 

multiplied to the mean demands rate to generate different levels of utilization. We use 
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four cases with demand ratios of 10/14, 14/10, 6/18 and 18/6 to investigate the value of 

flexibility for a practice with three physicians having symmetric demand distributions. 

 Symmetric Case 1 (10/14). Table 4.1 summarizes the assumptions for the first case 

where the demand ratio between prescheduled and open access demands is 10/14. 

Physician capacity 24 

Number of physicians in practice 3 

Scenarios for each replication 1000 

Number of replications 50 

Revenue of seeing one pre-scheduled demand 0.75 

Revenue of seeing one owned open access demand 0.90 

Revenue of seeing one diverted open access demand 0.85 

Mean demand rate for pre-scheduled appointments [10, 10, 10] 

Mean demand rate for open access appointments [14, 14, 14] 

Relative MIP tolerance gap 0.01% 

Table 4.1 Assumptions for 3 physicians with symmetric demand distributions  

in Symmetric Case 1 (10/14). 

  

 In our experiments, one interesting and promising phenomena is that the 95% 

confidence interval of the objective values (system revenue) resulting from 50 

replications lies in a very narrow range, the variance over the mean is less than 1%. 

Therefore, we can use the mean objective value of 50 replications to achieve an accurate 

estimation of the real objective value over the whole population of scenarios. 

Computational effort for the second step of stochastic integer program can be saved due 

to this. Table 4.2 shows an instance of the objective value statistics for different 
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flexibilities when the system is balanced. Figure 4.5 presents the corresponding Box-

Whisker plot. 

  2-chain Full Flex Dedicated 

Conf. Intervals (One-Sample) 100% utilization Obj 100% utilization Obj 100% utilization Obj 

Sample Size 50 50 50 

Sample Mean 57.115 57.1535 55.0977 

Sample Std Dev 0.1399 0.1402 0.1367 

Confidence Level (Mean) 95.0% 95.0% 95.0% 

Degrees of Freedom 49 49 49 

Lower Limit 57.0753 57.1137 55.0588 

Upper Limit 57.1548 57.1934 55.1365 

Confidence Level (Std Dev) 95.0% 95.0% 95.0% 

Degrees of Freedom 49 49 49 

Lower Limit 0.1168 0.1172 0.1142 

Upper Limit 0.1743 0.1748 0.1703 

Table 4.2 Statistics of objective value for different flexibilities with 100%  

utilization in Symmetric Case 1. 

 

 

Figure 4.5 Box-Whisker Plot comparison of objective values for different  

flexibilities with 100% utilization in Symmetric Case 1. 
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 A possible explanation for this concentrated distribution of objective values might be 

the low variation of the aggregate system demand distribution. Table 4.3 demonstrates 

the distribution of total arrival demand of 50 replications when the system is balanced 

(i.e., 100% utilization).  

  Total demand 

Conf. Intervals (One-Sample) 100% utilization Demand 

Sample Size 50 

Sample Mean 71.9517 

Sample Std Dev 0.2838 

Confidence Level (Mean) 95.0% 

Degrees of Freedom 49 

Lower Limit 71.8711 

Upper Limit 72.0323 

Confidence Level (Std Dev) 95.0% 

Degrees of Freedom 49 

Lower Limit 0.2370 

Upper Limit 0.3536 

Table 4.3 Statistics of total demands for 3 physicians with 100%  

utilization in Symmetric Case 1. 

  

 We can see that the value of total demand varies very little among the replications. 

Though the demands are sampled from Poisson distribution and the realization varies 

dramatically in each scenario, for a sum of 1000 scenarios, the averaged total demand 

will closely approximate the sum of mean demand rates. Since the objective value is 

equal to the revenue of demands which the system could satisfy, a "flat" total demand 

distribution among the replications will produce a "concentrated" objective value 

estimation. As mentioned earlier, we will use the mean objective value estimated from 50 

replications to approximate the actual value over the whole scenario space. 
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 Tables 4.4, 4.5, and 4.6 give the measurement and comparison of 2-chain flexibility, 

full flexibility and dedicated case under different levels of system utilization in the three 

dimensions of interest: system revenue, timely access rate and continuity rate.  

 

System Revenue 
40% 80% 100% 120% 160% 

Utilization 

2-chain 25.2142 47.574 57.115 59.89385 62.00081 

Full Flex 25.2142 47.5819 57.1535 59.91734 62.02412 

Dedicated 25.2141 46.8694 55.0977 58.63243 60.85155 

            

2-chain vs Dedicated 0.00% 1.50% 3.66% 2.15% 1.89% 

Full vs Dedicated 0.00% 1.52% 3.73% 2.19% 1.93% 

Table 4.4 Measurement for different flexibilities in term of system revenue  

in Symmetric Case 1 (10/14). 

 

Timely Access Rate 
40% 80% 100% 120% 160% 

Utilization 

2-chain 100% 99.88% 95.29% 82.01% 62.66% 

Full Flex 100% 99.88% 95.29% 81.99% 62.65% 

Dedicated 100% 98.40% 91.78% 80.72% 62.24% 

            

2-chain vs Dedicated 0.00% 1.50% 3.82% 1.59% 0.69% 

Full vs Dedicated 0.00% 1.50% 3.82% 1.58% 0.66% 

Table 4.5 Measurement for different flexibilities in term of timely access rate  

in Symmetric Case 1 (10/14). 

 
Continuity Rate 

40% 80% 100% 120% 160% 
Utilization 

2-chain 100% 98.24% 95.29% 97.03% 96.97% 

Full Flex 100% 98.52% 96.41% 97.68% 97.59% 

Dedicated 100% 100.00% 100.00% 100.00% 100.00% 

            

2-chain vs Dedicated 0.00% -1.76% -4.71% -2.97% -3.03% 

Full vs Dedicated 0.00% -1.48% -3.59% -2.32% -2.42% 

Table 4.6 Measurement for different flexibilities in term of continuity rate  

in Symmetric Case 1 (10/14). 
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 And Figures 4.6, 4.7 and 4.8 are the comparisons illustrated in plot form respectively. 

 

Figure 4.6 Comparisons of different flexibilities in term of system revenue  

in Symmetric Case 1 (10/14). 

 

Figure 4.7 Comparisons of different flexibilities in term of timely access rate  

in Symmetric Case 1 (10/14). 
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Figure 4.8 Comparisons of different flexibilities in term of continuity rate  

in Symmetric Case 1 (10/14). 

  

 We can see that the highest benefit of both system revenue and timely access rate is 

achieved in the case where the system is balanced, i.e. when the expected demand equals 

the available capacity. When the system is under-utilized, most of the demands can be 

met and therefore result in lower benefits of flexibility. By contrast, when the system is 

over-utilized and more likely to miss the demand, flexibility still has the ability to shift 

demand to a less utilized physician. Therefore, the graph of system performance 

improvement is not symmetric. 

 The benefits of 2-chain flexibility are almost as high as those of full flexibility, with 

only a 0.07% detriment in terms of system revenue. One interesting result is that the 

timely access rates of 2-chain flexibility and full flexibility are nearly the same no matter 

what the level of utilization of the system is. This is consistent with the results reported in 

the literature on flexibility in manufacturing settings. The difference in revenue is even 
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lower in our healthcare setting, since the prescheduled demand cannot be shared between 

physicians; flexibility can only be used on the open access demand.  

 Intuition tells us that since full flexibility has more "outbound" links than 2-chain 

flexibility, it should have a better ability to absorb incoming demands and yield a higher 

timely access rate than 2-chain flexibility. This is indeed true for the dynamic setting of 

patient scheduling where allocation decisions are made as requests arrive, with limited 

knowledge of the overall demand that will need to be serviced (Hippchen (2009) [35]). 

By contrast, in the aggregate demand setting captured by our two-stage stochastic integer 

programming approach, the patient allocation is only performed after the full system 

demand is known. Although, 2-chain flexibility achieves almost the same benefits as full 

flexibility,  in our aggregate setting, there are instances where full flexibility will clearly 

dominate. For instance, consider a practice with four physicians, where each has 10 slots 

left for open access, and the demands for open access are 20, 20, 0 and 0 respectively. In 

this extreme case, the 2-chain flexibility can only meet 30 open access demands the full 

flexibility can satisfy all of them. Since this type of instance would occur with a low 

probability, from a statistical point of view, the 2-chain flexibility has almost the same 

effectiveness to absorb the demand as full flexibility. 

 Another phenomena that deserves our attention is that the diversion rate, which equals 

one minus the continuity rate, of 2-chain flexibility is higher than that of full flexibility. 

Our initial intuition tells us that since full flexibility has more "outbound" links than 2-

chain flexibility, it should have a higher probability that the demand will be diverted to 

other physicians. In reality, however, a single patient redirection to an available physician, 

which can be made directly under full flexibility, may require redirecting several patients 
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along the 2-chain if the initial patient’s panel and available physician involved are not 

connected. For example, Figure 4.9 shows a case of three physicians where each 

physician has 10 slots left for open access, and the demands are 16, 10 and 4 respectively. 

We can see that the total number of diversions under 2-chain flexibility is 12, but only 6 

under the full flexibility. Since 2-chain flexibility requires more "jumps" to shift the 

demands, the diversion rate of 2-chain is higher than that of full flexibility in our model.  

                 

 Figure 4.9 An example of diversion process in 2-chain and full flexibility. 

  

 While the number of redirections is greater in the 2-chain system, it is important to 

note that each patient will always see either one of two physicians. We believe this results 

in stronger continuity and efficiency from the perspective of both the patient (who could 

quickly get to be familiar and comfortable with both physicians) and the physician (who 

would be able to follow the other’s panel relatively well and share cases with only one 

other physician). 

 Symmetric Case 2 (14/10). To further study the impact of the demand ratio on system 

performance, we reverse the ratio from 10/14 used in case 1 to 14/10. Tables 4.7, 4.8, and 

4.9 give the measurement and comparison of 2-chain flexibility, full flexibility and 
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dedicated case under different levels of system utilization. We can see that the system 

performs nearly the same as in case 1 where the demand ratio is 10/14. 

System Revenue 
40% 80% 100% 120% 160% 

Utilization 

2-Chain 24.25121 46.24628 55.28167 57.84773 59.5821 

Full Flex 24.25121 46.25338 55.32369 57.86957 59.60268 

Dedicated 24.25103 45.53759 53.34754 56.66859 58.62003 

            

2-Chain vs Dedicated 0.00% 1.56% 3.63% 2.08% 1.64% 

Full vs Dedicated 0.00% 1.57% 3.70% 2.12% 1.68% 

Table 4.7 Measurement for different flexibilities in term of system revenue  

in Symmetric Case 2 (14/10). 

