Prototype modifications within a flood control channel to improve fish passage in Mill Creek near Walla Walla, WA

J. Renholds

University of Wisconsin - Madison

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference
Prototype fish passage modifications in Mill Creek near Walla Walla, WA

Jon Renholds
Hydraulic Engineer, P.E.
US Army Corp of Engineers Walla Walla District, Walla Walla, WA
Engineering and Ecohydrology for Fish Passage Conference – June 10, 2014
Overview

- Location of Project
- Flood Control Purpose
- Fish Passage Barriers
- Hydraulic Design
- Construction
- Post construction hydraulic assessment
- Future Work
Mill Creek near Walla Walla, WA
Flood Control Purpose

- In 1931 a major flood in Walla Walla caused flood control project to be built between 1935 to 1942.
 - Diversion structure with off-stream reservoir
 - Concrete lined channel through town
 - Levees with bed stabilizers

- Majority of the improved channel managed locally
- USACE still operates 2 diversions and approx. 1 mile of improved channel

Gabions later capped by concrete
Flood Control Purpose

- Upstream reaches of Mill Creek with good fisheries habitat
- Diversion channel for flood flows
- Off-stream flood control and recreation reservoir
- Section of federally managed improved channel
- Section of locally managed improved channel
- Diversion for irrigation rights

Mill Creek Flood Control Project

Bennington Lake

BUILDING STRONG®
The project has been very effective at limiting flood damage from a creek with a flashy flow regime.

- Limits flow to 3500 cfs in channel
 - 20-yr Q = 3800 cfs, 100-yr Q = 7050 cfs
- Prevented major flood damage as recently as 1996
Fish Passage Barriers

- 84 sills through the federal reach of Mill Creek

High Water Surface Differential
- 0.6 ft – 1.6 ft with most ~ 1 ft
- < 0.8 ft criteria used for bull trout

Low Flow Depth
- As low as 2” over sill crest
- 6 ft long crest in stream direction
- > 1 ft criteria desired for salmon

Fish Passage Discharges
- NMFS guidelines 5% to 95%
- Used 10 cfs to 400 cfs for design
 - Actual 24 to 365 cfs
Hydraulic Design

- **Multiple restrictions reduced alternatives**
 - Real estate was not available to set back levees
 - Alternatives could not increase WSE at 3500 cfs
 - Scour at levee toe was not acceptable
 - Concern if sill was cut it would fail
 - Fish Passage from 10 to 400 cfs

- **Selected alternative**
 - V shaped weir
 - Center = Higher depth
 - Edge = lower velocity
 - For sills with drops > 0.8 ft drops
 - Needed 2 weirs and intermediate pool
 - Used pool & chute fishway concept
 - Intermediate pool sized to meet turbulence criteria of EDF/V of (4.0 ft-lb/s)/ft³
Hydraulic Design

- Used Spreadsheet to initially size one step and two step drop designs.
- Used HEC-RAS to check flood capacity and account for sill variability.
- Used spreadsheet again to post process HEC-RAS output to verify WSE change, depth, turbulence and calculate scour.
Construction

- 3 sills were modified
 - Budget and desire to see prototype
 - 2 double weir and 1 single weir structure

- Construction
 - July – September 2012
Construction
Post construction Assessment

- The hydraulic assessment consisted of observations at key discharges:
 - Dec 12, 2012
 - 411 cfs
 - Near High Fish Passage Design Flow
Post Construction Assessment

- Highest Discharge since construction – 1,260 cfs (4-20-13)
Post Construction Assessment

- Low Flow was assessed at 37 cfs on 7/10/13
 - Measure Water Surface Differential
 - Measure Head and Depth over the Weir
 - Look at sediment scour and deposition
Post Construction Assessment

- Met design objectives
 - ΔWSE – 0.5 to 0.79 ft
 - Depth at weir crest – 0.86 to 1.05 ft
 - Depth behind weir crest – 1.0 to 1.1 ft

- Minimal scour and deposition
 - Estimate of 5 and 8 ft3, compared to full pool volume of ~ 780 ft3
Future Work

- Currently planning construction of additional sill modifications in 2015 with same design
- Exploring designing some natural channel options
 - Roughened channels and similar designs offer interesting alternative but it is a difficult environment
Questions