 
Timely Access Rate 

40% 80% 100% 120% 160% 
Utilization 

2-Chain 100.00% 99.87% 95.30% 82.02% 62.72% 

Full Flex 100.00% 99.86% 95.32% 82.01% 62.68% 

Dedicated 100.00% 98.36% 91.80% 80.70% 62.68% 

            

2-Chain vs Dedicated 0.00% 1.53% 3.82% 1.64% 0.06% 

Full vs Dedicated 0.00% 1.53% 3.84% 1.63% 0.00% 

Table 4.8 Measurement for different flexibilities in term of timely access rate  

in Symmetric Case 2 (14/10). 

 
Continuity Rate 

40% 80% 100% 120% 160% 
Utilization 

2-Chain 100.00% 98.23% 95.37% 97.28% 97.41% 

Full Flex 100.00% 98.51% 96.44% 97.87% 97.92% 

Dedicated 100.00% 100.00% 100.00% 100.00% 100.00% 

            

2-Chain vs Dedicated 0.00% -1.77% -4.63% -2.72% -2.59% 

Full vs Dedicated 0.00% -1.49% -3.56% -2.13% -2.08% 

Table 4.9 Measurement for different flexibilities in term of continuity rate  

in Symmetric Case 2 (14/10). 
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 Symmetric Case 3 (6/18). Further, we change the demand ratio to 6/18, a "polarized" 

case that the system is fulfilled with more open access demands. This represents an 

urgent care center, where walk-ins are more prominent than scheduled visits. Tables 4.10, 

4.11, and 4.12 give the measurements of system performance under different levels of 

system utilization. 

System Revenue 
40% 80% 100% 120% 160% 

Utilization 

2-Chain 23.40038 48.88095 58.87549 61.98912 64.56461 

Full Flex 23.40038 48.88901 58.91315 62.01434 64.57808 

Dedicated 23.40031 48.17918 56.83515 60.6714 63.53728 

            

2-Chain vs Dedicated 0.00% 1.46% 3.59% 2.17% 1.62% 

Full vs Dedicated 0.00% 1.47% 3.66% 2.21% 1.64% 

Table 4.10 Measurement for different flexibilities in term of system revenue  
in Symmetric Case 3 (6/18). 

Timely Access Rate 
40% 80% 100% 120% 160% 

Utilization 

2-Chain 100.00% 99.86% 95.25% 81.96% 61.41% 

Full Flex 100.00% 99.86% 95.25% 81.96% 61.41% 

Dedicated 100.00% 98.39% 91.81% 80.75% 60.45% 

            

2-Chain vs Dedicated 0.00% 1.49% 3.74% 1.50% 1.58% 

Full vs Dedicated 0.00% 1.49% 3.74% 1.50% 1.58% 

Table 4.11 Measurement for different flexibilities in term of timely access rate  

in Symmetric Case 3 (6/18). 
 

Continuity Rate 
40% 80% 100% 120% 160% 

Utilization 

2-Chain 100.00% 98.27% 95.33% 96.75% 97.91% 

Full Flex 100.00% 98.53% 96.42% 97.44% 98.29% 

Dedicated 100.00% 100.00% 100.00% 100.00% 100.00% 

            

2-Chain vs Dedicated 0.00% -1.73% -4.67% -3.25% -2.09% 

Full vs Dedicated 0.00% -1.47% -3.58% -2.56% -1.71% 

Table 4.12 Measurement for different flexibilities in term of continuity rate  

in Symmetric Case 3 (6/18). 
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 Symmetric Case 4 (18/6). Again, we reverse the demand ratio from 6/18 to 18/6 

where the system has more prescheduled demands coming in. This demand profile 

represents a family medicine clinic. Tables 4.13, 4.14, and 4.15 show the system 

performance under different levels of system utilization. 

System Revenue 
40% 80% 100% 120% 160% 

Utilization 

2-Chain 21.13375 44.83722 53.43987 55.83865 57.23444 

Full Flex 21.13375 44.85259 53.54503 55.86207 57.25016 

Dedicated 21.13375 44.16648 51.69283 54.82082 56.48597 

            

2-Chain vs Dedicated 0.00% 1.52% 3.38% 1.86% 1.33% 

Full vs Dedicated 0.00% 1.55% 3.58% 1.90% 1.35% 

Table 4.13 Measurement for different flexibilities in term of system revenue  

in Symmetric Case 4 (18/6). 

 
Timely Access Rate 

40% 80% 100% 120% 160% 
Utilization 

2-Chain 100.00% 99.80% 95.00% 81.97% 61.19% 

Full Flex 100.00% 99.82% 95.16% 81.98% 61.18% 

Dedicated 100.00% 98.36% 91.69% 80.78% 60.91% 

            

2-Chain vs Dedicated 0.00% 1.47% 3.62% 1.47% 0.46% 

Full vs Dedicated 0.00% 1.49% 3.79% 1.49% 0.45% 

 Table 4.14 Measurement for different flexibilities in term of timely access rate  

in Symmetric Case 4 (18/6). 

 
Continuity Rate 

40% 80% 100% 120% 160% 
Utilization 

2-Chain 100.00% 98.33% 95.75% 97.71% 97.86% 

Full Flex 100.00% 98.55% 96.53% 98.22% 98.28% 

Dedicated 100.00% 100.00% 100.00% 100.00% 100.00% 

            

2-Chain vs Dedicated 0.00% -1.67% -4.25% -2.29% -2.14% 

Full vs Dedicated 0.00% -1.45% -3.47% -1.78% -1.72% 

Table 4.15 Measurement for different flexibilities in term of continuity rate  

in Symmetric Case 4 (18/6). 
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 Comparing the respective measurements of system improvement in all four symmetric 

cases, we can observe that the system performs similarly under different demand ratios of 

prescheduled and open access appointments. Figures 4.10 and 4.11 give comparisons of 

the system revenue improvement under different demand ratios. 

 

Figure 4.10 2-chain flexibility improvement under different demand ratios  

for all symmetric cases. 
 

 

Figure 4.11 Full flexibility improvement under different demand ratios  

for all symmetric cases. 
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 The system performance slightly downgrades when the demand ratio is 18/6, where 

the proportion of open access demand is reduced. Since flexibility is only implemented in 

the open access phase, the benefit of using flexibility to balance the demands among 

physicians has been reduced slightly due to lower in-bound open access demand. 

 Other system measures show the same properties. Although the absolute values of 

these metrics vary among different demand ratios due to the inequality of the revenues of 

the two types of demand, the improvements of flexible configurations are not very 

sensitive to the change of the demand ratio between prescheduled and open access 

appointments. The system uses the *p
iN as a tool to accommodate as many demands as 

possible. In symmetric cases, the system performance mainly depends on the total 

demand, but doesn't rely on the demand ratio when the *p
iN can be adjusted effectively.  

 

 4.3.2 *p
iN of three physicians with symmetric demand distributions 

 For the primary care practice with dedicated flexibility, we can use equation (3.2.3) to 

find the optimal capacity allocation decision for each physician in a closed form 

expression. When the system involves three physicians or more, the stochastic integer 

programming model demonstrated in section 3.2.3 can be used to find the optimal 

capacity allocation between pre-scheduled and open access demands for the physicians in 

a practice. However, as we demonstrated, the computational effort required makes it 

impractical for practices with a large number of physicians. To reduce the computational 

burden and improve the search efficiency, we would like to identify underlying properties 

of the values of *p
iN under flexible system configurations, and use the results of the 

dedicated case as initial references to guide the search, if possible. 
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 Interestingly, from the data, we find that the values of *p
iN for 2-chain and full 

flexibility are almost equal to each other in all levels of system utilization. Comparing the 

*p
iN under flexible system configurations to the ones of the dedicated case we find the 

following:  

• When the system is under-utilized, such as 40% utilization, the *p
iN under flexible 

system configurations are approximately the same as the values of dedicated case.  

• As demand grows toward a balanced system, the *p
iN under the flexible 

configurations, in most cases, are greater than the ones in dedicated case.  

• As the system becomes over-utilized, the *p
iN under the flexible configurations, in 

most cases, are smaller than those in the dedicated case.  

 Figures 4.12, 4.13 and 4.14 show the distributions of the differences between *p
iN

under flexible configurations and the ones in dedicated case in Symmetric Case 3 when 

the system is 40%, 80%, and 100% utilized respectively.  

 

Figure 4.12 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 40% utilized in Symmetric Case 3 (6/18). 
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Figure 4.13 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 80% utilized in Symmetric Case 3 (6/18). 

 

 

Figure 4.14 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 100% utilized in Symmetric Case 3 (6/18). 
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 In Figure 4.12, when the system is quite under-utilized (40%), the *p
iN of flexibility 

cases have the same values as the dedicated case. In Figures 4.13 to 4.14, as the demand 

and supply in the system become better balanced, we can see that the *p
iN under the 

flexible configurations are greater than the ones of dedicated case from a statistical view, 

however, there are some "outliers" that behave conversely. We find that the values of 

*p
iN for the 2-chain and full flexibility are close to each other in all levels of utilization. 

When the system is quite under-utilized, the values of *p
iN calculated by the stochastic 

integer model are noticeably smaller than the theoretical values. This is due to the 

optimal gap set in cplex and "flat tail" effect shown in Figure 4.1 and 4.2. The model 

terminates the search of *p
iN when it reaches the optimal gap. And when the system is 

fulfilled with more demands, the *p
iN values become the same as the theoretical results. 

 Figure 4.15 and 4.16 show the distributions of the differences between *p
iN under 

flexible configurations and the ones in dedicated case in Symmetric Case 3 when the 

system is 120% and 160% utilized respectively. 

 

Figure 4.15 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 120% utilized in Symmetric Case 3 (6/18). 
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 Figure 4.16 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 160% utilized and in Symmetric Case 3 (6/18). 

  

 In Figures 4.15 and 4.16, we can observe that when the system goes from balanced 

stage to over-utilized, the *p
iN of flexibility cases are statistically smaller than the ones of 

dedicated case, and the "outliers" are negligible.  

 Figures 4.17, 4.18, 4.19, 4.20 and 4.21 give another instance of the directional 

structure of  *p
iN under flexible configurations in Symmetric Case 2 (14/10). 

 

Figure 4.17 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 40% utilized in Symmetric Case 2 (14/10). 
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Figure 4.18 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 80% utilized in Symmetric Case 2 (14/10). 

 

 

Figure 4.19 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 100% utilized in Symmetric Case 2 (14/10). 
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Figure 4.20 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 120% utilized in Symmetric Case 2 (14/10). 

 

 

 Figure 4.21 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 160% utilized in Symmetric Case 2 (14/10). 
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 In summary, the directional structure of *p
iN holds when the system is very under-

/over-utilized, but is not strongly conclusive enough when the system approaches the 

balanced situation from both directions. It is possible that this loosely directional 

structure of the optimal solution could save the computational efforts for capacity 

allocation problem in our stochastic integer programming approach. It can be used as a 

heuristic, but not a firm property. 

 

 4.3.3 Results for three physicians with asymmetric demand distributions 

 Asymmetric Case 1. Table 4.16 summarizes the assumptions used in the Asymmetric 

Case 1 for three physicians with asymmetric demand distributions. Although each 

physician has different demand rates, the expected demand and available capacity for 

each physician are balanced, which means, each physician is equally utilized. 

Physician capacity 24 

Number of physicians in practice 3 

Scenarios for each replication 1000 

Number of replications 50 

Revenue of seeing one pre-scheduled demand 0.75 

Revenue of seeing one owned open access demand 0.90 

Revenue of seeing one diverted open access demand 0.85 

Mean demand rate for pre-scheduled appointments [6, 10, 14] 

Mean demand rate for open access appointments [18, 14, 10] 

Relative MIP tolerance gap 0.01% 

Table 4.16 Assumptions for 3 physicians with asymmetric demand distributions  

in Asymmetric Case 1. 
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 Tables 4.17, 4.18, and 4.19 demonstrate the measurements for 2-chain flexibility, full 

flexibility and dedicated in terms of system revenue, timely access rate and continuity 

rate in Asymmetric Case 1.  

System Revenue 
40% 80% 100% 120% 160% 

Utilization 

2-chain 24.305 47.5985 57.10803 59.93379 62.12353 

Full Flex 24.305 47.6065 57.14862 59.95717 62.14829 

Dedicated 24.3048 46.8888 55.1161 58.6715 60.99828 

            

2-chain vs Dedicated 0.00% 1.51% 3.61% 2.15% 1.84% 

Full vs Dedicated 0.00% 1.53% 3.69% 2.19% 1.89% 

Table 4.17 Measurements of system revenue with asymmetric demands  

in Asymmetric Case 1. 

 
Timely Access Rate 

40% 80% 100% 120% 160% 
Utilization 

2-chain 100% 99.87% 95.29% 81.96% 62.09% 

Full Flex 100% 99.87% 95.30% 81.94% 62.07% 

Dedicated 100% 98.38% 91.81% 80.66% 61.66% 

            

2-chain vs Dedicated 0.00% 1.52% 3.79% 1.61% 0.70% 

Full vs Dedicated 0.00% 1.52% 3.79% 1.60% 0.66% 

Table 4.18 Measurements of timely access rate with asymmetric demands  

in Asymmetric Case 1. 

 
Continuity Rate 

40% 80% 100% 120% 160% 
Utilization 

2-chain 100% 98.23% 95.33% 97.02% 96.73% 

Full Flex 100% 98.51% 96.43% 97.66% 97.35% 

Dedicated 100% 100.00% 100.00% 100.00% 100.00% 

            

2-chain vs Dedicated 0.00% -1.77% -4.67% -2.98% -3.27% 

Full vs Dedicated 0.00% -1.49% -3.57% -2.34% -2.65% 

Table 4.19 Measurements of continuity rate with asymmetric demands  

in Asymmetric Case 1. 
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 If we make a comparison of the results between asymmetric case 1 and symmetric 

cases (notice that in all symmetric cases, each physician is equally utilized), we will find 

that the corresponding measurements are approximately the same, which means, the 

system is insensitive to the demand distributions among physicians when each physician 

has balanced/enough capacity to meet expected demands. 

 Asymmetric Case 2. To study how the system performs when each physician is 

unequally utilized, we test another case that one physician is under-utilized, the other one 

is balanced and the third physician is over utilized. Table 4.20 summarizes the 

assumptions used in the Asymmetric Case 2 for three physicians with asymmetric 

demand distributions.  

Physician capacity 24 

Number of physicians in practice 3 

Scenarios for each replication 1000 

Number of replications 50 

Revenue of seeing one pre-scheduled demand 0.75 

Revenue of seeing one owned open access demand 0.90 

Revenue of seeing one diverted open access demand 0.85 

Mean demand rate for pre-scheduled appointments [6, 8, 10] 

Mean demand rate for open access appointments [12, 16, 20] 

Relative MIP tolerance gap 0.1% 

Table 4.20 Assumptions for 3 physicians with asymmetric demand distributions  

in Asymmetric Case 2. 

  

 In this case, the first physician is 75% utilized, the second physician is 100% utilized, 

and the third one is 125% over-utilized. Tables 4.21, 4.22, and 4.23 demonstrate the 
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measurements for 2-chain flexibility, full flexibility and dedicated in terms of system 

revenue, timely access rate and continuity rate in Asymmetric Case 2. 

System Revenue 
40% 80% 100% 120% 160% 

Utilization 

2-Chain 23.83159 49.12353 57.86721 60.59101 63.42315 

Full Flex 23.83159 49.13562 57.92525 60.63111 63.46042 

Dedicated 23.82978 47.31722 53.80867 57.57554 62.0599 

            

2-Chain vs Dedicated 0.01% 3.82% 7.54% 5.24% 2.20% 

Full vs Dedicated 0.01% 3.84% 7.65% 5.31% 2.26% 

Table 4.21 Measurements of system revenue with asymmetric demands  

in Asymmetric Case 2. 

 
 

Timely Access Rate 
40% 80% 100% 120% 160% 

Utilization 

2-Chain 100.00% 99.80% 95.25% 82.73% 61.60% 

Full Flex 100.00% 99.79% 95.26% 82.72% 61.59% 

Dedicated 99.99% 96.06% 87.97% 78.11% 61.11% 

            

2-Chain vs Dedicated 0.01% 3.89% 8.28% 5.90% 0.82% 

Full vs Dedicated 0.01% 3.88% 8.29% 5.89% 0.80% 

Table 4.22 Measurements of timely access rate with asymmetric demands  

in Asymmetric Case 2. 

 
Continuity Rate 

40% 80% 100% 120% 160% 
Utilization 

2-Chain 99.99% 95.74% 90.95% 92.90% 95.08% 

Full Flex 99.99% 96.28% 92.62% 93.97% 96.06% 

Dedicated 100.00% 100.00% 100.00% 100.00% 100.00% 

            

2-Chain vs Dedicated -0.01% -4.26% -9.05% -7.10% -4.92% 

Full vs Dedicated -0.01% -3.72% -7.38% -6.03% -3.94% 

Table 4.23 Measurements of continuity rate with asymmetric demands  

in Asymmetric Case 2. 
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 Compare to the results in Asymmetric Case 1, we can see that the flexible 

configurations gain more improvement when each physician is differently utilized, which 

means, the flexibility system is more effective in a practice when the utilizations among 

physicians are unequal or unbalanced, especially some physicians are over-utilized. 

Figures 4.22 and 4.23 show the comparison between Asymmetric Case 1 and 2 in terms 

of system revenue and timely access improvement of flexible configurations. Figure 4.24 

compares the continuity detriment between Asymmetric Case 1 and 2, we can see that a 

better system performance comes with a higher patient diversion rate. 

 

 

Figure 4.22 System revenue comparison between Asymmetric Case 1 and 2  

for flexible configurations. 
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Figure 4.23 Timely access comparison between Asymmetric Case 1 and 2  

for flexible configurations. 

 

 

Figure 4.24 Continuity comparison between Asymmetric Case 1 and 2  

for flexible configurations. 
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 4.3.4 *p
iN of three physicians with asymmetric demand distributions 

 When the demands are asymmetrically distributed and each physician has different 

utilization, for instance, in Asymmetric Case 2, from Figures 4.25 to 4.29, we can see that 

the structure of optimal solution we discussed in section 4.3.2 becomes worse for the 

asymmetric demand distributions. In under-utilized circumstances, the *p
iN of flexibility 

cases are statistically equal or greater than the ones of dedicated case, but come with 

more counter examples; when the system goes to over-utilized, the *p
iN of flexibility 

cases become smaller than the values of dedicated case, but don't hold for all cases. For 

instance, in 120% utilization, the *
3
pN is greater than the value of dedicate case. This is 

due to fact that the third physician is always over-utilized (125% utilized), and in a over-

utilized configuration (120% utilization), the open access demand is so overwhelmed that 

the third physician in the dedicate case has to assign all the capacity for the open access 

demand and the *
3
pN becomes zero. However, with flexible configuration, the system has 

"extra" ability to accommodate the open access demands without the need to allocate all 

capacity to open access appointments.  

 

Figure 4.25 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 40% utilized in Asymmetric Case 2. 
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Figure 4.26 Distributions of the differences of Nps between flexible configurations  

and dedicated case when the system is 80% utilized in Asymmetric Case 2. 
 

 

Figure 4.27 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 100% utilized in Asymmetric Case 2. 
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Figure 4.28 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 120% utilized in Asymmetric Case 2. 

 

 

Figure 4.29 Distributions of the differences of Nps between flexible configurations  
and dedicated case when the system is 160% utilized in Asymmetric Case 2.  
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 An explanation for this structure of optimal solution is that since the revenue of 

satisfying an open access demand is higher than meeting one pre-scheduled appointment, 

compared with the dedicated case, the system with flexibility will be more confident and 

capable of absorbing open access demands. In the balanced or under-utilized situations, 

the possibility that the open access demands will overflow the available capacities is not 

very high, therefore, the system will feel more "safe" to reserve more slots for pre-

scheduled demands compared with the dedicated case who lacks the flexibility to deal 

with the occasional overflow of open access demand. By contrast, when over-utilized, the 

system with flexibility will struggle to meet all the open access demands. Since satisfying 

a open access demand will generates a higher revenue, the system will be more "greedily" 

to capture the open access demands, which means, the number of slots reserved for pre-

scheduled demands will be reduced, compared with the dedicated case. 

 Again, this "directional" structure is currently not a very robust guideline for 

conducting a quick search of *p
iN  by using the values of the dedicated case as references. 

A further study is needed to validate the structure on a more comprehensive basis. 

 

 4.3.5 Trends in the total *p
iN values for all three physicians 

 Figure 4.30 shows the average *p
iN values for the entire clinic (that is for all the 

physicians) under different utilizations and for the three flexibility configurations. The 

trends observed by looking at the individual physicians' *p
iN values are summarized 

concisely here. In general, for the highly underutilized case, the total *p
iN values for the 

dedicated and flexibility configurations, not surprisingly, are identical. Since the demands 
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are so low, the *p
iN values are likely to be fairly robust at this level. As the utilization 

increases to 80% and 100%, the clinic as a whole reserves more prescheduled 

appointments in the flexibility cases than the dedicated case.  This is a direct consequence 

of flexibility: open access appointments can be absorbed effectively by pooling the 

(lower) capacity of all physicians together. In the high utilization cases (120% and 160%), 

there is enough demand for the high revenue open access appointments for the total *p
iN

of the clinic to be lower. The flexibility cases have a lower total *p
iN value than the 

dedicated case, reserving more capacity for open access, since there is a higher 

probability of using the additional capacity when  physicians are able to see each others’ 

open access appointments. 

 

Figure 4.30 Average Nps values for three physicians with  
asymmetric demand distributions. 
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4.4 Value of flexibility in a practice with six physicians 

 In larger practices (academic practices for instance), there are typically more than ten 

physicians working at a clinic. But they often subdivide their practices into smaller 

groups or teams. The number of such physicians in a group may be up to five or six. We 

will emphasize on studying the value of flexibility for six physicians to gain insights 

about the system performance in the practice.  

 

 4.4.1 Results for six physicians with symmetric demand distributions 

 Table 4.24 summarizes the assumptions used in the study of six physicians with 

symmetric demand distributions.  

Physician capacity 24 

Number of physicians in practice 6 

Scenarios for each replication 1000 

Number of replications 50 

Revenue of seeing one pre-scheduled demand 0.75 

Revenue of seeing one owned open access demand 0.90 

Revenue of seeing one diverted open access demand 0.85 

Mean demand rate for pre-scheduled appointments [10,10,10,10,10,10] 

Mean demand rate for open access appointments [14,14,14,14,14,14] 

Relative MIP tolerance gap 0.5% 

Table 4.24 Assumptions for 6 physicians with symmetric demand distributions. 

  

 Tables 4.25, 4.26, and 4.27 illustrate the measurements for 2-chain flexibility, full 

flexibility and dedicated case for a practice with six physicians. 
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System Revenue 
60% 80% 100% 120% 140% 

Utilization 

2-chain 70.16151 95.23072 115.5911 120.5238 123.1126 

Full Flex 70.16153 95.26475 115.9736 120.747 123.3331 

Dedicated 70.11055 93.71649 110.1977 117.2515 120.1987 

            

2-chain vs Dedicated 0.07% 1.62% 4.89% 2.79% 2.42% 

Full vs Dedicated 0.07% 1.65% 5.24% 2.98% 2.61% 

Table 4.25 Measurement of system revenue for 6 physicians (symmetric). 

 
Timely Access Rate 

60% 80% 100% 120% 140% 
Utilization 

2-chain 100.00% 99.99% 96.65% 82.37% 70.23% 

Full Flex 100.00% 99.99% 96.68% 82.29% 70.18% 

Dedicated 99.93% 98.39% 91.79% 80.72% 69.49% 

            

2-chain vs Dedicated 0.07% 1.63% 5.29% 2.05% 1.06% 

Full vs Dedicated 0.07% 1.63% 5.32% 1.95% 0.99% 

Table 4.26 Measurement of timely access rate for 6 physicians (symmetric). 

 
Continuity Rate 

60% 80% 100% 120% 140% 
Utilization 

2-chain 99.93% 97.83% 90.13% 93.73% 93.57% 

Full Flex 99.93% 98.40% 95.05% 96.52% 96.47% 

Dedicated 100.00% 100.00% 100.00% 100.00% 100.00% 

            

2-chain vs Dedicated -0.07% -2.17% -9.87% -6.27% -6.43% 

Full vs Dedicated -0.07% -1.60% -4.95% -3.48% -3.53% 

Table 4.27 Measurement of continuity rate for 6 physicians (symmetric). 

 If we compare these measures to the associated values of three physicians (Symmetric 

Case 1), we can see that the improvement of flexibility configuration is higher in a 

practice with a larger number of physicians. Figures 4.31 and 4.32 give the comparisons 

of system performance between three physicians and six physicians.  



 

60 
 

 

Figure 4.31 Comparison of system revenue improvement between 3 and 6 physicians. 

 

 

Figure 4.32 Comparison of timely access improvement between 3 and 6 physicians. 

  

 One thing deserves an attention is that the better improvements come with a higher 

diversion rate for six physicians, as shown in Figure 4.33. 
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 Figure 4.33 Comparison of continuity improvement between 3 and 6 physicians. 

 
 4.4.2 Results for six physicians with asymmetric demand distributions 

 Table 4.28 summarizes the assumptions for six physicians with asymmetric demand 

distributions.  

Physician capacity 24 

Number of physicians in practice 6 

Scenarios for each replication 1000 

Number of replications 50 

Revenue of seeing one pre-scheduled demand 0.75 

Revenue of seeing one owned open access demand 0.90 

Revenue of seeing one diverted open access demand 0.85 

Mean demand rate for pre-scheduled appointments [6,10,14,6,10,14] 

Mean demand rate for open access appointments [18,14,10,18,14,10] 

Relative MIP tolerance gap 0.5% 

Table 4.28 Assumptions for 6 physicians with asymmetric demand distributions. 
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 Tables 4.29, 4.30, and 4.31 give the measurements for 2-chain flexibility, full 

flexibility and dedicated case in terms of system revenue, timely access rate and 

continuity rate for six physicians with asymmetric demands. 

System Revenue 
60% 80% 100% 120% 140% 

Utilization 

2-chain 72.06577 95.21054 115.5284 120.5605 122.8373 

Full Flex 72.06373 95.24583 115.984 120.7883 123.0649 

Dedicate 71.99092 93.70374 110.2392 117.3445 119.9602 

            

2-chain vs Dedicated 0.10% 1.61% 4.80% 2.74% 2.40% 

Full vs Dedicated 0.10% 1.65% 5.21% 2.93% 2.59% 

Table 4.29 Measurement of system revenue for 6 physicians (asymmetric). 

 
Timely Access Rate 

60% 80% 100% 120% 140% 
Utilization 

2-chain 99.99% 99.96% 96.57% 82.27% 70.92% 

Full Flex 99.98% 99.96% 96.69% 82.21% 70.84% 

Dedicated 99.89% 98.36% 91.81% 80.67% 70.10% 

            

2-chain vs Dedicated 0.10% 1.63% 5.19% 1.98% 1.17% 

Full vs Dedicated 0.10% 1.63% 5.31% 1.91% 1.06% 

Table 4.30 Measurement of timely access rate for 6 physicians (asymmetric). 

 
Continuity Rate 

60% 80% 100% 120% 140% 
Utilization 

2-chain 99.89% 97.85% 90.40% 93.76% 93.66% 

Full Flex 99.89% 98.40% 95.05% 96.52% 96.45% 

Dedicated 100.00% 100.00% 100.00% 100.00% 100.00% 

            

2-chain vs Dedicated -0.11% -2.15% -9.60% -6.24% -6.34% 

Full vs Dedicated -0.11% -1.60% -4.95% -3.48% -3.55% 

Table 4.31 Measurement of continuity rate for 6 physicians (asymmetric). 
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 A further look at the results in Table 4.29, 4.30 and 4.31, pluses a comparison between 

the corresponding values in Table 4.25, 4.26 and 4.27, deliver the same message: the 

system yields almost the same performance with symmetric and asymmetric demands 

when each physician is equally utilized and there is no physician who is obviously over-

utilized. The improvement of flexibility is higher in a practice with a larger number of 

physicians. The loss of continuity in 2-chain flexibility is due to, in reality, a single 

patient redirection to an available physician, which can be made directly under full 

flexibility, may require redirecting several patients along the 2-chain if the initial 

patient’s panel and available physician involved are not connected. 

 

 4.5 Conclusion 

 In this chapter, we use quantitative methods to demonstrate the value of flexibility for 

single physician, two physicians, three physicians and six physicians with symmetric and 

asymmetric demand distributions. Introducing flexibility is obviously always improving 

the performance of our tested system, even with a 5% cost for using flexibility links (i.e., 

the revenue of seeing a patient from owned open access panel is 0.9, but meeting a 

patient from another physician's open access panel is 0.85), the system revenue can be 

increased by up to 7.5%. With more physicians, flexibility becomes more beneficial, this 

can be found by comparing the corresponding results of three and six physicians. Our 

two-stage stochastic integer programming model can be used for the analysis of a 

systems with a larger amount of physicians. 

 Not surprisingly, the system achieves the maximum gain when the demand and supply 

are balanced (100% utilization). For under-/over-utilized systems, while still yielding 
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improvements, flexibility is less beneficial. In all cases, the 2-chain flexibility has a 

similar performance compared with full flexibility in aspects of system revenue, timely 

access rate, and interestingly, it has a higher diversion rate than full flexibility. As 

explained in section 4.3, in the aggregate demand setting captured by our two-stage 

stochastic integer programming approach, the patient allocation is only performed after 

the full system demand is known. 

 An important observation is that, by using the loosely directional structure of the 

optimal solution of flexibility, the computational efforts of searching optimal capacity 

allocation decision might be reduced significantly by using the values of the dedicated 

case as references. 
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CHAPTER 5 
 

IMPLICATIONS FOR PRACTICE 
 

 We study primary care practices with three physicians or more by using the two-stage 

stochastic integer programming model developed in section 3.2.3. The performance of 

the flexibility configurations studied and the structure of the optimal solution depend on 

several parameters: the revenues associated with satisfying each type of demand, open 

access or prescheduled; the cost of a patient diversion; and the demand distributions. Our 

goal in this thesis was to explore the general value of flexibility and the factors that may 

affect it. For that purpose, we took some representative parameter values, which are 

justified below. 

• Revenues associated with satisfying demands. In our numerical tests, we 

consider the revenues of scheduling patients to see a physician as the typical show 

rates for prescheduled and open access demand. Therefore, the system revenue 

actually stands for the expected total number of patients that the system will 

satisfy, given that some scheduled patients will not show up. To effectively 

capture the revenue improvement gained by introducing flexibility into a clinic 

practice, a monetary value of seeing prescheduled and same-day appointments 

could be used in our model. The patient no-show rate is typically a key factor and 

can be estimated from the historical data of the clinic. The overall revenue 

associated with each patient type, however, needs to be investigated and better 

understood. 

• The cost of a patient diversion. We add a 5% cost to a patient diversion to 

encourage patient-physician continuity in the system. However, in a real clinic 
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practice, the diversion cost is very hard to estimate and quantify. Physicians tend 

to spend more time on examining the history of a diverted patient they are not 

familiar with. The system revenue will be reduced accordingly; not to mention the 

increased chance of misdiagnosis and patient's dissatisfaction. To evaluate the 

influence of patients diversion on the system performance, a clinic practice needs 

to capture the diversion cost quantitatively. A possible way is to estimate the 

average time that a physician spends on a patient from his/her own panel, and 

compare it with the average time that the physician takes on a patient from other 

panels. The difference of the time is the reflection of the increased operation cost. 

This will make the diversion cost easier to understand and more convincing for 

the clinic management team. It is important to note that the diversion cost may 

depend on how we manage the flexibility in the system. In a two-chain, each 

patient can only see two physicians and each physician only receives patients 

from two panels. The loss in familiarity is going to be minimal, as compared to a 

large practice with full flexibility where patients may see any of the doctors. 

• The demand distributions vary from clinic to clinic, therefore, the best way to 

implement the flexibility modeling approach on a practice is to use the real data 

estimated from historical records as the inputs. Since each clinic focuses on 

different types of patients in different regional areas with different physical 

capacity, the exact benefit of flexibility will accordingly vary. Out study however 

provides insight on the general value of flexibility for primary care practices and 

how it varies with some characteristics of the demand distributions. 
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 Physicians are inherently flexible to see each other's patients. In contrast with 

manufacturing, there is no cost associated with "installing" flexibility; but flexibility 

needs to be implemented and managed. In most clinics, a certain level of the flexibility, 

especially the full flexibility, has already been implemented in practice. The patient 

usually asks to see his/her own physician; if the physician is not available, the patient will 

be advised to see any other physician in the practice. In our study, we find that the 2-

chain flexibility yields nearly as much benefit as full flexibility, but with reduced 

complexity. A natural question arises: how to implement the 2-chain or other flexibilities 

in the practice? That is, how do we decide which two physicians should be connected? 

The answer to this question depends on lots of factors, but an easy and effective approach 

is to connect physicians with different utilizations, such as over-utilized to under-utilized 

physicians, to make the system more balanced. It is important to note, however, that the 

connection configuration heavily relies on the clinic's working structure and policy, as 

well as its daily operational process. It might be possible that a clinic cannot be 

configured as a particular flexible system we discussed.  

 In summary, our models, which are developed for the primary care practices, focus 

mainly on the theoretical aspects of allowing flexibility in appointment scheduling. To 

more accurately evaluate the performance of flexible configurations, we need to test them 

in a real clinic practice, gather feedback from physicians, and more importantly, work 

with them to address the issues that may impede their widespread implementation. 
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CHAPTER 6 
 

CONCLUSIONS 
 

 To find the optimal capacity allocation decision between pre-scheduled demands and 

open access demands for physicians in the primary care practice, we develop 

formulations and find closed form solutions for individual, dedicated physicians and for 

two physicians with flexibility links; for multiple physicians with different levels of 

flexibility, we use a stochastic integer programming approach to provide the optimal 

capacity allocation decision for any number of physicians in a practice and with any 

flexibility configuration.  

 The results of our study confirm that introducing flexibility yields benefits even if 

there is a cost for using flexibility links. Similarly, we find that the benefits are the 

highest when the system is balanced, and decreasing for higher or lower levels of system 

utilization. The 2-chain flexibility yields almost all the benefits of full flexibility in terms 

of system revenue and timely access rate, but comes with a higher rate of patient 

diversion; due to the limited outbound links in the 2-chain system, more "jumps" may be 

required to shift and absorb the demands.  

 By using the stochastic integer programming model, we investigate the three- and six- 

physician cases. As we expected, flexibility is more beneficial with increased number of 

physicians. Our model is not sensitive to the change of demand ratio between 

prescheduled and open access demands when physicians are equally utilized. The flexible 

configurations become more beneficial when physicians are unequally utilized. 

 Our computational experiments show that the optimal capacity allocation decision for 

flexibility configuration yields a directional structure in some cases: The optimal  
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capacity to reserve for prescheduled appointments under flexible configurations tends to 

be higher when the system is under-utilized and lower when it is over-utilized, as 

compared to the values gained from the dedicated case. This interesting characteristic, 

which also needs further investigation, might reduce the computational efforts and make 

the search be conducted in a small fraction of the feasible space. 
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CHAPTER 7 
 

FUTURE WORK 
 

 While we developed the closed form formulation and stochastic integer programming 

model to investigate the basic properties of physician flexibility and performed analysis 

of the structure of optimal capacity allocation decision, there are still open questions that 

deserve attention in future research. 

• We assigned a 5% cost for using flexibility links in our analysis. A more 

comprehensive study with different levels of cost, such as 0%, 10% and 15%, 

needs to be investigated in future. 

• The revenues of meeting one pre-scheduled demand and seeing an open access 

patient are based on the typical show rates for each access scheme. We wonder 

how the change of these revenues will influence the allocation decision and the 

solution structure. 

• The demand rates need to be estimated from historical data. A case study based 

on a real clinic practice will be more convincing to demonstrate the benefits of 

introducing flexibility. 

• Though deduced from a reasonable explanation and confirmed with experimental 

results, the directional or monotonic structure of the optimal allocation solution of 

flexibility needs to be validated on a more comprehensive basis. And a new 

algorithm that uses the values gained from dedicated case as a starting point and 

searches the solution only in one direction needs to answer the following question: 

how many steps we have to go further to achieve an acceptably near optimal 
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solution while not increase the complexity noticeably. In other words, what is the 

best point that to stop the search.  
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APPENDIX A 
 

THEOREMS PROOF 
 

A.1 Proof of Theorem 1 

 For any individual physician i, the expected cost of missing pre-scheduled demand 

( )p p
i iEC N  is non-increasing with p

iN , which means ( 1) ( )p p p p
i i i iEC N EC N+ ≤  for any 

{0,1,2,., 1}p
iN N∈ − , and the expected cost of missing open access demand ( )o p

i iEC N  is 

non-decreasing with p
iN , that is, ( 1) ( )o p o p

i i i iEC N EC N+ ≥  for any {0,1,2,., 1}p
iN N∈ − . 

 For a given p
iN , if p

iN  increases by 1, the reduced expected cost of missing pre-

scheduled demand is equal to ( ) ( 1)p p p p
i i i iEC N EC N− + , which is: 
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 And the increased expected cost of missing open access demand 

( 1) ( )o p o p
i i i iEC N EC N+ −  equals to: 
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(A.2)

 The optimal *p
iN  comes out when *p

iN  increases by 1, the marginal reduced cost of 

missing pre-scheduled demand should be less or equal to the marginal increased cost of 

missing open access demand, which means, *p
iN  should satisfy: 

( ) ( ) ( )* * * *1 1 ( )p p p p o p o p
i i i i i i i iEC N EC N EC N EC N− + ≤ + −  (A.3)

 Using the above derivations, we have: 
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 That is: 
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 And if *p
iN  decreases by 1, the marginal increased cost of missing pre-scheduled 

demand should be larger than the marginal decreased cost of missing open access 

demand, similarly, we get: 

* 11 (1 )pp
i i

o

C
N N

C
−< + − Φ −  (A.6)

 Therefore: 

* 1(1 )pp
i i

o

C
N N

C
−= − Φ −  (A.7)

 Proof done. 

 

A.2 Proof of Theorem 3 

 For two physicians with partial flexibility, the total expected cost of missing pre-

scheduled demands is equals to: 
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 And the total expected cost of missing open access demands equals to: 
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 Where  0d  is the aggregated open-access demand. 

 Similar to the proof of Theorem 1, for a given 1
pN  and 2

pN , if 1
pN  increases by 1, the 

reduced total expected cost of missing pre-scheduled demand is equal to  

1 2 1 2( , ) ( 1, )p p p p p pEC N N EC N N− + , which is: 

( ) ( ) ( )1 2 1 2 1 1, 1, [1 ]p p p p p p p
pEC N N EC N N C F N− + = −  (A.10)

 And the increased total expected cost of missing open access demand  

1 2 1 2( 1, ) ( , )o p p o p pEC N N EC N N+ −  equals to: 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
2

2

1 2 1 2

2 2 1 1 1 2

1 1 2 2 1 2
0

1, ,

1 1 1 2 1

[1 ] [1 2 1 ]

p

p

o p p o p p

p p p p
o

N
p p p p

d

EC N N EC N N

C F N F N Ф N N N

F N p d Ф N N d
=

+ − =

     − − − − − − +     

− − − − −∑

 
(A.11)

 If  2
pN  increases by 1, the reduced total expected cost of missing pre-scheduled 

demand is equal to 1 2 1 2( , ) ( , 1)p p p p p pEC N N EC N N− + , which is: 

( ) ( ) ( )1 2 1 2 2 2, , 1 [1 ]p p p p p p p
pEC N N EC N N C F N− + = −  (A.12)

 The increased total expected cost of missing open access demand 

1 2 1 2( , 1) ( , )o p p o p pEC N N EC N N+ −  equals to: 
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 The optimal *
1
pN and *

2
pN  come out when either *

1
pN  or *

2
pN  increases by 1, the 

marginal reduced total cost of missing pre-scheduled demand should be less or equal to 

the marginal increased total cost of missing open access demand, which means, *1
pN

should satisfy: 

( ) ( ) ( ) ( )* * * * * * * *
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 which is: 

2

2

2 1 2

2

2

2 1
0

2

[1 ] [1 (2 1)]

[1 (2 1)]

( )

( )
p

p

pp

o

N
p

d

p

pN

d

C
F N N N

C

p N N d
=

≤ − ⋅ − Φ − − − +

⋅ − Φ − − −∑

p

p

 (A.15)

 and similarly,  *
2
pN  should satisfy: 
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 The optimal combination of *
1
pN  and *

2
pN  are the smallest integers of 1

pN  and 2
pN  

that satisfy the above conditions simultaneously. 

 Proof done. 
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APPENDIX B 
 

PROGRAMS FOR THE STUDY OF FLEXIBILITY 
 
% This program is used to generate the data for Flex_Model project sloved 
% in OPL. All parameters used in Flex_Model can be changed and generated here.  
 
% First, changes the desired parameters and run this program, it will update the corresponding data file 
used in the Flex_Model 
% Second, run Flex_Model to solve the LP problem with updated data. 
 
clear; 
clc; 
 
% Number of replications for frist stage evaluation 
DataNum     =   50; 
 
for replication = 1: DataNum, 
 
% Change the data file path and name if you have changed the Flex_Model position 
file_name   =   sprintf ('C:\\Users\\Liang\\Desktop\\Flex_Model_NewSample\\Flex_Model_%d.dat', 
replication ); 
fid =   fopen( file_name, 'w' ); 
 
 
% ------------------------ Setting the parameters ------------------------- 
 
N               =   24;                    %   Capacity of each physician; 
                                            %   Change the scale of revenue accordingly with number of physicians, 
otherwise, all solutions will be zeros 
RevPresche      =   0.75;               %   Revenue of meeting one pre-scheduled demand 
RevOpenOwn      =   0.9;               %   Revenue of meeting one owned open-access demand    
RevOpenOther    =   0.85;              %   Revenue of meeting one open-access demand from other's panel 
% recommended. 3:e7, 4: e10, 5: e14, 6: e17, 7: e18, 8: e20, 9: e23, 10:e25 
 
M               =   6;                 %   Number of physicians modeled 
Scenario        =   500;              %   Number of scenarios calculated 
Utilization     =   1.4;               %   Utilization of demand 0.2-1.6; default: 1.0 
DemandUpper     =   80;              %   The maximum realization of a demand  
Scale           =   0;                 %   1/(sum of probabilities) 
 
PreDemandRate   =   [ 6, 10, 14, 6, 10, 14 ]; 
OpenDemandRate  =   [ 18, 14, 10, 18, 14, 10 ]; 
 
% ------------------------------------------------------------------------- 
                                        %   Set different level of utilization 
PreDemandRate   =   round( Utilization .* PreDemandRate ); 
OpenDemandRate  =   round( Utilization .* OpenDemandRate ); 
 
% Average demand rate for pre-scheduling and open access appointment.  
% ***** The dimension must be equal to M, the number of physicians  ***** 
% ***** Change the number and size manually ***************************** 
% ------------------------------------------------------------------------- 
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% Realization of pre-scheduled and open access demand for each physician in scenarios 
PreDemand           =   zeros( Scenario, M ); 
OpenDemand          =   zeros( Scenario, M ); 
 
% Corresponding probability of each realization; 
PreProb             =   zeros( Scenario, M ); 
OpenProb            =   zeros( Scenario, M ); 
Probability         =   ones( 1, Scenario );     %Total Probability of each scenario 
Temp                =   zeros( 1, M ); 
 
% Generate scenarios and corresponding probabilities 
for i = 1:Scenario, 
    for j = 1:M, 
         
        PreDemand   ( i, j )    =   poissrnd ( PreDemandRate (j) ); 
        OpenDemand  ( i, j )    =   poissrnd ( OpenDemandRate (j) ); 
         
        PreProb     ( i, j )    =   poisspdf ( PreDemand(i,j), PreDemandRate(j) ); 
        OpenProb    ( i, j )    =   poisspdf ( OpenDemand(i,j), OpenDemandRate(j) ); 
    end 
end 
 
% Calculate the total probability of each scenario 
for i = 1: Scenario, 
    for j = 1:M, 
        Probability (i) = Probability(i) * PreProb(i, j) * OpenProb(i,j); 
    end 
    Scale   =   Scale + Probability(i); 
end 
 
 
 
% ----------------- Writing variables to the data file ------------------- 
fprintf( fid, '//The data is generated by the program 
C:\\MATLAB7\\work\\Flex_data_generator_Multiple.m\n '); 
fprintf( fid, '\nN\t=\t%d;\n', N ); 
fprintf( fid, 'M\t=\t%d;\n', M ); 
fprintf( fid, 'Scenario\t=\t%ld;\n', Scenario ); 
fprintf( fid, 'Utilization\t=\t%.2f;\n', Utilization  ); 
fprintf( fid, 'DemandUpper\t=\t%d;\n', DemandUpper ); 
%fprintf( fid, 'Scale\t=\t%.4f;\n', 1/Scale ); 
fprintf( fid, '\n' ); 
 
fprintf( fid, 'RevPresche\t\t=\t%f;\n', RevPresche ); 
fprintf( fid, 'RevOpenOwn\t\t=\t%f;\n', RevOpenOwn ); 
fprintf( fid, 'RevOpenOther\t=\t%f;\n', RevOpenOther ); 
fprintf( fid, '\n' ); 
 
fprintf( fid, 'OutputFile\t=\t"Output_%d.txt";\n\n', replication ); 
 
% ---------------------- write the array structure ----------------------- 
% write the data array of PreDemand 
fprintf( fid, 'PreDemand\t=\t[\n' ); 
for i = 1:Scenario, 
    fprintf( fid, '\t\t\t\t['); 
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    for j = 1:M, 
        if ( j < M ) 
            fprintf( fid, '%d, ', PreDemand(i,j) ); 
        else 
            fprintf( fid, '%d ', PreDemand(i,j) ); 
        end 
    end 
     
    if ( i < Scenario ) 
        fprintf( fid, '],\n'); 
    else 
        fprintf( fid, ']\n' ); 
    end 
end 
fprintf( fid, '\t\t\t\t];\n\n'); 
 
% write the data array of OpenDemand 
fprintf( fid, 'OpenDemand\t=\t[\n' ); 
for i = 1:Scenario, 
    fprintf( fid, '\t\t\t\t['); 
     
    for j = 1:M, 
        if ( j < M ) 
            fprintf( fid, '%d, ', OpenDemand(i,j) ); 
        else 
            fprintf( fid, '%d ', OpenDemand(i,j) ); 
        end 
    end 
     
    if ( i < Scenario ) 
        fprintf( fid, '],\n'); 
    else 
        fprintf( fid, ']\n' ); 
    end 
end 
fprintf( fid, '\t\t\t\t];\n\n'); 
 
% write the data array of PreProb 
% fprintf( fid, 'PreProb\t\t=\t[\n' ); 
% for i = 1:Scenario, 
%     fprintf( fid, '\t\t\t\t['); 
%      
%     for j = 1:M, 
%         if ( j < M ) 
%             fprintf( fid, '%f, ', PreProb(i,j) ); 
%         else 
%             fprintf( fid, '%f ', PreProb(i,j) ); 
%         end 
%     end 
%      
%     if ( i < Scenario ) 
%         fprintf( fid, '],\n'); 
%     else 
%         fprintf( fid, ']\n' ); 
%     end 
% end 
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% fprintf( fid, '\t\t\t\t];\n\n'); %} 
 
 
% write the data array of OpenProb 
% fprintf( fid, 'OpenProb\t=\t[\n' ); 
% for i = 1:Scenario, 
%     fprintf( fid, '\t\t\t\t['); 
%      
%     for j = 1:M, 
%         if ( j < M ) 
%             fprintf( fid, '%f, ', OpenProb(i,j) ); 
%         else 
%             fprintf( fid, '%f ', OpenProb(i,j) ); 
%         end 
%     end 
%      
%     if ( i < Scenario ) 
%         fprintf( fid, '],\n'); 
%     else 
%         fprintf( fid, ']\n' ); 
%     end 
% end 
% fprintf( fid, '\t\t\t\t];\n\n'); 
 
 
% % write the data array of probabilites of scenarios 
% fprintf( fid, 'Probability\t=\t[ \n' ); 
% for i = 1:Scenario, 
%     if ( i < Scenario ) 
%         fprintf( fid, '\t\t\t\t%g,\n ', Probability(i) ); 
%     else 
%         fprintf( fid, '\t\t\t\t%g\n ', Probability(i) ); 
%     end 
% end 
% fprintf( fid, '\t\t\t\t];\n\n' ); 
 
 
% Close the data file 
fclose( fid ); 
 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/*********************************************  
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 * OPL 6.3 Model 
 * Author: Liang 
 * Creation Date: Apr 20, 2010 at 7:55:31 PM 
 * This program is used to solve the LP problem for 2Chain flexibility 
 *********************************************/  
 
 int N = ...;            // Physician Capacity 
 int M = ...;            // Number of physicians 
 int Scenario = ...;          // Number of scenarios calculated 
 float Utilization = ...;         // Demand utilization. 0.2-1.6, default: 1.0 
 int DemandUpper = ...;        // Upper bound of demand realization 
 //float Scale  = ...;         // 1/total probability 
string OutputFile = ...;        //Outputfile name 
  
 float RevPresche = ...;        // Revenue of meeting one pre-scheduled demand 
 float RevOpenOwn = ...;        // Revenue of meeting one owned open access 
demand 
 float RevOpenOther = ...;        // Revenue of meeting one open access demand of 
other's 
  
 range DocNum  = 1..M; 
 range scenario = 1..Scenario; 
 range demandupper = 0..DemandUpper;    // the second index of Phi 
  
 int PreDemand  [scenario][DocNum] = ...;   // Pre-scheduled demand for each physician in 
scenarios 
 int OpenDemand [scenario][DocNum] = ...;   // Open access demand for each physician in 
scenarios 
 //float Probability[scenario]   = ...;    // Total probability of each scenario 
  
  
 dvar float Np[DocNum]       in 0..N;  // Decision variables that how many slots 
should be reserved for pre-scheduling 
 dvar float Xp[scenario][DocNum]    in 0..N;  // Decision variables that how many pre-
scheduled appointments should be met for each scenarios 
 dvar float Xo[scenario][DocNum][DocNum] in 0..N;  // Decision variables that how many open 
access demand should be met ( own demand and diverted) 
 dvar boolean Phi[DocNum][demandupper];     // Binary variables that make sure the 
unused pre-scheduled capacity could be pushed to open access 
  
  
  // Objective: maximize the revenue of satisfying demands 
  
 maximize sum ( s in scenario, i in DocNum ) (  RevPresche * Xp[s][ i] ) +  
    sum( s in scenario, i,j in DocNum: j==i ) ( RevOpenOwn * Xo[s][ i][ j] ) + 
    sum( s in scenario, i,j in DocNum: j!=i ) (  RevOpenOther * Xo[s][ i][ j] ); 
  
 subject to{ 
   
  
 forall( s in scenario ){ 
  // Build the 2-chain flexibility configuration 
  forall( i in 1..M-1, j in DocNum : j!=i && j!=(i+1) )  Xo[s][ i][ j] == 0; 
  forall( j in DocNum : j != M && j!= 1 )     Xo[s][M][ j] == 0; 
  
  forall( i in DocNum ){ 



 

82 
 

   // constraints for decision variables Np 
   Np[i] <= PreDemand[s][ i] + N * Phi[i][ PreDemand[s][ i] ];  
   Np[i] >= PreDemand[s][ i] * Phi[i][ PreDemand[s][ i] ]; 
    
   // upper bound constraints for Xp 
   Xp[s][ i] <= Np[i];       //Cannot larger than reserved slots 
   Xp[s][ i] <= PreDemand[s][ i];    //Cannot larger than actual pre-scheduled demands 
    
   // Xo cannot be larger than the actual open access demand 
   sum ( j in DocNum ) Xo[s][ i][ j] <= OpenDemand[s][ i];         
  } 
   
  forall( j in DocNum ){ 
   // Xo cannot be larger than the capacity left for each physisian 
   sum ( i in DocNum ) Xo[s][ i][ j] <= N - PreDemand[s][ j] * Phi[j][ PreDemand[s][ j] ]; 
   sum ( i in DocNum ) Xo[s][ i][ j] <= N- Np[j] + Phi[j][ PreDemand[s][ j] ] * N; 
  } 
 } 
  
  
 } // end of constraints 
  
   
execute { 
 
  //Statistic the results  array indexed from 0 
  PreDemandStat   =  new Array(M+1);    // Expected demand for pre-scheduling  
  OpenDemandStat  =  new Array(M+1);    // Expected demand for open access 
  PreDemandMet  = new Array(M+1);    // Expected demand met for pre-scheduling 
  OpenDemandMet  = new Array (M+1);   // Expected demand met for open access 
  OpenDemandDiverted  =  new Array (M+1);   // Expected demand diverted for open access 
   
   
  for ( var i=1; i<=M+1; i++ ){ 
   PreDemandStat[i]  = 0; 
   OpenDemandStat[i]  = 0; 
   PreDemandMet[i]   =  0; 
   OpenDemandMet[i]  =  0; 
   OpenDemandDiverted[i] =  0; 
  } 
   
  // Begin statistic calculation 
  for ( var s=1; s<=Scenario; s++ ){ 
   for ( i=1; i <= M; i++ ){ 
    PreDemandStat[i] = PreDemandStat[i] +  PreDemand[s][ i]; 
    OpenDemandStat[i] = OpenDemandStat[i] + OpenDemand[s][ i]; 
    PreDemandMet[i] = PreDemandMet[i] + Xp[s][ i]; 
    for ( var j=1; j <= M; j++ ){ 
     OpenDemandMet[i] = OpenDemandMet[i] + Xo[s][ i][ j]; 
     if  ( j!=i ) 
      OpenDemandDiverted[i] = OpenDemandDiverted[i] + Xo[s][ i][ j]; 
    } 
   } 
    
  } // end calculation 
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  for( i=1; i<=M; i++){ 
   PreDemandStat[M+1] = PreDemandStat[M+1] + PreDemandStat[i]; 
   OpenDemandStat[M+1] = OpenDemandStat[M+1] + OpenDemandStat[i]; 
   PreDemandMet[M+1]  = PreDemandMet[M+1] + PreDemandMet[i]; 
   OpenDemandMet[M+1] = OpenDemandMet[M+1] + OpenDemandMet[i]; 
   OpenDemandDiverted[M+1] = OpenDemandDiverted[M+1] + OpenDemandDiverted[i]; 
  } 
   
  var ofile = new IloOplOutputFile ( ); 
  ofile.open( OutputFile ); 
 ofile.writeln ("2-chain\tPhysicians\t",M, "\tScenario\t",Scenario, "\tUtilization\t", Utilization, 
"\tRevPre\t", RevPresche, 
 "\tRevOpenOwn\t",RevOpenOwn, "\tRevOpenOther\t", RevOpenOther, "\tObjective:\t", 
cplex.getObjValue()/Scenario, "\tNp:\t", Np,  
 "\tTotalDemand:\t", (PreDemandStat[M+1]+ OpenDemandStat[M+1])/Scenario, "\tDemandMet:\t", 
(PreDemandMet[M+1] + OpenDemandMet[M+1])/Scenario, 
 "\tRefusal:\t", (PreDemandStat[M+1]+ OpenDemandStat[M+1]-PreDemandMet[M+1]-
OpenDemandMet[M+1])/Scenario, 
 "\tDiverted:\t", OpenDemandDiverted[M+1]/Scenario ); 
 ofile.close(); 
 } 
 
 
 

/*********************************************  
 * OPL 6.3 Model 
 * Author: Liang 
 * Creation Date: Apr 21, 2010 at 9:34:22 PM 
 * This program is used to solve the LP problem for full flexibility  
 *********************************************/  
 
 int N = ...;            // Physician Capacity 
 int M = ...;            // Number of physicians 
 int Scenario = ...;          // Number of scenarios calculated 
 float Utilization = ...;         // Demand utilization. 0.2-1.6, default: 1.0 
 int DemandUpper = ...;        // Upper bound of demand realization 
 //float Scale  = ...;         // 1/total probability 
 string OutputFile = ...;        //Outputfile name 
  
 float RevPresche = ...;        // Revenue of meeting one pre-scheduled demand 
 float RevOpenOwn = ...;        // Revenue of meeting one owned open access 
demand 
 float RevOpenOther = ...;        // Revenue of meeting one open access demand of 
other's 
  
 range DocNum  = 1..M; 
 range scenario = 1..Scenario; 
 range demandupper = 0..DemandUpper;    // the second index of Phi 
  
 int PreDemand  [scenario][DocNum] = ...;   // Pre-scheduled demand for each physician in 
scenarios 
 int OpenDemand [scenario][DocNum] = ...;   // Open access demand for each physician in 
scenarios 
// float Probability[scenario]   = ...;    // Total probability of each scenario 
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 dvar float Np[DocNum]      in 0..N;   // Decision variables that how many slots 
should be reserved for pre-scheduling 
 dvar float Xp[scenario][DocNum]   in 0..N;   // Decision variables that how many pre-
scheduled appointments should be met for each scenarios 
 dvar float Xo[scenario][DocNum][DocNum] in 0..N;  // Decision variables that how many open 
access demand should be met ( own demand and diverted) 
 dvar boolean Phi[DocNum][demandupper];     // Binary variables that make sure the 
unused pre-scheduled capacity could be pushed to open access 
  
  
  // Objective: maximize the revenue of satisfying demands 
  
 maximize sum ( s in scenario, i in DocNum ) (  RevPresche * Xp[s][ i] ) +  
    sum( s in scenario, i,j in DocNum: j==i ) (  RevOpenOwn * Xo[s][ i][ j] ) + 
    sum( s in scenario, i,j in DocNum: j!=i ) (  RevOpenOther * Xo[s][ i][ j] ); 
  
 subject to{ 
 
 forall( s in scenario ){ 
  
  forall( i in DocNum ){ 
   // constraints for decision variables Np 
   Np[i] <= PreDemand[s][ i] + N * Phi[i][ PreDemand[s][ i] ];  
   Np[i] >= PreDemand[s][ i] * Phi[i][ PreDemand[s][ i] ]; 
    
   // upper bound constraints for Xp 
   Xp[s][ i] <= Np[i];       //Cannot larger than reserved slots 
   Xp[s][ i] <= PreDemand[s][ i];    //Cannot larger than actual pre-scheduled demands 
    
   // Xo cannot be larger than the actual open access demand 
   sum ( j in DocNum ) Xo[s][ i][ j] <= OpenDemand[s][ i];         
  } 
   
  forall( j in DocNum ){ 
   // Xo cannot be larger than the capacity left for each physisian 
   sum ( i in DocNum ) Xo[s][ i][ j] <= N - PreDemand[s][ j] * Phi[j][ PreDemand[s][ j] ]; 
   sum ( i in DocNum ) Xo[s][ i][ j] <= N- Np[j] + Phi[j][ PreDemand[s][ j] ] * N; 
  } 
 } 
  
 } // end of constraints 
  
  execute { 
  
 //Statistic the results  array indexed from 0 
  PreDemandStat   =  new Array(M+1);     // Expected demand for pre-scheduling  
  OpenDemandStat  =  new Array(M+1);     // Expected demand for open access 
  PreDemandMet  = new Array(M+1);     // Expected demand met for pre-scheduling 
  OpenDemandMet  = new Array (M+1);    // Expected demand met for open access 
  OpenDemandDiverted  =  new Array (M+1);    // Expected demand diverted for open access 
   
   
  for ( var i=1; i<=M+1; i++ ){ 
   PreDemandStat[i]  = 0; 
   OpenDemandStat[i]  = 0; 
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   PreDemandMet[i]   =  0; 
   OpenDemandMet[i]  =  0; 
   OpenDemandDiverted[i] =  0; 
  } 
   
  // Begin statistic calculation 
  for ( var s=1; s<=Scenario; s++ ){ 
   for ( i=1; i <= M; i++ ){ 
    PreDemandStat[i] = PreDemandStat[i] +  PreDemand[s][ i]; 
    OpenDemandStat[i] = OpenDemandStat[i] + OpenDemand[s][ i]; 
    PreDemandMet[i] = PreDemandMet[i] + Xp[s][ i]; 
    for ( var j=1; j <= M; j++ ){ 
     OpenDemandMet[i] = OpenDemandMet[i] + Xo[s][ i][ j]; 
     if  ( j!=i ) 
      OpenDemandDiverted[i] = OpenDemandDiverted[i] + Xo[s][ i][ j]; 
    } 
   } 
  } // end calculation 
   
  for( i=1; i<=M; i++){ 
   PreDemandStat[M+1] = PreDemandStat[M+1] + PreDemandStat[i]; 
   OpenDemandStat[M+1] = OpenDemandStat[M+1] + OpenDemandStat[i]; 
   PreDemandMet[M+1]  = PreDemandMet[M+1] + PreDemandMet[i]; 
   OpenDemandMet[M+1] = OpenDemandMet[M+1] + OpenDemandMet[i]; 
   OpenDemandDiverted[M+1] = OpenDemandDiverted[M+1] + OpenDemandDiverted[i]; 
  } 
   
   
  var ofile = new IloOplOutputFile ( ); 
  ofile.open( OutputFile ); 
 ofile.writeln ("Full Flex\tPhysicians\t",M, "\tScenario\t",Scenario, "\tUtilization\t", Utilization, 
"\tRevPre\t", RevPresche, 
 "\tRevOpenOwn\t",RevOpenOwn, "\tRevOpenOther\t", RevOpenOther, "\tObjective:\t", 
cplex.getObjValue()/Scenario, "\tNp:\t", Np,  
 "\tTotalDemand:\t", (PreDemandStat[M+1]+ OpenDemandStat[M+1])/Scenario, "\tDemandMet:\t", 
(PreDemandMet[M+1] + OpenDemandMet[M+1])/Scenario, 
 "\tRefusal:\t", (PreDemandStat[M+1]+ OpenDemandStat[M+1]-PreDemandMet[M+1]-
OpenDemandMet[M+1])/Scenario, 
 "\tDiverted:\t", OpenDemandDiverted[M+1]/Scenario ); 
 ofile.close(); 
   }  

 

/*********************************************  
 * OPL 6.3 Model 
 * Author: Liang 
 * Creation Date: Apr 22, 2010 at 2:53:19 PM 
 * This program is used to solve the LP problem for no flexibility 
 *********************************************/  
 
 int N = ...;            // Physician Capacity 
 int M = ...;            // Number of physicians 
 int Scenario = ...;          // Number of scenarios calculated 
 float Utilization = ...;         // Demand utilization. 0.2-1.6, default: 1.0 
 int DemandUpper = ...;        // Upper bound of demand realization 
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 //float Scale  = ...;         // 1/total probability 
 string OutputFile = ...;        //Outputfile name 
  
 float RevPresche = ...;        // Revenue of meeting one pre-scheduled demand 
 float RevOpenOwn = ...;        // Revenue of meeting one owned open access 
demand 
 float RevOpenOther = ...;        // Revenue of meeting one open access demand of 
other's 
  
 range DocNum  = 1..M; 
 range scenario = 1..Scenario; 
 range demandupper = 0..DemandUpper;    // the second index of Phi 
  
 int PreDemand  [scenario][DocNum] = ...;   // Pre-scheduled demand for each physician in 
scenarios 
 int OpenDemand [scenario][DocNum] = ...;   // Open access demand for each physician in 
scenarios 
 //float Probability[scenario]   = ...;    // Total probability of each scenario 
  
  
 dvar float Np[DocNum]      in 0..N; // Decision variables that how many slots should 
be reserved for pre-scheduling 
 dvar float Xp[scenario][DocNum]   in 0..N; // Decision variables that how many pre-
scheduled appointments should be met for each scenarios 
 dvar float Xo[scenario][DocNum]   in 0..N; // Decision variables that how many open access 
demand should be met  
 dvar boolean Phi[DocNum][demandupper];   // Binary variables that make sure the unused pre-
scheduled capacity could be pushed to open access 
   
  
 // Objective: maximize the revenue of satisfying demands 
  
 maximize sum ( s in scenario, i in DocNum ) (  RevPresche * Xp[s][ i] ) +  
    sum ( s in scenario, i in DocNum ) (  RevOpenOwn * Xo[s][ i] ) ; 
  
 subject to{ 
 
 forall( s in scenario ){ 
  forall( i in DocNum ){ 
   // constraints for decision variables Np 
   Np[i] <= PreDemand[s][ i] + N * Phi[i][ PreDemand[s][ i] ];  
   Np[i] >= PreDemand[s][ i] * Phi[i][ PreDemand[s][ i] ]; 
    
   // upper bound constraints for Xp 
   Xp[s][ i] <= Np[i];      //Cannot larger than reserved slots 
   Xp[s][ i] <= PreDemand[s][ i];   //Cannot larger than actual pre-scheduled demands 
    
   // Xo cannot be larger than the actual open access demand 
   Xo[s][ i] <= OpenDemand[s][ i];         
 
   // Xo cannot be larger than the capacity left for each physisian 
   Xo[s][ i] <= N - PreDemand[s][ i] * Phi[i][ PreDemand[s][ i] ]; 
   Xo[s][ i] <= N- Np[i] + Phi[i][ PreDemand[s][ i] ] * N; 
  } 
 } 
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 } // end of constraints 
  
   
 execute { 
   
  //Statistic the results  array indexed from 0 
  PreDemandStat   =  new Array(M+1);    // Expected demand for pre-scheduling  
  OpenDemandStat  =  new Array(M+1);    // Expected demand for open access 
  PreDemandMet  = new Array(M+1);    // Expected demand met for pre-scheduling 
  OpenDemandMet  = new Array (M+1);   // Expected demand met for open access 
   
   
  for ( var i=0; i<M+1; i++ ){ 
   PreDemandStat[i]  = 0; 
   OpenDemandStat[i]  = 0; 
   PreDemandMet[i]   =  0; 
   OpenDemandMet[i]  =  0; 
  } 
   
  // Begin statistic calculation 
  for ( var s=1; s<=Scenario; s++ ){ 
   for ( i=1; i <= M; i++ ){ 
    PreDemandStat[i-1] = PreDemandStat[i-1] +  PreDemand[s][ i]; 
    OpenDemandStat[i-1] = OpenDemandStat[i-1] + OpenDemand[s][ i]; 
    PreDemandMet[i-1] = PreDemandMet[i-1] + Xp[s][ i]; 
    OpenDemandMet[i-1] = OpenDemandMet[i-1] +  Xo[s][ i];   
   } 
  } // end calculation 
   
  for( i=0; i<M; i++){ 
   PreDemandStat[M] = PreDemandStat[M] + PreDemandStat[i]; 
   OpenDemandStat[M] = OpenDemandStat[M] + OpenDemandStat[i]; 
   PreDemandMet[M]  = PreDemandMet[M] + PreDemandMet[i]; 
   OpenDemandMet[M] = OpenDemandMet[M] + OpenDemandMet[i]; 
  } 
   
   
  var ofile = new IloOplOutputFile ( ); 
  ofile.open( OutputFile ); 
   
 ofile.writeln ("No Flex\tPhysicians\t",M, "\tScenario\t",Scenario, "\tUtilization\t", Utilization, 
"\tRevPre\t", RevPresche, 
 "\tRevOpenOwn\t",RevOpenOwn, "\tRevOpenOther\t", RevOpenOther, "\tObjective:\t", 
cplex.getObjValue()/Scenario, "\tNp:\t", Np,  
 "\tTotalDemand:\t", (PreDemandStat[M]+ OpenDemandStat[M])/Scenario, "\tDemandMet:\t", 
(PreDemandMet[M] + OpenDemandMet[M])/Scenario, 
 "\tRefusal:\t", (PreDemandStat[M]+ OpenDemandStat[M]-PreDemandMet[M]-
OpenDemandMet[M])/Scenario ); 
  
 ofile.close(); 
   
 } 

 
 



 

88 
 

BIBLIOGRAPHY 
 
[1] California HealthCare Foundation. Health care costs 101, April 2009. Accessed May   
  24th, 2009 at http://www.chcf.org/documents/insurance/HealthCareCosts09.pdf. 
 
[2] World Health Organization. World Health Statistics 2008. World Health Organization,  
  2008. 
 
[3] Keehan, S., Sisko, A., Truer, C., et al. Health spending projections through 2017: the  
  babyboom generation is coming to medicare. Health Affairs 2, 27 (2008), 145-155. 
 
[4] World Health Organization. The World Health Report 2000 - Health Systems:    
   Improving Performance. World Health Organization, January 2000. 
 
[5] World Health Organization. The World Health Report 2008: Primary Health Care  
  Now More Than Ever. World Health Organization, December 2008. 
 
[6] Grumbach, K., Selby, J. V., Damberg, C., et al. Resolving the gatekeeper conundrum:  
  what patients value in primary care and referrals to specialists. Journal of the   
 American Medical Association 282, 3 (Jul 1999), 261-266. 
 
[7] American College of Physicians. The impending collapse of primary care and its  
 implications for the state of the nation's healthcare. Tech. rep., American College of  
 Physicians, 2006. Accessed May 25th, 2009 at  
 http://www.acponline.org/advocacy/events/state of healthcare/statehc06 1.pdf. 
 
[8] Arvantes, J. Health care experts describe the benefits of primary care, November 2007.  
 Accessed May 25th, 2009 at 
 http://www.aafp.org/online/en/home/publications/news/news-now/professional-
 issues/20070611pcforum.html. 
 
[9] Starfield, B., Shi, L., Macinko, J. Contribution of primary care to health systems and  
  health. The Milbank quarterly 83, 3 (2005), 457-502. 
 
[10] Bodenheimer, T. Primary Care - Will It Survive? The New England Journal of  
    Medicine 355, 9 (2006), 861-864. 
 
[11] Committee on Quality of Health Care in America, Institute of Medicine, Crossing  
    the Quality Chasm: A New Health System for the 21st Century. Washington, DC:  
    National Academy Press, 2001. 
 
[12] Strunk, B. C., Cunningham P. J. Treading water: Americans' access to needed  
    medical care, 1997-2001. Tech. rep., Center for Studying Health System Change 
    2002. 
 
 



 

89 
 

[13] Rust, G., Ye, J., Baltrus, P., et al. Practical barriers to timely primary care access.  
    Archives of Internal Medicine 268, 15 (2008), 1705-1710. 
 
[14] Gill, J. M., Mainous A. G. The role of provider continuity in preventing  
    hospitalizations. Archives of Family Medicine 7 (1998), 352-357. 
 
[15] Hing, E., Burt C. W. Characteristics of office-based physicians and their medical  
    practices: United states, 20052006. Tech. rep., U.S. Department of Health and  
    Human Services, 208. 
 
[16] Murray, M., Bodenheimer T. Rittenhouse D. Grumbach. K. Improving timely access  
    to primary care: Case studies of the advanced access model. Journal of the American  
    Medical Association 289, 3 (2003), 1042-1046. 
 
[17] Green, L. V., Savin, S., Murray, M. Providing timely access to care: What is the  
    right patient panel size? The Joint Commission Journal on Quality and Patient Safety  
    33 (2007), 211-218. 
 
[18] Committee on Quality of Health Care in America, Institute of Medicine. Crossing  
    the Quality Chasm: A New Health System for the 21st Century. Washington DC:  
    National Academy Press, 2001. 
 
[19] Xiuli Qu and Jing Shi. Effect of two-level provider capacities on the performance of  
    open access, Health Care Manage Science, 2009 12:99-114. 
 
[20] Murray, M., Tantau C. Redefining open access to primary care. Managed Care  
    Quarterly 7, 3 (1999), 45-55. 
 
[21] Murray, M., Tantau C. Same-day appointments: Exploding the access paradigm. 
    Family Practice Management 7, 8 (2000), 45-50. 
 
[22] Qu X, Rardin RL, Williams JAS, Willis DR. Matching daily healthcare provider  
    capacity to demand in advanced access scheduling systems. Eur J Oper Res, 2007 
    187:812-826. 
 
[23] Kopach, R., DeLaurentis, P., Lawley, M. et al. Effects of clinical characteristics on  
    successful open access scheduling. Health Care Management Science 10, 2(2007),  
    111-124. 
 
[24] Gupta, D., Wang L. Revenue management for a primary care clinic in the presence  
    of patient choice. Operations Research 56, 3 (2008), 576-592. 
 
[25] Jordan, W. C., Graves S. C. Principles and benefits of manufacturing process      
     flexibility. Management Science 41, 4 (1995), 577-594. 
 
 



 

90 
 

[26] Graves, S. C., Tomlin B. T. Process flexibility in supply chains. Management  
    Science 49, 7 (2003), 907-919. 
 
[27] Muriel, A., Somasundaram, A., Zhang, Y. Impact of partial manufacturing flexibility  
    on production variability. Manufacturing & Service Operations Management 8, 2  
    (2006), 192-205. 
 
[28] Brusco, Michael J., Johns Tony R. Staffing a multi-skilled workforce with varying  
    levels of productivity: An analysis of cross-training policies. Decision Sciences 29, 2  
    (1998), 499-515. 
 
[29] Chou, Mabel C., Chua, Georey A., Teo, Chung-Piaw. On range and response:  
    Dimensions of process flexibility. Working paper, NSU 2008. 
 
[30] Sheikhzadeh, M., Benjaafar, S., Gupta, D. Machine sharing in manufacturing  
    systems: Total flexibility versus chaining. The International Journal of Flexible  
    Manufacturing Systems 10, 4 (1998), 351-378. 
 
[31] Gurumurthi, S., Benjaafar S. Modeling and analysis of flexible queuing systems.  
    Naval Research Logistics 51, 755 - 782 (2004). 
 
[32] Hopp, W., Tekin, E., Van Oyten, M. P. Benefits of skill chaining in serial production  
    lines with cross-trained workers. Management Science 50, 4 (2004), 83-98. 
 
[33] Bennett, K. J., Baxley E. G. The effect of a carve-out advanced access scheduling  
    system on no-show rates. Practice Management 41, 1 (2009), 51-56. 
 
[34] Solak, S., Clarke, J.B., Johnson, E.L., Barnes, E.R., Optimization of R&D Project  
    Portfolios under Endogenous Uncertainty, European Journal of Operational  
        Research (2010). 
 
[35] Jan Hippchen, Physician Flexibility in Primary Care Practices, Master thesis,       
    University of Massachusetts, Amherst, 2009. 


